114 research outputs found

    Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration

    Full text link
    In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetization tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii)

    Electric potential and field calculation of charged BEM triangles and rectangles by Gaussian cubature

    Get PDF
    It is a widely held view that analytical integration is more accurate than the numerical one. In some special cases, however, numerical integration can be more advantageous than analytical integration. In our paper we show this benefit for the case of electric potential and field computation of charged triangles and rectangles applied in the boundary element method (BEM). Analytical potential and field formulas are rather complicated (even in the simplest case of constant charge densities), they have usually large computation times, and at field points far from the elements they suffer from large rounding errors. On the other hand, Gaussian cubature, which is an efficient numerical integration method, yields simple and fast potential and field formulas that are very accurate far from the elements. The simplicity of the method is demonstrated by the physical picture: the triangles and rectangles with their continuous charge distributions are replaced by discrete point charges, whose simple potential and field formulas explain the higher accuracy and speed of this method. We implemented the Gaussian cubature method for the purpose of BEM computations both with CPU and GPU, and we compare its performance with two different analytical integration methods. The ten different Gaussian cubature formulas presented in our paper can be used for arbitrary high-precision and fast integrations over triangles and rectangles.Comment: 28 pages, 13 figure

    Computation of the magnetostatic interaction between linearly magnetized polyhedrons

    Full text link
    In this paper we present a method to accurately compute the energy of the magnetostatic interaction between linearly (or uniformly, as a special case) magnetized polyhedrons. The method has applications in finite element micromagnetics, or more generally in computing the magnetostatic interaction when the magnetization is represented using the finite element method (FEM). The magnetostatic energy is described by a six-fold integral that is singular when the interaction regions overlap, making direct numerical evaluation problematic. To resolve the singularity, we evaluate four of the six iterated integrals analytically resulting in a 2d integral over the surface of a polyhedron, which is nonsingular and can be integrated numerically. This provides a more accurate and efficient way of computing the magnetostatic energy integral compared to existing approaches. The method was developed to facilitate the evaluation of the demagnetizing interaction between neighouring elements in finite-element micromagnetics and provides a possibility to compute the demagnetizing field using efficient fast multipole or tree code algorithms

    Numerical cubature using error-correcting codes

    Full text link
    We present a construction for improving numerical cubature formulas with equal weights and a convolution structure, in particular equal-weight product formulas, using linear error-correcting codes. The construction is most effective in low degree with extended BCH codes. Using it, we obtain several sequences of explicit, positive, interior cubature formulas with good asymptotics for each fixed degree tt as the dimension n→∞n \to \infty. Using a special quadrature formula for the interval [arXiv:math.PR/0408360], we obtain an equal-weight tt-cubature formula on the nn-cube with O(n^{\floor{t/2}}) points, which is within a constant of the Stroud lower bound. We also obtain tt-cubature formulas on the nn-sphere, nn-ball, and Gaussian Rn\R^n with O(nt−2)O(n^{t-2}) points when tt is odd. When μ\mu is spherically symmetric and t=5t=5, we obtain O(n2)O(n^2) points. For each t≥4t \ge 4, we also obtain explicit, positive, interior formulas for the nn-simplex with O(nt−1)O(n^{t-1}) points; for t=3t=3, we obtain O(n) points. These constructions asymptotically improve the non-constructive Tchakaloff bound. Some related results were recently found independently by Victoir, who also noted that the basic construction more directly uses orthogonal arrays.Comment: Dedicated to Wlodzimierz and Krystyna Kuperberg on the occasion of their 40th anniversary. This version has a major improvement for the n-cub

    Constructing Cubature Formulas of Degree 5 with Few Points

    Get PDF
    This paper will devote to construct a family of fifth degree cubature formulae for nn-cube with symmetric measure and nn-dimensional spherically symmetrical region. The formula for nn-cube contains at most n2+5n+3n^2+5n+3 points and for nn-dimensional spherically symmetrical region contains only n2+3n+3n^2+3n+3 points. Moreover, the numbers can be reduced to n2+3n+1n^2+3n+1 and n2+n+1n^2+n+1 if n=7n=7 respectively, the later of which is minimal.Comment: 13 page

    Cubature formulas of multivariate polynomials arising from symmetric orbit functions

    Full text link
    The paper develops applications of symmetric orbit functions, known from irreducible representations of simple Lie groups, in numerical analysis. It is shown that these functions have remarkable properties which yield to cubature formulas, approximating a weighted integral of any function by a weighted finite sum of function values, in connection with any simple Lie group. The cubature formulas are specialized for simple Lie groups of rank two. An optimal approximation of any function by multivariate polynomials arising from symmetric orbit functions is discussed.Comment: 19 pages, 4 figure

    Analytical computation of moderate-degree fully-symmetric cubature rules on the triangle

    Get PDF
    A method is developed to compute analytically fully symmetric cubature rules on the triangle by using symmetric polynomials to express the two kinds of invariance inherent in these rules. Rules of degree up to 15, some of them new and of good quality, are computed and presented.Comment: 13 pages, submitted to Journal of Computational and Applied Mathematic
    • …
    corecore