
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tsec20

Journal of Cyber Security Technology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tsec20

MadDroid: malicious adware detection in Android
using deep learning

Saeed Seraj, Michalis Pavlidis, Marcello Trovati & Nikolaos Polatidis

To cite this article: Saeed Seraj, Michalis Pavlidis, Marcello Trovati & Nikolaos Polatidis (2023):
MadDroid: malicious adware detection in Android using deep learning, Journal of Cyber
Security Technology, DOI: 10.1080/23742917.2023.2247197

To link to this article: https://doi.org/10.1080/23742917.2023.2247197

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 22 Aug 2023.

Submit your article to this journal

Article views: 106

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tsec20
https://www.tandfonline.com/loi/tsec20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23742917.2023.2247197
https://doi.org/10.1080/23742917.2023.2247197
https://www.tandfonline.com/action/authorSubmission?journalCode=tsec20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tsec20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23742917.2023.2247197
https://www.tandfonline.com/doi/mlt/10.1080/23742917.2023.2247197
http://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2023.2247197&domain=pdf&date_stamp=2023-08-22
http://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2023.2247197&domain=pdf&date_stamp=2023-08-22

MadDroid: malicious adware detection in Android using
deep learning
Saeed Seraja, Michalis Pavlidisa, Marcello Trovatib and Nikolaos Polatidis a

aSchool of Architecture, Technology, and Engineering, University of Brighton, Brighton, UK;
bDepartment of Computer Science, Edge Hill University, Omrskirk, UK

ABSTRACT
The majority of Android smartphone apps are free. When an
application is used, advertisements are displayed in order to
generate revenue. Adware-related advertising fraud costs
billions of dollars each year. Adware is a form of advertising-
supported software, that turns into malware when it auto-
matically installs additional malware and adware on an
infected device, steals user data, and exposes other vulner-
abilities. Better techniques for detecting adware are needed
due to the evolution of increasingly sophisticated evasive
malware, particularly adware. Even though significant work
has been done in the area of malware detection, the adware
family has received very little attention. This paper presents
a deep learning-based scheme called MadDroid to detect
malicious Android adware based on static features.
Moreover, this paper delivers a novel dataset that consists
of malicious Adware and benign applications and an opti-
mised Convolutional neural network (CNN) for detecting
Adware infected by malware based on the permissions of
the applications. The results indicate an average classification
rate that is higher than previous work for individual adware
family classification in terms of well-known evaluation
metrics.

ARTICLE HISTORY
Received 5 May 2023
Accepted 8 August 2023

KEYWORDS
Android; malware detection;
adware; neural networks;
new dataset

1. Introduction

The global smartphone market has experienced exceptional growth,
thanks to the vast number of available applications and an open-source
code platform that encourages app developers to create Android apps for
free. These applications are considered essential to Android phones, as
they drive innovation, leisure, accessibility, and compatibility with mobile
devices. However, adware or mobile advertising in the form of banner
ads, rich media, or interstitial ads is increasingly infiltrating Android

CONTACT Nikolaos Polatidis N.Polatidis@Brighton.ac.uk School of Architecture, Technology, and
Engineering, University of Brighton, Brighton BN2 4GJ, UK

JOURNAL OF CYBER SECURITY TECHNOLOGY
https://doi.org/10.1080/23742917.2023.2247197

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The
terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or
with their consent.

http://orcid.org/0000-0003-4249-4953
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2023.2247197&domain=pdf&date_stamp=2023-08-21

applications, posing a threat to users. The use of mobile devices has
become widespread in recent years, and they are now essential to our
daily lives, resulting in an exponential increase in mobile users and apps.
Android, with over 2 billion users, is the most popular operating system
worldwide and is thus a common target for malicious actors. Adware,
a type of malware that displays unwanted and often offensive advertise-
ments, is a prevalent threat to Android users [1] [2].

Advertising is a marketing strategy that promotes products, ideas, and
services. With the emergence of the internet and smartphones, digital
advertising has become increasingly popular. Digital ads are displayed
while browsing websites or using mobile applications, and since many
smartphones run on the Android platform, there is a vast ecosystem of
Android apps. However, digital advertising is plagued by fraudulent activ-
ity, with adware being a prevalent security threat used to collect market-
ing data or display ads for profit. Adware is more common and effective
than traditional malware and goes beyond the judicious advertising
found in freeware or shareware. Adware is often installed alongside
other programmes and can continue generating ads even when the
user is not running the desired programme [3].

Smartphones have become essential tools in our daily lives, and the
amount of sensitive information we store on them has made them prime
targets for hackers. Malicious code can be installed on smartphones,
allowing hackers to steal personal information and profit from advertising
and micropayment systems. The number of mobile malware infections
has grown exponentially, and Android devices are particularly vulnerable
due to the openness of the Android market and their high market share.
Malicious adware-based hacking attacks have become more intense and
diverse over time, with the most common type infiltrating and controlling
users’ Android devices. Malicious adware has infected almost all current
Android versions, making many Android devices worldwide vulnerable to
threats. Advertisements in some free Android apps have become more
aggressive, and users may not be aware of the changes on their devices.
Even popular apps may contain adware, and users may not object to it or
be aware of its effects [4].

Machine learning is an advanced technique used in cybersecurity to
identify and classify malware, including adware, based on patterns and
behaviours rather than just matching signatures. Machine learning algo-
rithms are trained on large datasets of known malware and can detect
new and previously unknown malware. These algorithms can learn to
recognise and classify adware based on its behaviour, such as its use of
network connections, data transmission, and system modification, among
other things. By detecting adware through behaviour analysis, machine
learning can identify new strains of adware that traditional signature-

2 S. SERAJ ET AL.

based methods might miss. Machine learning can also help security
experts quickly develop new rules and signatures for identifying adware
and other malware, allowing for faster and more effective responses to
new threats. Machine learning is expected to play an increasingly impor-
tant role in cybersecurity as new and more complex forms of malware
continue to emerge [5].

