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MadDroid: malicious adware detection in Android using 
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ABSTRACT
The majority of Android smartphone apps are free. When an 
application is used, advertisements are displayed in order to 
generate revenue. Adware-related advertising fraud costs 
billions of dollars each year. Adware is a form of advertising- 
supported software, that turns into malware when it auto-
matically installs additional malware and adware on an 
infected device, steals user data, and exposes other vulner-
abilities. Better techniques for detecting adware are needed 
due to the evolution of increasingly sophisticated evasive 
malware, particularly adware. Even though significant work 
has been done in the area of malware detection, the adware 
family has received very little attention. This paper presents 
a deep learning-based scheme called MadDroid to detect 
malicious Android adware based on static features. 
Moreover, this paper delivers a novel dataset that consists 
of malicious Adware and benign applications and an opti-
mised Convolutional neural network (CNN) for detecting 
Adware infected by malware based on the permissions of 
the applications. The results indicate an average classification 
rate that is higher than previous work for individual adware 
family classification in terms of well-known evaluation 
metrics.
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1. Introduction

The global smartphone market has experienced exceptional growth, 
thanks to the vast number of available applications and an open-source 
code platform that encourages app developers to create Android apps for 
free. These applications are considered essential to Android phones, as 
they drive innovation, leisure, accessibility, and compatibility with mobile 
devices. However, adware or mobile advertising in the form of banner 
ads, rich media, or interstitial ads is increasingly infiltrating Android 
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applications, posing a threat to users. The use of mobile devices has 
become widespread in recent years, and they are now essential to our 
daily lives, resulting in an exponential increase in mobile users and apps. 
Android, with over 2 billion users, is the most popular operating system 
worldwide and is thus a common target for malicious actors. Adware, 
a type of malware that displays unwanted and often offensive advertise-
ments, is a prevalent threat to Android users [1] [2].

Advertising is a marketing strategy that promotes products, ideas, and 
services. With the emergence of the internet and smartphones, digital 
advertising has become increasingly popular. Digital ads are displayed 
while browsing websites or using mobile applications, and since many 
smartphones run on the Android platform, there is a vast ecosystem of 
Android apps. However, digital advertising is plagued by fraudulent activ-
ity, with adware being a prevalent security threat used to collect market-
ing data or display ads for profit. Adware is more common and effective 
than traditional malware and goes beyond the judicious advertising 
found in freeware or shareware. Adware is often installed alongside 
other programmes and can continue generating ads even when the 
user is not running the desired programme [3].

Smartphones have become essential tools in our daily lives, and the 
amount of sensitive information we store on them has made them prime 
targets for hackers. Malicious code can be installed on smartphones, 
allowing hackers to steal personal information and profit from advertising 
and micropayment systems. The number of mobile malware infections 
has grown exponentially, and Android devices are particularly vulnerable 
due to the openness of the Android market and their high market share. 
Malicious adware-based hacking attacks have become more intense and 
diverse over time, with the most common type infiltrating and controlling 
users’ Android devices. Malicious adware has infected almost all current 
Android versions, making many Android devices worldwide vulnerable to 
threats. Advertisements in some free Android apps have become more 
aggressive, and users may not be aware of the changes on their devices. 
Even popular apps may contain adware, and users may not object to it or 
be aware of its effects [4].

Machine learning is an advanced technique used in cybersecurity to 
identify and classify malware, including adware, based on patterns and 
behaviours rather than just matching signatures. Machine learning algo-
rithms are trained on large datasets of known malware and can detect 
new and previously unknown malware. These algorithms can learn to 
recognise and classify adware based on its behaviour, such as its use of 
network connections, data transmission, and system modification, among 
other things. By detecting adware through behaviour analysis, machine 
learning can identify new strains of adware that traditional signature- 
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based methods might miss. Machine learning can also help security 
experts quickly develop new rules and signatures for identifying adware 
and other malware, allowing for faster and more effective responses to 
new threats. Machine learning is expected to play an increasingly impor-
tant role in cybersecurity as new and more complex forms of malware 
continue to emerge [5].

Therefore, a different approach is proposed to detect and classify 
adware-based permission analysis using deep learning. This study 
describes MadDroid, a permission-based adware detection algorithm 
that uses a Convolutional neural network (CNN). This research analyses 
the use of machine learning as a possible defence against mobile adware. 
We classify Android apps based on the features obtained from static 
analysis. The static features, which are permissions, are obtained from 
the VirusTotal Scanner website [6]. The complete process is fully 
explained in Section 4. To detect Android adware using permissions, we 
first created a new self-made dataset as explained in Section 5 and then 
utilised a tuned CNN algorithm. We employ a deep-learning technique to 
analyse Android adware and benign apps, based on the dataset that we 
have collected. Specifically, we consider experiments involving neural 
networks. This study compared several ML algorithms, namely, Decision 
Tree (DT), Random Forest (RF), K-Nearest Neighbour (K-NN), Support 
Vector Machine (SVM), Naive Bayes (NB), Multilayer Perceptron (MLP), 
Logistic Regression (LR), and Linear Discriminant Analysis (LDA).

The following contributions are delivered:

● A novel dataset is introduced 440 permissions to detect malicious adware 
on android devices.

● We propose a tuned convolutional neural network (CNN) to detect mal-
icious android adware.

● We evaluate our approach using well-known evaluation metrics, with the 
results demonstrating that malicious adware can be detected with a very 
high degree of accuracy.

The rest of the paper is organised as follows: Section 2 is the research 
background; Section 3 is the related work; Section 4 illustrates the dataset 
creation process; Section 5 describes the dataset; Section 6 explains the 
proposed method; Section 7 delivers the experimental evaluation; 
Section 9 indicates the results; and Section 9 contains the conclusions 
and future work.
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2. Background

2.1. Overview of adware

Adware is often distributed alongside other software, especially free soft-
ware, or software that users may be tempted to download. Once installed 
on a user’s device, the adware can track their online activities and display 
targeted advertisements, which can be annoying or even harmful. Adware 
can also slow down a device’s performance and cause it to crash. To avoid 
adware, users should be cautious when downloading software and only 
download from trusted sources. They should also keep their devices and 
software up to date with the latest security patches and use reputable 
antivirus software. Additionally, users can install ad-blocking software or 
browser extensions to block unwanted advertisements [7].

