1,138 research outputs found

    Android Malware Clustering through Malicious Payload Mining

    Full text link
    Clustering has been well studied for desktop malware analysis as an effective triage method. Conventional similarity-based clustering techniques, however, cannot be immediately applied to Android malware analysis due to the excessive use of third-party libraries in Android application development and the widespread use of repackaging in malware development. We design and implement an Android malware clustering system through iterative mining of malicious payload and checking whether malware samples share the same version of malicious payload. Our system utilizes a hierarchical clustering technique and an efficient bit-vector format to represent Android apps. Experimental results demonstrate that our clustering approach achieves precision of 0.90 and recall of 0.75 for Android Genome malware dataset, and average precision of 0.98 and recall of 0.96 with respect to manually verified ground-truth.Comment: Proceedings of the 20th International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2017

    Measuring third party tracker power across web and mobile

    Full text link
    Third-party networks collect vast amounts of data about users via web sites and mobile applications. Consolidations among tracker companies can significantly increase their individual tracking capabilities, prompting scrutiny by competition regulators. Traditional measures of market share, based on revenue or sales, fail to represent the tracking capability of a tracker, especially if it spans both web and mobile. This paper proposes a new approach to measure the concentration of tracking capability, based on the reach of a tracker on popular websites and apps. Our results reveal that tracker prominence and parent-subsidiary relationships have significant impact on accurately measuring concentration

    MadDroid: Characterising and Detecting Devious Ad Content for Android Apps

    Get PDF
    Advertisement drives the economy of the mobile app ecosystem. As a key component in the mobile ad business model, mobile ad content has been overlooked by the research community, which poses a number of threats, e.g., propagating malware and undesirable contents. To understand the practice of these devious ad behaviors, we perform a large-scale study on the app contents harvested through automated app testing. In this work, we first provide a comprehensive categorization of devious ad contents, including five kinds of behaviors belonging to two categories: \emph{ad loading content} and \emph{ad clicking content}. Then, we propose MadDroid, a framework for automated detection of devious ad contents. MadDroid leverages an automated app testing framework with a sophisticated ad view exploration strategy for effectively collecting ad-related network traffic and subsequently extracting ad contents. We then integrate dedicated approaches into the framework to identify devious ad contents. We have applied MadDroid to 40,000 Android apps and found that roughly 6\% of apps deliver devious ad contents, e.g., distributing malicious apps that cannot be downloaded via traditional app markets. Experiment results indicate that devious ad contents are prevalent, suggesting that our community should invest more effort into the detection and mitigation of devious ads towards building a trustworthy mobile advertising ecosystem.Comment: To be published in The Web Conference 2020 (WWW'20

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall
    • …
    corecore