Therefore, a different approach is proposed to detect and classify
adware-based permission analysis using deep learning. This study
describes MadDroid, a permission-based adware detection algorithm
that uses a Convolutional neural network (CNN). This research analyses
the use of machine learning as a possible defence against mobile adware.
We classify Android apps based on the features obtained from static
analysis. The static features, which are permissions, are obtained from
the VirusTotal Scanner website [6]. The complete process is fully
explained in Section 4. To detect Android adware using permissions, we
first created a new self-made dataset as explained in Section 5 and then
utilised a tuned CNN algorithm. We employ a deep-learning technique to
analyse Android adware and benign apps, based on the dataset that we
have collected. Specifically, we consider experiments involving neural
networks. This study compared several ML algorithms, namely, Decision
Tree (DT), Random Forest (RF), K-Nearest Neighbour (K-NN), Support
Vector Machine (SVM), Naive Bayes (NB), Multilayer Perceptron (MLP),
Logistic Regression (LR), and Linear Discriminant Analysis (LDA).

The following contributions are delivered:

● A novel dataset is introduced 440 permissions to detect malicious adware
on android devices.

● We propose a tuned convolutional neural network (CNN) to detect mal-
icious android adware.

● We evaluate our approach using well-known evaluation metrics, with the
results demonstrating that malicious adware can be detected with a very
high degree of accuracy.

The rest of the paper is organised as follows: Section 2 is the research
background; Section 3 is the related work; Section 4 illustrates the dataset
creation process; Section 5 describes the dataset; Section 6 explains the
proposed method; Section 7 delivers the experimental evaluation;
Section 9 indicates the results; and Section 9 contains the conclusions
and future work.

JOURNAL OF CYBER SECURITY TECHNOLOGY 3

2. Background

2.1. Overview of adware

Adware is often distributed alongside other software, especially free soft-
ware, or software that users may be tempted to download. Once installed
on a user’s device, the adware can track their online activities and display
targeted advertisements, which can be annoying or even harmful. Adware
can also slow down a device’s performance and cause it to crash. To avoid
adware, users should be cautious when downloading software and only
download from trusted sources. They should also keep their devices and
software up to date with the latest security patches and use reputable
antivirus software. Additionally, users can install ad-blocking software or
browser extensions to block unwanted advertisements [7].

Adware is installed on a user’s device through a security flaw in an
existing application. Users can unknowingly download it as well. This can
occur when users perform one of the following actions:

● Download an adware-infected application.
● Use software that contains flaws that adware authors can exploit.

The aim of adware is to entice users to click on or engage with the
advertisements displayed or downloaded by the software. Adware authors

Figure 1. Demonstration of how malicious adware works [8].

4 S. SERAJ ET AL.

and distributors earn money when users click on the online ads served by
their adware. Although some adware is legitimate and agreed to by users,
it is often unwanted. Adware can be a nuisance, but it may also carry
harmful risks. Figure 1 demonstrates how malicious adware works.

2.2. Adware and history

Adware is any software programme, whether malicious or not, that can
display advertisements on a personal computer. Malicious programmes
that display misleading advertisements, blinking pop-up windows, mas-
sive digital billboards, and full-screen auto-play advertisements within an
internet browser are the most common examples. The term is
a compound of the words ‘advertising’ and ‘software’. The developer
earns money every time someone clicks on an advertisement displayed
by adware. Some types of adware may interfere with your web browsing
experience by directing you to malicious websites. Then, without your
knowledge, some collect your browsing information and use it to serve
you advertisements that are more tailored to your preferences and thus
more likely to be clicked on.

When adware first became popular in 1995, many industry profes-
sionals assumed it was all spyware, which is software that allows some-
one to obtain covert data from a computer without the user’s knowledge.
Adware was demoted to the status of a ‘potentially undesirable applica-
tion’, or PUA, as its credibility grew. As a result, despite its widespread
use, little was done to ensure its legality. Adware makers did not begin
monitoring and blocking problematic behaviour until the peak adware
years of 2005–2008.

2.3. Adware and illegal use

Many people mix up adware and malware, malicious software designed
to harm a computer or server. Malware includes viruses, spyware, worms,
and some types of adware. Pop-up ads, inaccessible panels, and other
types of malicious adware can infect computers. Once dangerous adware
has infiltrated a computer, it may perform a variety of malicious activities,
such as tracking the user’s location, query history, and web browser
viewing history, which the malware programmer can then monetize by
selling to third parties.

2.4. Adware and the dark side

Adware is a cyber-security term that refers to adware applications that
exhibit dangerous or irregular behaviour. Adware is classified as spyware

JOURNAL OF CYBER SECURITY TECHNOLOGY 5

when it tracks users’ activities without permission. Fraudsters take advan-
tage of flaws in the validation process of ad networks or flaws in
a consumer’s browser. When a user visits an infected website, malicious
adware can spawn pop-ups, pop-unders, and persistent windows that
allow for drive-by installations. Visitors who disable ad blockers may be
at risk of infection. Adware applications have been discovered that pre-
vent antivirus software from running. Because some adware software is
legal or does not have uninstallation processes, security software may be
unable to identify which adware applications are truly dangerous.

2.5. Types of adware

Adware is most commonly associated with annoying pop-up windows
and advertisements, but it can also take other forms. It is critical to
distinguish between harmless and dangerous adware. The following are
the most common types of adware:

2.5.1. Legitimate fc
Adware of this type allows you to subscribe to advertisements and soft-
ware promotions, allowing developers to distribute their programmes for
free by offsetting their expenses. Users instal this type of adware on
purpose to obtain a free item. You can also choose to allow it to collect
marketing data. All programmers, including reputable ones, create legit-
imate adware because providing clients with a free product is
a legitimate and fair method of gaining adoption. However, not all soft-
ware downloads are agreed upon by both the distributor and the user. In
this situation, the line between legal and illegal blurs.