Adware is installed on a user’s device through a security flaw in an 
existing application. Users can unknowingly download it as well. This can 
occur when users perform one of the following actions:

● Download an adware-infected application.
● Use software that contains flaws that adware authors can exploit.

The aim of adware is to entice users to click on or engage with the 
advertisements displayed or downloaded by the software. Adware authors 

Figure 1. Demonstration of how malicious adware works [8].
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and distributors earn money when users click on the online ads served by 
their adware. Although some adware is legitimate and agreed to by users, 
it is often unwanted. Adware can be a nuisance, but it may also carry 
harmful risks. Figure 1 demonstrates how malicious adware works.

2.2. Adware and history

Adware is any software programme, whether malicious or not, that can 
display advertisements on a personal computer. Malicious programmes 
that display misleading advertisements, blinking pop-up windows, mas-
sive digital billboards, and full-screen auto-play advertisements within an 
internet browser are the most common examples. The term is 
a compound of the words ‘advertising’ and ‘software’. The developer 
earns money every time someone clicks on an advertisement displayed 
by adware. Some types of adware may interfere with your web browsing 
experience by directing you to malicious websites. Then, without your 
knowledge, some collect your browsing information and use it to serve 
you advertisements that are more tailored to your preferences and thus 
more likely to be clicked on.

When adware first became popular in 1995, many industry profes-
sionals assumed it was all spyware, which is software that allows some-
one to obtain covert data from a computer without the user’s knowledge. 
Adware was demoted to the status of a ‘potentially undesirable applica-
tion’, or PUA, as its credibility grew. As a result, despite its widespread 
use, little was done to ensure its legality. Adware makers did not begin 
monitoring and blocking problematic behaviour until the peak adware 
years of 2005–2008.

2.3. Adware and illegal use

Many people mix up adware and malware, malicious software designed 
to harm a computer or server. Malware includes viruses, spyware, worms, 
and some types of adware. Pop-up ads, inaccessible panels, and other 
types of malicious adware can infect computers. Once dangerous adware 
has infiltrated a computer, it may perform a variety of malicious activities, 
such as tracking the user’s location, query history, and web browser 
viewing history, which the malware programmer can then monetize by 
selling to third parties.

2.4. Adware and the dark side

Adware is a cyber-security term that refers to adware applications that 
exhibit dangerous or irregular behaviour. Adware is classified as spyware 
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when it tracks users’ activities without permission. Fraudsters take advan-
tage of flaws in the validation process of ad networks or flaws in 
a consumer’s browser. When a user visits an infected website, malicious 
adware can spawn pop-ups, pop-unders, and persistent windows that 
allow for drive-by installations. Visitors who disable ad blockers may be 
at risk of infection. Adware applications have been discovered that pre-
vent antivirus software from running. Because some adware software is 
legal or does not have uninstallation processes, security software may be 
unable to identify which adware applications are truly dangerous.

2.5. Types of adware

Adware is most commonly associated with annoying pop-up windows 
and advertisements, but it can also take other forms. It is critical to 
distinguish between harmless and dangerous adware. The following are 
the most common types of adware:

2.5.1. Legitimate fc
Adware of this type allows you to subscribe to advertisements and soft-
ware promotions, allowing developers to distribute their programmes for 
free by offsetting their expenses. Users instal this type of adware on 
purpose to obtain a free item. You can also choose to allow it to collect 
marketing data. All programmers, including reputable ones, create legit-
imate adware because providing clients with a free product is 
a legitimate and fair method of gaining adoption. However, not all soft-
ware downloads are agreed upon by both the distributor and the user. In 
this situation, the line between legal and illegal blurs.

2.5.2. Potentially unwanted applications (PUAs)
PUAs are unwanted software packages that are bundled with legitimate 
complementary software applications. PUPs, or potentially unwanted pro-
grammes, are another name for them. Although not all PUAs are mal-
icious, some may exhibit intrusive behaviours such as displaying pop-up 
advertisements or slowing down your device. It can slow down 
a computer’s performance and potentially introduce security issues such 
as spyware and other unwanted software.

2.5.3. Legal abusive adware PUA
PUAs, both legal and abusive, are designed to bombard you with adver-
tisements. Excessive advertising can be found in packaged software, 
internet browser toolbars, and other places. This is also legal because 
no malware is involved. Ads for fitness pills, for example, are common in 
adware like this.
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2.5.4. Legal deceptive adware PUA
This category includes legal adware that deceives the user in some way. 
This type of PUA may make it difficult to uninstall secure third-party 
software. This strategy is occasionally used by legal adware, and it is 
lawful if the developer did not put malware-infected advertising or soft-
ware there on purpose. Unfortunately, certain adware can inadvertently 
infect devices with malware.

2.5.5. Illegal malicious adware PUA
This category includes malicious adware that is either illegal to use or 
distribute. The PUA earns money by distributing malicious programmes to 
machines such as spyware, viruses, and other malware. The malware 
could be hidden within the adware, the websites it promotes, or other 
software programmes. The authors and distributors are spreading this 
threat on purpose and may employ aggressive tactics [9].

According to [8], deceptive and abusive adware is designed to manip-
ulate users into interacting with advertisements or to obtain consent 
through deceptive means, such as bombarding them with unwanted ads 
or making it difficult to uninstall unwanted software. While adware is not 
inherently malicious, it can create vulnerabilities that may be exploited by 
malicious software. Only adware that is specifically designed to deliver 
harmful software to the user is considered malicious. Some types of mal-
icious adware include the following:

(1) Spyware: Adware can contain code that tracks and records a user’s per-
sonal information and internet browsing habits. If this data is collected 
without the user’s knowledge or consent and sold to third parties, it is 
considered spyware. Many privacy advocates are critical of these 
practices.