2.5.2. Potentially unwanted applications (PUAs)
PUAs are unwanted software packages that are bundled with legitimate
complementary software applications. PUPs, or potentially unwanted pro-
grammes, are another name for them. Although not all PUAs are mal-
icious, some may exhibit intrusive behaviours such as displaying pop-up
advertisements or slowing down your device. It can slow down
a computer’s performance and potentially introduce security issues such
as spyware and other unwanted software.

2.5.3. Legal abusive adware PUA
PUAs, both legal and abusive, are designed to bombard you with adver-
tisements. Excessive advertising can be found in packaged software,
internet browser toolbars, and other places. This is also legal because
no malware is involved. Ads for fitness pills, for example, are common in
adware like this.

6 S. SERAJ ET AL.

2.5.4. Legal deceptive adware PUA
This category includes legal adware that deceives the user in some way.
This type of PUA may make it difficult to uninstall secure third-party
software. This strategy is occasionally used by legal adware, and it is
lawful if the developer did not put malware-infected advertising or soft-
ware there on purpose. Unfortunately, certain adware can inadvertently
infect devices with malware.

2.5.5. Illegal malicious adware PUA
This category includes malicious adware that is either illegal to use or
distribute. The PUA earns money by distributing malicious programmes to
machines such as spyware, viruses, and other malware. The malware
could be hidden within the adware, the websites it promotes, or other
software programmes. The authors and distributors are spreading this
threat on purpose and may employ aggressive tactics [9].

According to [8], deceptive and abusive adware is designed to manip-
ulate users into interacting with advertisements or to obtain consent
through deceptive means, such as bombarding them with unwanted ads
or making it difficult to uninstall unwanted software. While adware is not
inherently malicious, it can create vulnerabilities that may be exploited by
malicious software. Only adware that is specifically designed to deliver
harmful software to the user is considered malicious. Some types of mal-
icious adware include the following:

(1) Spyware: Adware can contain code that tracks and records a user’s per-
sonal information and internet browsing habits. If this data is collected
without the user’s knowledge or consent and sold to third parties, it is
considered spyware. Many privacy advocates are critical of these
practices.

(2) Potentially unwanted programs (PUPs): Malicious adware or spyware can
be bundled with free or shareware software downloaded from the inter-
net. Users may unknowingly download adware from an infected website.
Antimalware programs often flag adware as a potentially unwanted
program, regardless of whether it is malicious or not.

(3) Man-in-the-middle (MitM) attacks: Adware can also be used in MitM
attacks, where the attacker routes user traffic through the adware ven-
dor’s system, even over secure connections. The communicating parties
believe they are exchanging information securely, but the attacker can
collect and manipulate sensitive information during the conversation.

JOURNAL OF CYBER SECURITY TECHNOLOGY 7

2.6. Types of attacks/threats

Some common advertisement attacks are described and explained in the
sections that follow. The impact of threats and attacks on an adversary,
developers, users, and platform ends is described in Table 1, which
summarises their relationship.

Attack/Threats are described below
● Adversary End: This refers to an attack that occurs due to the presence of

malicious advertisement libraries or networks. These libraries or networks
may be designed to serve ads that contain malware or to redirect users to
phishing or other malicious websites. When users interact with these ads,
they may inadvertently download malware or give away sensitive
information.

● Developer End: The two directions in which developers launch attacks are
against advertisers, to exhaust their budget and abuse power, and against
users, to steal personal information or make money. The terms ‘Adversary
End’ and ‘Developer End’ are interrelated because app developers and ad
libraries collaborate with each other. They share permissions and are
located in the same code piece with the same UID. These two categories
are separated only for the purpose of better understanding their
behaviour.

● User End: refers to the end-users of a system who may be vulnerable to
attacks due to their lack of security awareness, knowledge, and implemen-
tation of existing defensive measures. This means that users may not be
aware of potential security risks and how to protect themselves from them,
such as using strong passwords, avoiding clicking on suspicious links, and

Table 1. Attacks/Threats and their impact on user’s privacy.
Attacks/Threats Adversary End Developer End User End Android End

Malware Unauthorized Data Collection Code Level Security
Issues

Victim Data
Exposure

to other apps
Malicious Ads Attack Generator (e.g. DDoS

attack)
Victim Victim Lack of

Security
Control

Malicious Ad-
Libraries

Attack Generator Money making &
Lack of

Victim No Privilege

Security Check Escalation
Permission Misuse Developers accessed Ad-Libraries accessed Victim No Privilege

Permissions misuse Permissions misuse Escalation
MitM Attack Generator Targeted Applications Victim Lack of

Security
Control

Certificate
Compromise

Targeted Sites via Lack of Security Check Victim Lack of
Security

Valid certificate Control
Click-Fraud Attack Victim Make Money or Security Lack of

Security
Exhaust Adversary Exploitation Control

8 S. SERAJ ET AL.

regularly updating their software. As a result, they become easy targets for
attackers who can steal their personal information, and financial data, or
use their devices for malicious purposes.

● Android End: The security control of the Android platform is a significant
factor, which has some vulnerabilities, including the absence of privilege
escalation, ad SDKs, and application code permissions for developers.

As described in Table 1 summarizes the relationship between them where the
impact of attacks/threats on ‘Adversary developers’, users and platforms are
described
● Malware: The term malvertising is used to describe online advertisements

that distribute malware [9]. Malware can be transmitted to an Android
device through malicious software or advertisements. Users may be direc-
ted to other pages where they can download additional software or mal-
icious applications by clicking on these ads while using the app. The
majority of Android malware is in the form of Trojans.