(2) Potentially unwanted programs (PUPs): Malicious adware or spyware can 
be bundled with free or shareware software downloaded from the inter-
net. Users may unknowingly download adware from an infected website. 
Antimalware programs often flag adware as a potentially unwanted 
program, regardless of whether it is malicious or not.

(3) Man-in-the-middle (MitM) attacks: Adware can also be used in MitM 
attacks, where the attacker routes user traffic through the adware ven-
dor’s system, even over secure connections. The communicating parties 
believe they are exchanging information securely, but the attacker can 
collect and manipulate sensitive information during the conversation.
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2.6. Types of attacks/threats

Some common advertisement attacks are described and explained in the 
sections that follow. The impact of threats and attacks on an adversary, 
developers, users, and platform ends is described in Table 1, which 
summarises their relationship.

Attack/Threats are described below
● Adversary End: This refers to an attack that occurs due to the presence of 

malicious advertisement libraries or networks. These libraries or networks 
may be designed to serve ads that contain malware or to redirect users to 
phishing or other malicious websites. When users interact with these ads, 
they may inadvertently download malware or give away sensitive 
information.

● Developer End: The two directions in which developers launch attacks are 
against advertisers, to exhaust their budget and abuse power, and against 
users, to steal personal information or make money. The terms ‘Adversary 
End’ and ‘Developer End’ are interrelated because app developers and ad 
libraries collaborate with each other. They share permissions and are 
located in the same code piece with the same UID. These two categories 
are separated only for the purpose of better understanding their 
behaviour.

● User End: refers to the end-users of a system who may be vulnerable to 
attacks due to their lack of security awareness, knowledge, and implemen-
tation of existing defensive measures. This means that users may not be 
aware of potential security risks and how to protect themselves from them, 
such as using strong passwords, avoiding clicking on suspicious links, and 

Table 1. Attacks/Threats and their impact on user’s privacy.
Attacks/Threats Adversary End Developer End User End Android End

Malware Unauthorized Data Collection Code Level Security 
Issues

Victim Data 
Exposure

to other apps
Malicious Ads Attack Generator (e.g. DDoS 

attack)
Victim Victim Lack of 

Security
Control

Malicious Ad- 
Libraries

Attack Generator Money making &  
Lack of

Victim No Privilege

Security Check Escalation
Permission Misuse Developers accessed Ad-Libraries accessed Victim No Privilege

Permissions misuse Permissions misuse Escalation
MitM Attack Generator Targeted Applications Victim Lack of 

Security
Control

Certificate 
Compromise

Targeted Sites via Lack of Security Check Victim Lack of 
Security

Valid certificate Control
Click-Fraud Attack Victim Make Money or Security Lack of 

Security
Exhaust Adversary Exploitation Control
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regularly updating their software. As a result, they become easy targets for 
attackers who can steal their personal information, and financial data, or 
use their devices for malicious purposes.

● Android End: The security control of the Android platform is a significant 
factor, which has some vulnerabilities, including the absence of privilege 
escalation, ad SDKs, and application code permissions for developers.

As described in Table 1 summarizes the relationship between them where the 
impact of attacks/threats on ‘Adversary developers’, users and platforms are 
described
● Malware: The term malvertising is used to describe online advertisements 

that distribute malware [9]. Malware can be transmitted to an Android 
device through malicious software or advertisements. Users may be direc-
ted to other pages where they can download additional software or mal-
icious applications by clicking on these ads while using the app. The 
majority of Android malware is in the form of Trojans.

● Malicious Ads: It is related to malware injection in some ways. The separa-
tion from malware serves only to categorise malicious advertisements. 
Malware can, however, be injected through the code of developers or 
malicious libraries.

● Click-Fraud Attack: Adware attacks can occur not only on Android devices 
but also on ad networks. These attacks aim to exploit security vulnerabil-
ities in the Android platform and other systems. Click fraud is an example of 
a cyber-criminal activity that has become increasingly common. Attackers 
use adware to generate fraudulent clicks, with the goal of either increasing 
revenue for developers or depleting the budget of advertisers.

● Malicious Ad-Libraries: One type of attack involves the use of malicious 
ad-libraries that have access to sensitive information. These libraries can 
collect data through the permission mechanism and send targeted ads to 
users. A developer can use up to 65 of these libraries simultaneously, giving 
them access to a significant amount of personal data. This type of attack 
can be especially dangerous as it can result in the theft of sensitive 
information.

● Permission Misuse: Permissions are crucial for application security, but 
their misuse can lead to various attacks. Malware injection, malicious ads, 
malicious advertisement libraries, and authorities misusing permissions are 
the primary causes of Android phone rooting. However, rooting is only 
beneficial if done by the user to gain complete access to the device. 
Malicious software can also root the phone and take complete control of 
it, which is a significant security concern. Therefore, applications should not 
be granted ‘super-user access’ even if the phone is rooted.

● Man-in-the-Middle Attack: a type of attack that targets smartphone users. 
This attack is classified as MiTM because it involves intercepting 
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communication between two parties, with the attacker positioned in the 
middle, allowing them to read or modify data in transit. Examples of this 
type of attack include SSL hijacking, SSL stripping, and DNS spoofing.

3. Related work

The AdStop system [2] is a machine learning-based approach to identifying 
Android adware by analysing network traffic features with high accuracy, speed, 
and generalisability beyond the training dataset. To enhance Adware detection 
accuracy and reduce time overhead, the feature reduction stage was implemen-
ted. Another study proposes a machine learning-based method for detecting 
Android adware based on static and dynamic features. Static features are 
obtained from the manifest file, while dynamic features are obtained from 
network traffic. This approach classifies Android apps as adware or benign 
and further categorises each adware sample into a specific family [10]. This 
paper [5] also examines individual adware families and performs feature selec-
tion using information gain and machine learning classification. The best attri-
butes for classifying each of the individual adware families are presented using 
network traffic samples. In addition to previous works, this paper introduces 
a new detection model for safeguarding smart devices against adware attacks 
by monitoring network traffic. To identify adware samples in the given dataset, 
several data preprocessing, feature selection techniques, and machine learning 
algorithms were employed. Seven performance metrics were used to compare 
ML classifiers such as Random Forest (RF), k-Nearest Neighbors (k-NN), Decision 
Tree (DT), Multi-Layer Perceptron (MLP), XGBoost (XGB), and Logistic Regression 
(LR) to determine the best approach for adware detection [11].