● Malicious Ads: It is related to malware injection in some ways. The separa-
tion from malware serves only to categorise malicious advertisements.
Malware can, however, be injected through the code of developers or
malicious libraries.

● Click-Fraud Attack: Adware attacks can occur not only on Android devices
but also on ad networks. These attacks aim to exploit security vulnerabil-
ities in the Android platform and other systems. Click fraud is an example of
a cyber-criminal activity that has become increasingly common. Attackers
use adware to generate fraudulent clicks, with the goal of either increasing
revenue for developers or depleting the budget of advertisers.

● Malicious Ad-Libraries: One type of attack involves the use of malicious
ad-libraries that have access to sensitive information. These libraries can
collect data through the permission mechanism and send targeted ads to
users. A developer can use up to 65 of these libraries simultaneously, giving
them access to a significant amount of personal data. This type of attack
can be especially dangerous as it can result in the theft of sensitive
information.

● Permission Misuse: Permissions are crucial for application security, but
their misuse can lead to various attacks. Malware injection, malicious ads,
malicious advertisement libraries, and authorities misusing permissions are
the primary causes of Android phone rooting. However, rooting is only
beneficial if done by the user to gain complete access to the device.
Malicious software can also root the phone and take complete control of
it, which is a significant security concern. Therefore, applications should not
be granted ‘super-user access’ even if the phone is rooted.

● Man-in-the-Middle Attack: a type of attack that targets smartphone users.
This attack is classified as MiTM because it involves intercepting

JOURNAL OF CYBER SECURITY TECHNOLOGY 9

communication between two parties, with the attacker positioned in the
middle, allowing them to read or modify data in transit. Examples of this
type of attack include SSL hijacking, SSL stripping, and DNS spoofing.

3. Related work

The AdStop system [2] is a machine learning-based approach to identifying
Android adware by analysing network traffic features with high accuracy, speed,
and generalisability beyond the training dataset. To enhance Adware detection
accuracy and reduce time overhead, the feature reduction stage was implemen-
ted. Another study proposes a machine learning-based method for detecting
Android adware based on static and dynamic features. Static features are
obtained from the manifest file, while dynamic features are obtained from
network traffic. This approach classifies Android apps as adware or benign
and further categorises each adware sample into a specific family [10]. This
paper [5] also examines individual adware families and performs feature selec-
tion using information gain and machine learning classification. The best attri-
butes for classifying each of the individual adware families are presented using
network traffic samples. In addition to previous works, this paper introduces
a new detection model for safeguarding smart devices against adware attacks
by monitoring network traffic. To identify adware samples in the given dataset,
several data preprocessing, feature selection techniques, and machine learning
algorithms were employed. Seven performance metrics were used to compare
ML classifiers such as Random Forest (RF), k-Nearest Neighbors (k-NN), Decision
Tree (DT), Multi-Layer Perceptron (MLP), XGBoost (XGB), and Logistic Regression
(LR) to determine the best approach for adware detection [11].

The objective of the paper referenced in [1] is to raise awareness regard-
ing the potential threat to end-user privacy caused by in-app advertise-
ments. It proposes an attack model and investigates attacks triggered by
such ads. The paper also offers a theoretical framework and quantitative
analytical approach to measuring the impact of embedded adware on the
privacy of Android users. The authors developed the AdDetect framework
[7], which utilises semantic analysis and machine learning for automatic
semantic detection of in-app ad libraries. To identify and recover primary
and non-primary app modules, a module decoupling technique based on
hierarchical clustering is employed. The semantic features are then trans-
formed into vectors representing each module. An SVM classifier trained
with these feature vectors is utilised to detect ad libraries. This study
compares 17 different supervised learning techniques for machine classifi-
cation analysis. The performance of these classifier algorithms was evalu-
ated using various metrics such as Accuracy, Precision, Recall, F-Measure,
Root Mean Squared Error, Receiver Operation Characteristics Area, Root
Relative Squared Error, False Positive Rate, and True Positive Rate, utilising

10 S. SERAJ ET AL.

the WEKA data mining tool [3]. The paper focuses on exploring the rele-
vance of machine learning-based solutions for detecting Android malware,
specifically Adware. Logistic Regression (LR), Linear Discriminant Analysis
(LDA), K-Nearest Neighbours (KNN), Classification and Regression Trees
(CART), and Naive Bayes (NB) machine-learning algorithms are trained and
tested [12]. Another study proposes a deep logistic regression and support
vector machine (DLR-SVM) trained with multiple input clusters and
a malicious or benign API. It detects a malicious pattern in the unknown
IoT firmware of deep LR by labelling a single output unit as malicious or
benign [10]. The authors also investigate the characteristics of adware,
a growing Android-based mobile malicious code, propose a learning algo-
rithm for detecting malicious adware attacks, and present attack detection
rates [7].

The system presented in this study [13] allows for the identification of
crucial features in Adware and Malware, which can aid in further analysis by
security researchers. The system has been tested and validated on well-
known and widely used datasets, and it outperforms the leading solutions
available in the market. In related work, a system has been proposed that
detects adware and spyware by using classification and association mechan-
isms, preventing specific data theft. While the application is running, the
system performs an analysis of the application data, making it a challenging
task for security experts [14]. This study [15] investigated computer privacy
perceptions among internet users and companies’ access to privately owned
computer information. It also explored consumer awareness of internet
marketing practices like cookies and adware, and their potential conse-
quences. The research suggests adware can compromise privacy and secur-
ity, highlighting the need for better user awareness. The paper [16] presents
a large-scale empirical study that analyses over 5 million Android apps to
examine the diversity and evolution of Android malware. They use labels
from 57 anti-malware vendors and propose a dissimilarity measure for clus-
tering these labels based on scanning reports. This [17] paper introduces an
intelligent honeypot that utilizes reinforcement learning to proactively
engage with automated malware and optimize data collection. It shows
that the intelligent honeypot captures larger datasets compared to tradi-
tional high interaction deployments. Final paper [18] discusses internal inter-
face diversification as a proactive software security method to prevent

Phase A

Data Collection

Phase B

Feature Extraction

Phase C

Feature Selection

Phase D

Data Labelling

Figure 2. Overview of creating malicious adware dataset.