The objective of the paper referenced in [1] is to raise awareness regard-
ing the potential threat to end-user privacy caused by in-app advertise-
ments. It proposes an attack model and investigates attacks triggered by 
such ads. The paper also offers a theoretical framework and quantitative 
analytical approach to measuring the impact of embedded adware on the 
privacy of Android users. The authors developed the AdDetect framework 
[7], which utilises semantic analysis and machine learning for automatic 
semantic detection of in-app ad libraries. To identify and recover primary 
and non-primary app modules, a module decoupling technique based on 
hierarchical clustering is employed. The semantic features are then trans-
formed into vectors representing each module. An SVM classifier trained 
with these feature vectors is utilised to detect ad libraries. This study 
compares 17 different supervised learning techniques for machine classifi-
cation analysis. The performance of these classifier algorithms was evalu-
ated using various metrics such as Accuracy, Precision, Recall, F-Measure, 
Root Mean Squared Error, Receiver Operation Characteristics Area, Root 
Relative Squared Error, False Positive Rate, and True Positive Rate, utilising 
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the WEKA data mining tool [3]. The paper focuses on exploring the rele-
vance of machine learning-based solutions for detecting Android malware, 
specifically Adware. Logistic Regression (LR), Linear Discriminant Analysis 
(LDA), K-Nearest Neighbours (KNN), Classification and Regression Trees 
(CART), and Naive Bayes (NB) machine-learning algorithms are trained and 
tested [12]. Another study proposes a deep logistic regression and support 
vector machine (DLR-SVM) trained with multiple input clusters and 
a malicious or benign API. It detects a malicious pattern in the unknown 
IoT firmware of deep LR by labelling a single output unit as malicious or 
benign [10]. The authors also investigate the characteristics of adware, 
a growing Android-based mobile malicious code, propose a learning algo-
rithm for detecting malicious adware attacks, and present attack detection 
rates [7].

The system presented in this study [13] allows for the identification of 
crucial features in Adware and Malware, which can aid in further analysis by 
security researchers. The system has been tested and validated on well- 
known and widely used datasets, and it outperforms the leading solutions 
available in the market. In related work, a system has been proposed that 
detects adware and spyware by using classification and association mechan-
isms, preventing specific data theft. While the application is running, the 
system performs an analysis of the application data, making it a challenging 
task for security experts [14]. This study [15] investigated computer privacy 
perceptions among internet users and companies’ access to privately owned 
computer information. It also explored consumer awareness of internet 
marketing practices like cookies and adware, and their potential conse-
quences. The research suggests adware can compromise privacy and secur-
ity, highlighting the need for better user awareness. The paper [16] presents 
a large-scale empirical study that analyses over 5 million Android apps to 
examine the diversity and evolution of Android malware. They use labels 
from 57 anti-malware vendors and propose a dissimilarity measure for clus-
tering these labels based on scanning reports. This [17] paper introduces an 
intelligent honeypot that utilizes reinforcement learning to proactively 
engage with automated malware and optimize data collection. It shows 
that the intelligent honeypot captures larger datasets compared to tradi-
tional high interaction deployments. Final paper [18] discusses internal inter-
face diversification as a proactive software security method to prevent 

Phase A

Data Collection

Phase B

Feature Extraction

Phase C

Feature Selection

Phase D

Data Labelling

Figure 2. Overview of creating malicious adware dataset.
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malware from exploiting fundamental operating system services. They diver-
sified three main internal interfaces and found that it enhances security 
without significant performance costs.

4. Dataset creation

This section discusses the process of creating a malicious adware dataset. There 
are four phases to the process. They include data collection, feature extraction, 
feature selection, and finally data labelling. Figure 2 illustrates the overview of 
creating a malicious adware dataset.

4.1. Phase A: Data collection

The initial phase of creating a dataset is data collection. Android apps are usually 
collected from multiple sources. These apps are stored in the Android applica-
tion package (apk) file format. The 500 malicious adware apps were down-
loaded from the Canadian Institute of Cybersecurity, University of New 
Brunswick [19]. The 1500 benign apps in various categories were collected 
from Google Play.

4.2. Phase B: Feature extraction

The static analysis consists of collecting features that do not require the execu-
tion of the code. We extracted permissions as static features. In this research, we 
used the VirusTotal online scanner [6] to extract permissions by uploading an 
apk file to this website and adding every permission to our dataset.

4.3. Phase C: Feature selection

The selected features play a critical role in determining a machine learning 
model’s accuracy. It is also referred to as attribute selection. It is used to reduce 

Table 2. Android permission level of protection.
Level of 
protection Description Permission Examples

Normal Users and apps are not at risk. The permission was 
automatically granted, and the user did not 
revoke it.

ACCESS_NETWORK_STATE,
ACCESS_WIFI_STATE,
ACCESS_LOCATION_EXTRA_COMMANDS,
ACCESS_NOTIFICATION_POLICY,

Dangerous The user is at high risk. Apps must prompt the user 
and wait for the approval.

ACCESS_MEDIA_LOCATION,
ACCESS_BACKGROUND_LOCATION,  
ACCESS_FINE_LOCATION,
ACCEPT_HANDOVER

Signature When the same certificate signs the apps, the 
system grants them.

BIND_AUTOFILL_SERVICE,
BIND_ACCESSIBILITY_SERVICE

Signature Or 
System

The applications in a dedicated folder that are 
signed with the same certificate are granted.