JOURNAL OF CYBER SECURITY TECHNOLOGY 11

malware from exploiting fundamental operating system services. They diver-
sified three main internal interfaces and found that it enhances security
without significant performance costs.

4. Dataset creation

This section discusses the process of creating a malicious adware dataset. There
are four phases to the process. They include data collection, feature extraction,
feature selection, and finally data labelling. Figure 2 illustrates the overview of
creating a malicious adware dataset.

4.1. Phase A: Data collection

The initial phase of creating a dataset is data collection. Android apps are usually
collected from multiple sources. These apps are stored in the Android applica-
tion package (apk) file format. The 500 malicious adware apps were down-
loaded from the Canadian Institute of Cybersecurity, University of New
Brunswick [19]. The 1500 benign apps in various categories were collected
from Google Play.

4.2. Phase B: Feature extraction

The static analysis consists of collecting features that do not require the execu-
tion of the code. We extracted permissions as static features. In this research, we
used the VirusTotal online scanner [6] to extract permissions by uploading an
apk file to this website and adding every permission to our dataset.

4.3. Phase C: Feature selection

The selected features play a critical role in determining a machine learning
model’s accuracy. It is also referred to as attribute selection. It is used to reduce

Table 2. Android permission level of protection.
Level of
protection Description Permission Examples

Normal Users and apps are not at risk. The permission was
automatically granted, and the user did not
revoke it.

ACCESS_NETWORK_STATE,
ACCESS_WIFI_STATE,
ACCESS_LOCATION_EXTRA_COMMANDS,
ACCESS_NOTIFICATION_POLICY,

Dangerous The user is at high risk. Apps must prompt the user
and wait for the approval.

ACCESS_MEDIA_LOCATION,
ACCESS_BACKGROUND_LOCATION,
ACCESS_FINE_LOCATION,
ACCEPT_HANDOVER

Signature When the same certificate signs the apps, the
system grants them.

BIND_AUTOFILL_SERVICE,
BIND_ACCESSIBILITY_SERVICE

Signature Or
System

The applications in a dedicated folder that are
signed with the same certificate are granted.

BIND_CALL_REDIRECTION_SERVICE,
BATTERY_STATS

12 S. SERAJ ET AL.

irrelevant and redundant features, which aids in the selection of relevant
features. Irrelevant and redundant features can degrade the classification mod-
el’s quality and accuracy. Higher-dimensional datasets necessitate more storage
space and computation time. Selecting relevant features will help reduce space
and time complexity while also increasing accuracy. The primary goal of permis-
sions is to protect users’ privacy. Apps must ask for permission to access user-
sensitive data and system features. The system may grant permission itself at
times or may prompt users to accept the request. Permissions are primarily
declared in the AndroidManifest.xml file. Permissions play an important role in
detecting malicious Android apps. Table 2 elaborates on the protection level of
Android permissions, their descriptions, and examples [20].

4.4. Phase D: Data labelling

The Android apps (apk files) obtained from the previous phase are scanned
using the VirusTotal [6] tool for labelling purposes. It means that once we
upload the apk file into the VirusTotal Scanner, the antimalware companies
that incorporate VirusTotal need to flag the apk file as malware so that we
ensure the apk file is malicious, and then we can label it as ‘1’ which is malware.
The benign apps are labelled as ‘0’ and the malicious apps (infected with
malicious adware) are labelled as ‘1’ in the dataset. It is important to note that
every antimalware company operates with its own unique databases and
policies for determining whether a file should be classified as malicious or
benign. This inherent variability is the primary reason behind the divergent
results when an apk file is uploaded to the VirusTotal portal. Depending on the
specific criteria employed by different antimalware companies, some may clas-
sify the file as risky while others may not.

Resolving conflicts when different antimalware engines disagree on the
classification of an APK file is an important aspect of using VirusTotal for
labelling purposes. When multiple antivirus engines are used, it’s common to
encounter situations where they provide conflicting results or have different
opinions on whether a file is malicious or benign. It’s important to note that
resolving conflicts between antimalware engines is not always straightforward.
Different engines may use different detection techniques, heuristics, or data-
bases, leading to variations in their results. Additionally, false positives and false
negatives can occur, where an engine may incorrectly label a file as malicious or

APK File
Uploading to

VirusTotal

Features

Extracted

Features

Selected

Figure 3. The process of extracting and selecting features.

JOURNAL OF CYBER SECURITY TECHNOLOGY 13

miss a genuine threat. Therefore, it’s crucial to consider multiple perspectives,
rely on reputable engines, and, if possible, leverage manual review for challen-
ging cases to achieve the most accurate labelling outcome.

5. Dataset

We present a new self-made dataset based on Android app permissions for
malicious adware detection on Android platforms. As a result, we created an
Android malicious adware dataset with 2000 entries. To do this, we downloaded
500 malicious Android adware files and 1500 benign apps from different cate-
gories from Google Play. To examine all apk files and extract app permissions,
we used the VirusTotal online scanner [6]. In addition, we classified the apk files
using over 70 trusted anti-malware detection engines. The process of extracting
and selecting features is shown in Figure 3. The malicious Android adware
dataset includes 10 adware families, including Dowgin, Ewind, Feiwo,
Gooligan, Kemoge, Koodous, Mobidash, Selfmite, Shuanet, and Youmi. The list
of malicious Android adware families and the number of samples are listed in
Table 3. We put all the information in a file to make the dataset usable. CSV file
format, which is simple to open and process. The dataset contains 441 columns,
including 440 specific permissions and the label, which can be found in the last

Table 3. List of malicious Android adware families and the number of
samples.

Malicious Adware Family Year of Discovery Number of Samples

DOWGIN 2013 10
EWIND 2015 10
FEIWO 2015 14
GOOLIGAN 2015 14
KEMOGE 2015 11
KOODOUS 2015 3
MOBIDASH 2015 10
SELFMITE 2014 4
SHUANET 2015 10
YOUMI 2014 9
Various other families 2014–2020 405
TOTAL 500

Figure 4. Small portion of the malicious adware dataset.

14 S. SERAJ ET AL.

column. The initial row of the dataset describes column titles, and the remaining
rows contain features from 2000 malicious Android adware and benign applica-
tions. All values are in binary format, which means they are either ‘0’ or ‘1’. When
an app requires permission, the value in the corresponding dataset entry is ‘1’,
and when an app does not require permission, the value is ‘0’. Based on the
VirusTotal [6] report, an Android app that is recognised as malware by most
antimalware companies is possibly risky, and the respective value in the label
column is set to ‘1’, indicating malicious adware. Figure 3 shows the process of
extracting and selecting features, and Figure 4 indicates a small portion of the
dataset. These adware families are still actively used in research [2]. The entire
dataset is available at: https://www.kaggle.com/datasets/saeedseraj/malicious-
adware-detection-in-android-using-dl.

● DOWGIN is a malicious advertising module that is distributed and bundled
with other (usually legitimate) programmes. The advertising module is
used to display advertising content while also silently gathering and for-
warding information from the device. Dowgin provides users with adver-
tising content. If the user is unaware of the module’s presence or objects to
the nature of the advertising materials displayed, this behaviour may be
considered unwanted. The module may also silently leak or harvest sensi-
tive device information such as the device’s International Mobile
Equipment Identity (IMEI) number, location, contacts, and so on.

● EWIND is an adware trojan that was first discovered in mid-2016 and is
capable of displaying unwanted ads, collecting device data, and sending
SMS messages to the attacker. The trojan is distributed by decompiling
legitimate Android apps, adding malicious code, and re-packaging them
for distribution through third-party Russian-language Android app stores.
These trojanized apps target popular apps such as Grand Theft Auto (GTA)
Vice City, AVG cleaner, Minecraft – Pocket Edition, and Avast! Ransomware
Removal, VKontakte, and Opera Mobile. It is important for Android users to
be cautious when downloading from third-party app stores and use repu-
table antivirus software to detect and remove potential threats.

● FEIWO is a malicious adware for Android devices that sends the victim’s
phone number, IMEI, and list of installed apps to its servers. This is a common
unwanted SDK that should be removed from devices. Furthermore, the
adware employs several techniques to complicate its analysis.

● GOOLIGAN is a type of malware that poses as a legitimate Android app in
order to trick users into installing it, thereby infecting their Android device.
It can also spread by infecting apps that are downloaded from untrusted
sources. Once the device is infected, the malware installs multiple
unwanted apps that are difficult to remove. These apps remain on the
device even after performing a factory reset, making it challenging to
completely eradicate the malware.

JOURNAL OF CYBER SECURITY TECHNOLOGY 15

https://www.kaggle.com/datasets/saeedseraj/malicious-adware-detection-in-android-using-dl
https://www.kaggle.com/datasets/saeedseraj/malicious-adware-detection-in-android-using-dl

● KEMOGE is an adware that masquerades as a popular app; it has spread so
widely because it takes the names of popular apps and repackages them
with malicious code before making them available to the user.

● MOBIDASH A special programme module that cybercriminals use to mon-
etize Android games and applications. It displays various types of adver-
tisement messages to the user. The unique feature of Adware.MobiDash.1.
origin is that its unwanted activity begins after some time, rather than
immediately after the malicious applications containing this module are
installed or run. This period is sufficient for the user to forget about the
potential source of annoying notifications and advertisements, allowing
the malware to remain on the device.

● SELFMITE Security researchers have discovered a rare Android worm that
spreads to other users via links in text messages. When Selfmite malware is
installed on a device, it sends a text message to 20 contacts in the device
owner’s address book.

● SHUANET behaves more like malware and shares some ancestry with two
other adware families, Kemoge and Shedun, which also root devices and
provide system-level persistence to their respective payloads.

● YOUMI steals a large amount of personal information from an Android
device. This includes its GPS and cell tower location, as well as phone
identifiers such as the IMEI number and phone number. This differs from
the data that affected stolen Apple apps, which included a list of all apps
installed on the device as well as the Apple ID email address associated
with the device. Symantec discovered Android’s Youmi to be downloading
new applications as well.

6. Proposed methodology

Controlled learning machines are capable of using labelled examples to make
predictions about future events and apply knowledge learned from previous
data. By analysing a specific training dataset, the learning algorithm generates
a function to predict output values. With sufficient training, the programme can
predict outcomes for any new input. The algorithm can also detect errors and
adjust the model accordingly by comparing its output to the correct output.
Machine learning and deep learning techniques are useful for analysing massive
amounts of data, yielding faster and more accurate results in identifying cost-
effective opportunities or risky threats. However, properly training these models
may require additional time and resources. Deep learning is a particularly
effective technique for efficiently processing large amounts of data [10].
Figure 5 illustrates a general overview of our process analysis from start to end.