BIND_CALL_REDIRECTION_SERVICE,
BATTERY_STATS
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irrelevant and redundant features, which aids in the selection of relevant 
features. Irrelevant and redundant features can degrade the classification mod-
el’s quality and accuracy. Higher-dimensional datasets necessitate more storage 
space and computation time. Selecting relevant features will help reduce space 
and time complexity while also increasing accuracy. The primary goal of permis-
sions is to protect users’ privacy. Apps must ask for permission to access user- 
sensitive data and system features. The system may grant permission itself at 
times or may prompt users to accept the request. Permissions are primarily 
declared in the AndroidManifest.xml file. Permissions play an important role in 
detecting malicious Android apps. Table 2 elaborates on the protection level of 
Android permissions, their descriptions, and examples [20]. 

4.4. Phase D: Data labelling

The Android apps (apk files) obtained from the previous phase are scanned 
using the VirusTotal [6] tool for labelling purposes. It means that once we 
upload the apk file into the VirusTotal Scanner, the antimalware companies 
that incorporate VirusTotal need to flag the apk file as malware so that we 
ensure the apk file is malicious, and then we can label it as ‘1’ which is malware. 
The benign apps are labelled as ‘0’ and the malicious apps (infected with 
malicious adware) are labelled as ‘1’ in the dataset. It is important to note that 
every antimalware company operates with its own unique databases and 
policies for determining whether a file should be classified as malicious or 
benign. This inherent variability is the primary reason behind the divergent 
results when an apk file is uploaded to the VirusTotal portal. Depending on the 
specific criteria employed by different antimalware companies, some may clas-
sify the file as risky while others may not.

Resolving conflicts when different antimalware engines disagree on the 
classification of an APK file is an important aspect of using VirusTotal for 
labelling purposes. When multiple antivirus engines are used, it’s common to 
encounter situations where they provide conflicting results or have different 
opinions on whether a file is malicious or benign. It’s important to note that 
resolving conflicts between antimalware engines is not always straightforward. 
Different engines may use different detection techniques, heuristics, or data-
bases, leading to variations in their results. Additionally, false positives and false 
negatives can occur, where an engine may incorrectly label a file as malicious or 

APK File
Uploading to 

VirusTotal

Features 

Extracted

Features 

Selected

Figure 3. The process of extracting and selecting features.
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miss a genuine threat. Therefore, it’s crucial to consider multiple perspectives, 
rely on reputable engines, and, if possible, leverage manual review for challen-
ging cases to achieve the most accurate labelling outcome.

5. Dataset

We present a new self-made dataset based on Android app permissions for 
malicious adware detection on Android platforms. As a result, we created an 
Android malicious adware dataset with 2000 entries. To do this, we downloaded 
500 malicious Android adware files and 1500 benign apps from different cate-
gories from Google Play. To examine all apk files and extract app permissions, 
we used the VirusTotal online scanner [6]. In addition, we classified the apk files 
using over 70 trusted anti-malware detection engines. The process of extracting 
and selecting features is shown in Figure 3. The malicious Android adware 
dataset includes 10 adware families, including Dowgin, Ewind, Feiwo, 
Gooligan, Kemoge, Koodous, Mobidash, Selfmite, Shuanet, and Youmi. The list 
of malicious Android adware families and the number of samples are listed in 
Table 3. We put all the information in a file to make the dataset usable. CSV file 
format, which is simple to open and process. The dataset contains 441 columns, 
including 440 specific permissions and the label, which can be found in the last 

Table 3. List of malicious Android adware families and the number of 
samples.

Malicious Adware Family Year of Discovery Number of Samples

DOWGIN 2013 10
EWIND 2015 10
FEIWO 2015 14
GOOLIGAN 2015 14
KEMOGE 2015 11
KOODOUS 2015 3
MOBIDASH 2015 10
SELFMITE 2014 4
SHUANET 2015 10
YOUMI 2014 9
Various other families 2014–2020 405
TOTAL 500

Figure 4. Small portion of the malicious adware dataset.
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column. The initial row of the dataset describes column titles, and the remaining 
rows contain features from 2000 malicious Android adware and benign applica-
tions. All values are in binary format, which means they are either ‘0’ or ‘1’. When 
an app requires permission, the value in the corresponding dataset entry is ‘1’, 
and when an app does not require permission, the value is ‘0’. Based on the 
VirusTotal [6] report, an Android app that is recognised as malware by most 
antimalware companies is possibly risky, and the respective value in the label 
column is set to ‘1’, indicating malicious adware. Figure 3 shows the process of 
extracting and selecting features, and Figure 4 indicates a small portion of the 
dataset. These adware families are still actively used in research [2]. The entire 
dataset is available at: https://www.kaggle.com/datasets/saeedseraj/malicious- 
adware-detection-in-android-using-dl.

● DOWGIN is a malicious advertising module that is distributed and bundled 
with other (usually legitimate) programmes. The advertising module is 
used to display advertising content while also silently gathering and for-
warding information from the device. Dowgin provides users with adver-
tising content. If the user is unaware of the module’s presence or objects to 
the nature of the advertising materials displayed, this behaviour may be 
considered unwanted. The module may also silently leak or harvest sensi-
tive device information such as the device’s International Mobile 
Equipment Identity (IMEI) number, location, contacts, and so on.

● EWIND is an adware trojan that was first discovered in mid-2016 and is 
capable of displaying unwanted ads, collecting device data, and sending 
SMS messages to the attacker. The trojan is distributed by decompiling 
legitimate Android apps, adding malicious code, and re-packaging them 
for distribution through third-party Russian-language Android app stores. 
These trojanized apps target popular apps such as Grand Theft Auto (GTA) 
Vice City, AVG cleaner, Minecraft – Pocket Edition, and Avast! Ransomware 
Removal, VKontakte, and Opera Mobile. It is important for Android users to 
be cautious when downloading from third-party app stores and use repu-
table antivirus software to detect and remove potential threats.

● FEIWO is a malicious adware for Android devices that sends the victim’s 
phone number, IMEI, and list of installed apps to its servers. This is a common 
unwanted SDK that should be removed from devices. Furthermore, the 
adware employs several techniques to complicate its analysis.

● GOOLIGAN is a type of malware that poses as a legitimate Android app in 
order to trick users into installing it, thereby infecting their Android device. 
It can also spread by infecting apps that are downloaded from untrusted 
sources. Once the device is infected, the malware installs multiple 
unwanted apps that are difficult to remove. These apps remain on the 
device even after performing a factory reset, making it challenging to 
completely eradicate the malware.
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● KEMOGE is an adware that masquerades as a popular app; it has spread so 
widely because it takes the names of popular apps and repackages them 
with malicious code before making them available to the user.

● MOBIDASH A special programme module that cybercriminals use to mon-
etize Android games and applications. It displays various types of adver-
tisement messages to the user. The unique feature of Adware.MobiDash.1. 
origin is that its unwanted activity begins after some time, rather than 
immediately after the malicious applications containing this module are 
installed or run. This period is sufficient for the user to forget about the 
potential source of annoying notifications and advertisements, allowing 
the malware to remain on the device.

● SELFMITE Security researchers have discovered a rare Android worm that 
spreads to other users via links in text messages. When Selfmite malware is 
installed on a device, it sends a text message to 20 contacts in the device 
owner’s address book.

● SHUANET behaves more like malware and shares some ancestry with two 
other adware families, Kemoge and Shedun, which also root devices and 
provide system-level persistence to their respective payloads.

● YOUMI steals a large amount of personal information from an Android 
device. This includes its GPS and cell tower location, as well as phone 
identifiers such as the IMEI number and phone number. This differs from 
the data that affected stolen Apple apps, which included a list of all apps 
installed on the device as well as the Apple ID email address associated 
with the device. Symantec discovered Android’s Youmi to be downloading 
new applications as well.

6. Proposed methodology

Controlled learning machines are capable of using labelled examples to make 
predictions about future events and apply knowledge learned from previous 
data. By analysing a specific training dataset, the learning algorithm generates 
a function to predict output values. With sufficient training, the programme can 
predict outcomes for any new input. The algorithm can also detect errors and 
adjust the model accordingly by comparing its output to the correct output. 
Machine learning and deep learning techniques are useful for analysing massive 
amounts of data, yielding faster and more accurate results in identifying cost- 
effective opportunities or risky threats. However, properly training these models 
may require additional time and resources. Deep learning is a particularly 
effective technique for efficiently processing large amounts of data [10]. 
Figure 5 illustrates a general overview of our process analysis from start to end.
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6.1. Convolutional neural network (CNN)

A Convolutional Neural Network (CNN) is a type of feedforward neural network 
that allows information to flow only forward from input nodes, through hidden 
nodes, and to output nodes, with no loops or cycles. CNNs are primarily used for 
pattern recognition tasks. They are effective at detecting simple patterns in data 
and using those patterns to create more complex ones in deeper layers. 
Typically, CNNs are composed of convolutional and pooling layers. The con-
volutional layer detects local features from the previous layer, while the pooling 
layer combines similar features into a single one. CNNs use shared weights, local 
receptive fields, and spatial subsampling to solve high-dimensional non-convex 
problems with parallel and cascaded convolutional filters. These filters allow 
CNNs to be used for tasks such as regression, image classification, semantic 

Reverse Engineering

Data Collection

Dataset Creation

Feature Extraction

Feature Selection

Classification/Detection

END

START

Data Labelling

Pre-processing

Feature Reduction

Figure 5. Overview of our process analysis.
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segmentation, and object detection. Compared to traditional neural networks, 
CNNs require fewer parameters and are easier to train due to weight sharing 
and processing limited dimensions.

A one-dimensional convolutional neural network (1D CNN) is useful for 
datasets with a one-dimensional structure, where shorter segments of the 
feature set can be analysed and the feature’s location in the segment is irrele-
vant. It is particularly useful when vectorized data is used to represent the 
properties of the items whose state or category is being predicted, such as 
Android applications. 1D CNN can be used to extract more meaningful feature 
representations that describe patterns or relationships within vector segments. 
These features are then processed by a classifier, eliminating the need for 
separate feature ranking and selection outside of the deep learning model. In 
summary, 1D CNNs can be used as feature extraction layers for a given classifier, 
providing a more efficient and integrated deep-learning model.

6.2. Static analysis

Static analysis is an approach that does not require an application to be run and is 
considered passive. As the detection is done before the execution of the application, 
there is no impact on the system from any malicious behaviour. The manifest file, 
which is a component of the apk file, provides information for static analysis, 
including the hardware properties, permissions, themes, and activity properties for 
the application. The tags in the manifest file are used to define the application’s 
permissions, such as internet access, camera access, and file reading and writing [21].

6.3. Preprocessing

The Android application permissions dataset is in CSV format and is used for 
training and testing purposes. Preprocessing of the dataset involves removing 
duplicates and NaN values. For binary classification studies, the family and 
category features were removed. The dataset assigns a value of ‘1’ to malware 
samples and ‘0’ to benign samples.

6.3.1. Feature reduction
Feature reduction is a common technique in machine learning and data analysis 
that aims to improve model performance and reduce computational complexity 
by reducing the number of input features. There are several reasons why we 
might want to perform feature reduction. Some of the common reasons are:

● To improve model performance: High-dimensional feature spaces can 
cause overfitting, meaning that a model is too complex and fits the training 
data too closely, resulting in poor generalisation performance on new data. 
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By reducing the number of input features, we can often improve a model’s 
ability to generalize and make accurate predictions on new data.

● To reduce computational complexity: In many cases, large datasets with 
high-dimensional feature spaces can be computationally expensive to 
process and analyse. By reducing the number of input features, we can 
often reduce the computational complexity of our models and analyses, 
making them faster and more efficient.

● To remove irrelevant or redundant features: Some features in a dataset may 
be irrelevant or redundant, meaning that they do not provide any useful 
information for our analysis or may provide the same information as other 
features. By removing these features, we can simplify our analysis and 
improve our ability to interpret and understand our results.