16 S. SERAJ ET AL.

6.1. Convolutional neural network (CNN)

A Convolutional Neural Network (CNN) is a type of feedforward neural network
that allows information to flow only forward from input nodes, through hidden
nodes, and to output nodes, with no loops or cycles. CNNs are primarily used for
pattern recognition tasks. They are effective at detecting simple patterns in data
and using those patterns to create more complex ones in deeper layers.
Typically, CNNs are composed of convolutional and pooling layers. The con-
volutional layer detects local features from the previous layer, while the pooling
layer combines similar features into a single one. CNNs use shared weights, local
receptive fields, and spatial subsampling to solve high-dimensional non-convex
problems with parallel and cascaded convolutional filters. These filters allow
CNNs to be used for tasks such as regression, image classification, semantic

Reverse Engineering

Data Collection

Dataset Creation

Feature Extraction

Feature Selection

Classification/Detection

END

START

Data Labelling

Pre-processing

Feature Reduction

Figure 5. Overview of our process analysis.

JOURNAL OF CYBER SECURITY TECHNOLOGY 17

segmentation, and object detection. Compared to traditional neural networks,
CNNs require fewer parameters and are easier to train due to weight sharing
and processing limited dimensions.

A one-dimensional convolutional neural network (1D CNN) is useful for
datasets with a one-dimensional structure, where shorter segments of the
feature set can be analysed and the feature’s location in the segment is irrele-
vant. It is particularly useful when vectorized data is used to represent the
properties of the items whose state or category is being predicted, such as
Android applications. 1D CNN can be used to extract more meaningful feature
representations that describe patterns or relationships within vector segments.
These features are then processed by a classifier, eliminating the need for
separate feature ranking and selection outside of the deep learning model. In
summary, 1D CNNs can be used as feature extraction layers for a given classifier,
providing a more efficient and integrated deep-learning model.

6.2. Static analysis

Static analysis is an approach that does not require an application to be run and is
considered passive. As the detection is done before the execution of the application,
there is no impact on the system from any malicious behaviour. The manifest file,
which is a component of the apk file, provides information for static analysis,
including the hardware properties, permissions, themes, and activity properties for
the application. The tags in the manifest file are used to define the application’s
permissions, such as internet access, camera access, and file reading and writing [21].

6.3. Preprocessing

The Android application permissions dataset is in CSV format and is used for
training and testing purposes. Preprocessing of the dataset involves removing
duplicates and NaN values. For binary classification studies, the family and
category features were removed. The dataset assigns a value of ‘1’ to malware
samples and ‘0’ to benign samples.

6.3.1. Feature reduction
Feature reduction is a common technique in machine learning and data analysis
that aims to improve model performance and reduce computational complexity
by reducing the number of input features. There are several reasons why we
might want to perform feature reduction. Some of the common reasons are:

● To improve model performance: High-dimensional feature spaces can
cause overfitting, meaning that a model is too complex and fits the training
data too closely, resulting in poor generalisation performance on new data.

18 S. SERAJ ET AL.

By reducing the number of input features, we can often improve a model’s
ability to generalize and make accurate predictions on new data.

● To reduce computational complexity: In many cases, large datasets with
high-dimensional feature spaces can be computationally expensive to
process and analyse. By reducing the number of input features, we can
often reduce the computational complexity of our models and analyses,
making them faster and more efficient.

● To remove irrelevant or redundant features: Some features in a dataset may
be irrelevant or redundant, meaning that they do not provide any useful
information for our analysis or may provide the same information as other
features. By removing these features, we can simplify our analysis and
improve our ability to interpret and understand our results.

The code we provided is dropping columns in our dataset where the mean of the
values that are equal to 0 is greater than or equal to 0.85. This indicates that these
columns contain a high percentage of zeros, which may not provide useful
information for the analysis and may be effectively redundant. By dropping
these columns, the code simplifies the dataset and potentially improves model
performance and computational efficiency. Out of the original 440 features, the
code dropped 418 columns and kept 22 columns, which are as follows:

● INTERNET
● ACCESS_COARSE_LOCATION
● ACCESS_FINE_LOCATION
● GET_TASKS
● CHANGE_WIFI_STATE
● WRITE_EXTERNAL_STORAGE
● READ_PHONE_STATE
● SYSTEM_ALERT_WINDOW
● C2D_MESSAGE
● CAMERA
● ACCESS_NETWORK_STATE
● ACCESS_WIFI_STATE
● GET_ACCOUNTS
● READ_EXTERNAL_STORAGE
● RECEIVE_BOOT_COMPLETED
● VIBRATE
● WAKE_LOCK
● BILLING
● RECEIVE
● BIND_GET_INSTALL_REFERRER_SERVICE
● WRITE_SETTINGS
● INSTALL_SHORTCUT

JOURNAL OF CYBER SECURITY TECHNOLOGY 19

This means that 418 of the original features contained a high percentage
of zeros and were considered redundant and less important, while the
remaining 22 features were deemed to be more important and useful for
the analysis. It’s worth noting that the choice of 0.85 as the threshold for
dropping columns is somewhat arbitrary and may depend on the specific
dataset and analysis. In some cases, a different threshold may be more
appropriate. Additionally, it’s important to carefully consider the potential
impact of feature reduction on the accuracy and interpretability of the
analysis. In some cases, dropping too many features may result in the loss
of important information and negatively impact the results.

6.4. Proposed Classifier

We used a deep-learning neural network to detect malicious Android
adware in our dataset. Because of the immense flexibility of the math

MaxPooling: Pool Size=2

Input Layer: 440:1

Conv1d: 4, 2, relu

Flatten Layer

Dense Layer: 80, relu

Dropout: 0.3

Dense Layer: 1, Sigmoid

Figure 6. Proposed CNN model.