The code we provided is dropping columns in our dataset where the mean of the 
values that are equal to 0 is greater than or equal to 0.85. This indicates that these 
columns contain a high percentage of zeros, which may not provide useful 
information for the analysis and may be effectively redundant. By dropping 
these columns, the code simplifies the dataset and potentially improves model 
performance and computational efficiency. Out of the original 440 features, the 
code dropped 418 columns and kept 22 columns, which are as follows:

● INTERNET
● ACCESS_COARSE_LOCATION
● ACCESS_FINE_LOCATION
● GET_TASKS
● CHANGE_WIFI_STATE
● WRITE_EXTERNAL_STORAGE
● READ_PHONE_STATE
● SYSTEM_ALERT_WINDOW
● C2D_MESSAGE
● CAMERA
● ACCESS_NETWORK_STATE
● ACCESS_WIFI_STATE
● GET_ACCOUNTS
● READ_EXTERNAL_STORAGE
● RECEIVE_BOOT_COMPLETED
● VIBRATE
● WAKE_LOCK
● BILLING
● RECEIVE
● BIND_GET_INSTALL_REFERRER_SERVICE
● WRITE_SETTINGS
● INSTALL_SHORTCUT
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This means that 418 of the original features contained a high percentage 
of zeros and were considered redundant and less important, while the 
remaining 22 features were deemed to be more important and useful for 
the analysis. It’s worth noting that the choice of 0.85 as the threshold for 
dropping columns is somewhat arbitrary and may depend on the specific 
dataset and analysis. In some cases, a different threshold may be more 
appropriate. Additionally, it’s important to carefully consider the potential 
impact of feature reduction on the accuracy and interpretability of the 
analysis. In some cases, dropping too many features may result in the loss 
of important information and negatively impact the results.

6.4. Proposed Classifier

We used a deep-learning neural network to detect malicious Android 
adware in our dataset. Because of the immense flexibility of the math 

MaxPooling: Pool Size=2

Input Layer: 440:1

Conv1d: 4, 2, relu

Flatten Layer

Dense Layer: 80, relu

Dropout: 0.3

Dense Layer: 1, Sigmoid

Figure 6. Proposed CNN model.
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performed in the overall function, a Convolutional Neural Network (CNN) 
is an excellent estimator in our case. It is a completely mathematical 
system that uses a large amount of data to gradually approximate com-
plex input-output relationships. Figure 6 illustrates our proposed CNN 
model.

The number of input nodes must be the same as the number of 
permissions in the dataset, which is 441. Furthermore, even with so 
many input nodes, only one output node is required because the classi-
fication is a yes/no decision-maker. Initially, we did not use permission 
columns in the dataset where zeros represent 85% of the column or 
more. Then we identified that the best settings were a Convolutional 
1D layer with a relu activation function, followed by a MaxPooling layer 
of size 2, and finally, a flatten layer. The following step includes a dense 
layer with 80 perceptrons, a dropout layer with 0.3, and the final dense 
layer for classification using sigmoid and Adam with a learning rate of 
0.01. Finally, the batch size was set to 128 and the number of epochs was 
set to 20. The algorithm begins with convolution, as shown in equation 1. 
Where y is the output, n is the length of the convolution represented by 
x, and h is the kernel. S is the number of positions shifted by the kernel. 
In equation 2, the relu function used in the convolution layer is shown. 
Where a value ranging from 0 to infinite is returned for the output y and 
the input x. The pooling layer is applied in the following step to reduce 
the dimensionality to a size of 2, which aids in reducing any potential 
overfitting. The flatten layer then concatenates the output to form a flat 
structure that can be used as an input to a fully connected Multi-Layer 
Perceptron, as shown in equation 3, where Zm is the function output, f is 
the function name, followed by the function inputs, bias b, and an input 
summary. Following that, a dropout layer with 20% of the nodes is used, 
and the output uses a one-hot encoding with the output being either 0 
or 1 for an input x based on the sigmoid function shown in equation 4. 

y nð Þ ¼

Pk

id¼0
x nþ ið Þh ið Þ; if n ¼ 0

Pk

i¼0
x nþ i þ s � 1ð Þð Þh ið Þ; otherwise

8
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>>>:
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Figure 7. Demonstration of simulation stages.
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y xð Þ ¼ max 0; xð Þ (2) 

Zm ¼ f xn;wmnð Þ ¼ bþ
X

m
xnwmn (3) 

σ xð Þ ¼
1

1þ e� x (4) 

7. Experimental evaluation

We developed a tuned convolutional neural network (CNN) with Python and the 
Scikit-learn, Keras, and TensorFlow libraries as described in Section 6. 
Furthermore, 5-fold cross-validation was used in all experiments. We used the 
Python programming language to train and validate our neural network classi-
fier on our malicious adware dataset. For array operations and reading data from 
files, the NumPy and Pandas libraries are required. The simulation is divided into 
the following stages: defining the network’s parameters, such as node numbers 
and learning rate, reading the dataset, training the neural network, and finally 
validating the neural network with the remaining dataset. Figure 7 demon-
strates the simulation stages.

7.1. Cross-Validation

We used a technique called 5-fold cross-validation to evaluate the model’s ability to 
generalise to the reduced-feature dataset. This involved randomly dividing the 
dataset into five subsets and subjecting it to five cycles of training and testing. In 
each cycle, one subset was excluded from the training process and used for testing. 
The performance metrics of the classifier were collected for each cycle, and if the 
variance between these metrics was high, it indicated that the classifier was over-
fitted and did not generalise well. However, if the variance was low, the mean values 
of the performance metrics were considered reliable.

7.2. Evaluation metrics

In the experiments conducted, we utilised the Python programming language, 
alongside the scikit-learn, Keras, and TensorFlow libraries. To assess the performance 
of our approach, we employed evaluation metrics such as Accuracy, Precision, 
Recall, and F1, which are specified in equations 5, 6, 7, and 8, respectively. The 
acronyms TP, TN, FP, and FN correspond to true positive, true negative, false positive, 
and false negative, respectively. Accuracy, calculated via Equation 5, provides an 
overall indication of model performance. Precision, determined using Equation 6, 
describes the proportion of predicted Adware and is another vital metric. The Recall 
metric, as defined in Equation 7, represents the percentage of correctly classified 

22 S. SERAJ ET AL.



Adware. Additionally, we utilised the F1-score, which is a number between 0 and 1 
that determines the harmonic mean of precision and recall, as expressed by 
Equation 8.

The basic four performance measures of a binary ML-based classifier are:

● True Positives (TP) is a performance metric that represents the number of 
positive samples that are correctly classified as positive by a binary machine 
learning classifier. It is calculated by dividing the number of test instances are 
true and predicted values are 1 (positive) by the total number of test instances 
whose true value is 1.

● False Positives (FP) refer to the number of instances in which a negative sample 
is predicted as positive by a binary machine learning classifier. It is calculated as 
the number of test instances whose true value is 0 and the predicted value is 1, 
divided by the number of test instances whose true value is 0.

● True Negatives (TN) refer to the number of negative samples that are correctly 
classified as negative by the binary classifier. Specifically, it is the number of test 
instances whose true value is negative (0) and the predicted value is also 
negative (0), which is then divided by the total number of test instances 
whose true value is negative (0).

● False Negatives (FN) are the number of positive samples that were incor-
rectly classified as negative. This is calculated by counting the number of 
test instances whose true value is 1 (positive) and the predicted value is 0 
(negative), and then dividing by the total number of test instances whose 
true value is 1 (positive). 

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
(5) 

Precision ¼
TP

TP þ FP
(6) 

Recall ¼
TP

TP þ FN
(7) 

F1 ¼ 2 �
Precision � Recall
Precisionþ Recall

(8) 

8. Results

This section describes the experiments and compares the proposed 
method to other well-known classifiers as well as the most relevant 
previous research in this field. We used a self-made dataset to evaluate 
the proposed method and selected 500 Android malicious adware sam-
ples from 10 families. All the benign samples were scanned through 
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VirusTotal [6] to make sure that the benign class does not include any 
malware samples. The dataset contains 2000 samples, and the proposed 
method was evaluated using 5-fold stratified cross-validation on this 
dataset. In addition, all experiments were carried out on a 64-bit 
Microsoft Windows 11 Professional operating system with hardware 
including an Intel (R) Core (TM) i5-8365 U @ 1.60 GHz and 1.90 GHz CPU, 

Figure 8. Training and test accuracy over epochs.

Table 4. MadDroid evaluation results.
Execution No Accuracy% Precision% Recall% F1%

Run 1 98.35 98.51 98.19 98.34
Run 2 98.53 98.41 98.67 98.53
Run 3 97.76 97.21 98.35 97.77
Run 4 98.91 98.83 98.99 98.90
Run 5 97.65 97.61 97.71 97.65
Average 98.24 98.11 98.38 98.24
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16.00GB of RAM, and an Intel UHD Graphics 620 GPU. Figures 8 and 9 
show the training/test accuracy and loss over the course of 5 epochs for 
each of the five folds for the 5-fold cross-validation for the 1st run, the 
final evaluation results of which are presented in the top row of Table 4. 
Table 4 shows the accuracy, precision, recall, and F1 scores across 5 
different cross-fold executions, and at the end is the average of these 
completed executions.

8.1. Comparisons with the other adware detection works

Table 5 presents the obtained results from the proposed method using CNN 
compared to other adware studies using the proposed dataset. The table indicates 

Figure 9. Model loss over epochs.
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that the proposed method is more successful in classifying benign and adware 
applications.
The algorithms used in the comparisons are the following

1 Multilayer Perceptron: activation: ‘relu’, solver: ‘adam’, learning_rate_init: 
0.001, 200 iterations

2 Linear Regression: fit_intercept: True, normalize: False, copy_X: True, n_jobs: 
None, positive: False, precompute: False

3 Linear Discriminant Analysis: solver: ‘svd’
4 K-Nearest Neighbor: n_neighbors: 5
5 Decision Tree: criterion: ‘gini’, splitter: “best
6 Naive Bayes: priors: None, var_smoothing: 1e-9
7 Random Forest: n_estimators: 100
8 Support Vector Machine: C: 1.0

9. Conclusion and future works

In this paper, we present a novel method for detecting malicious Android 
adware using Android permissions and a tuned convolutional neural net-
work. To the best of our knowledge, we are the first researchers to use 
permissions as features and apply the CNN model to detect malicious 
Android adware. To begin, we downloaded 1500 benign apk files from 
the Google Play Store from various categories and 500 apk files infected 
with malicious adware to create our own dataset based on permissions. The 
AndroidManifest.xml files that provided access to the permissions granted 
to each application were then extracted using reverse engineering from 
1500 benign and 500 malicious adware apps from our self-made dataset. 
Finally, in a 5-fold cross-validation experiment, we trained and tested 
a proposed CNN model using the employed dataset. Our experiments 
show that the proposed method outperforms several conventional ML 
methods in this field, achieving 98.24% accuracy and 98.11% precision. 
These promising results suggest that the proposed method can detect 

Table 5. Comparisons with the other adware detection work.
Reference Features Method Accuracy% Precision% Recall% F1%

AdStop 
Ref [2] 
2022

Network Traffic MLP1 95.7 94.7 93.9 93.7

Ref [12] 
2019

Adware Behaviour LR2 96.0 94.5 94.9 94.6
LDA3 96.2 94.3 95.7 95.0

K-NN4 95.1 92.4 95.2 93.6
DT5 94.2 92.2 91.8 92.5
NB6 68.8 71.2 77.1 67.0

Ref [4] 2019 Malicious Codes Dynamic 
Random Forest7

96.6 95.1 95.4 95.1

AdDetect, Ref [7] 
2014

Module of apps SVM8 95.4 93.7 94.1 93.8

MadDroid Permissions CNN 98.24 98.11 98.38 98.24
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Android Adware using the permissions provided. In the future, we intend to 
investigate how permissions can be used to detect other types of mal-
wares, such as Ransomware, scareware and SMS malware. Furthermore, we 
intend to use other types of features in conjunction with permissions to 
detect sophisticated Android malware.
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