20 S. SERAJ ET AL.

performed in the overall function, a Convolutional Neural Network (CNN)
is an excellent estimator in our case. It is a completely mathematical
system that uses a large amount of data to gradually approximate com-
plex input-output relationships. Figure 6 illustrates our proposed CNN
model.

The number of input nodes must be the same as the number of
permissions in the dataset, which is 441. Furthermore, even with so
many input nodes, only one output node is required because the classi-
fication is a yes/no decision-maker. Initially, we did not use permission
columns in the dataset where zeros represent 85% of the column or
more. Then we identified that the best settings were a Convolutional
1D layer with a relu activation function, followed by a MaxPooling layer
of size 2, and finally, a flatten layer. The following step includes a dense
layer with 80 perceptrons, a dropout layer with 0.3, and the final dense
layer for classification using sigmoid and Adam with a learning rate of
0.01. Finally, the batch size was set to 128 and the number of epochs was
set to 20. The algorithm begins with convolution, as shown in equation 1.
Where y is the output, n is the length of the convolution represented by
x, and h is the kernel. S is the number of positions shifted by the kernel.
In equation 2, the relu function used in the convolution layer is shown.
Where a value ranging from 0 to infinite is returned for the output y and
the input x. The pooling layer is applied in the following step to reduce
the dimensionality to a size of 2, which aids in reducing any potential
overfitting. The flatten layer then concatenates the output to form a flat
structure that can be used as an input to a fully connected Multi-Layer
Perceptron, as shown in equation 3, where Zm is the function output, f is
the function name, followed by the function inputs, bias b, and an input
summary. Following that, a dropout layer with 20% of the nodes is used,
and the output uses a one-hot encoding with the output being either 0
or 1 for an input x based on the sigmoid function shown in equation 4.

y nð Þ ¼

Pk

id¼0
x nþ ið Þh ið Þ; if n ¼ 0

Pk

i¼0
x nþ i þ s � 1ð Þð Þh ið Þ; otherwise

8
>>><

>>>:

(1)

Network’s

Parameters

Definitions

Reading the

Dataset

Neural Network

Training

Neural Network

Validation

Figure 7. Demonstration of simulation stages.

JOURNAL OF CYBER SECURITY TECHNOLOGY 21

y xð Þ ¼ max 0; xð Þ (2)

Zm ¼ f xn;wmnð Þ ¼ bþ
X

m
xnwmn (3)

σ xð Þ ¼
1

1þ e� x (4)

7. Experimental evaluation

We developed a tuned convolutional neural network (CNN) with Python and the
Scikit-learn, Keras, and TensorFlow libraries as described in Section 6.
Furthermore, 5-fold cross-validation was used in all experiments. We used the
Python programming language to train and validate our neural network classi-
fier on our malicious adware dataset. For array operations and reading data from
files, the NumPy and Pandas libraries are required. The simulation is divided into
the following stages: defining the network’s parameters, such as node numbers
and learning rate, reading the dataset, training the neural network, and finally
validating the neural network with the remaining dataset. Figure 7 demon-
strates the simulation stages.

7.1. Cross-Validation

We used a technique called 5-fold cross-validation to evaluate the model’s ability to
generalise to the reduced-feature dataset. This involved randomly dividing the
dataset into five subsets and subjecting it to five cycles of training and testing. In
each cycle, one subset was excluded from the training process and used for testing.
The performance metrics of the classifier were collected for each cycle, and if the
variance between these metrics was high, it indicated that the classifier was over-
fitted and did not generalise well. However, if the variance was low, the mean values
of the performance metrics were considered reliable.

7.2. Evaluation metrics

In the experiments conducted, we utilised the Python programming language,
alongside the scikit-learn, Keras, and TensorFlow libraries. To assess the performance
of our approach, we employed evaluation metrics such as Accuracy, Precision,
Recall, and F1, which are specified in equations 5, 6, 7, and 8, respectively. The
acronyms TP, TN, FP, and FN correspond to true positive, true negative, false positive,
and false negative, respectively. Accuracy, calculated via Equation 5, provides an
overall indication of model performance. Precision, determined using Equation 6,
describes the proportion of predicted Adware and is another vital metric. The Recall
metric, as defined in Equation 7, represents the percentage of correctly classified

22 S. SERAJ ET AL.

Adware. Additionally, we utilised the F1-score, which is a number between 0 and 1
that determines the harmonic mean of precision and recall, as expressed by
Equation 8.

The basic four performance measures of a binary ML-based classifier are:

● True Positives (TP) is a performance metric that represents the number of
positive samples that are correctly classified as positive by a binary machine
learning classifier. It is calculated by dividing the number of test instances are
true and predicted values are 1 (positive) by the total number of test instances
whose true value is 1.

● False Positives (FP) refer to the number of instances in which a negative sample
is predicted as positive by a binary machine learning classifier. It is calculated as
the number of test instances whose true value is 0 and the predicted value is 1,
divided by the number of test instances whose true value is 0.

● True Negatives (TN) refer to the number of negative samples that are correctly
classified as negative by the binary classifier. Specifically, it is the number of test
instances whose true value is negative (0) and the predicted value is also
negative (0), which is then divided by the total number of test instances
whose true value is negative (0).

● False Negatives (FN) are the number of positive samples that were incor-
rectly classified as negative. This is calculated by counting the number of
test instances whose true value is 1 (positive) and the predicted value is 0
(negative), and then dividing by the total number of test instances whose
true value is 1 (positive).

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
(5)

Precision ¼
TP

TP þ FP
(6)

Recall ¼
TP

TP þ FN
(7)

F1 ¼ 2 �
Precision � Recall
Precisionþ Recall

(8)

8. Results

This section describes the experiments and compares the proposed
method to other well-known classifiers as well as the most relevant
previous research in this field. We used a self-made dataset to evaluate
the proposed method and selected 500 Android malicious adware sam-
ples from 10 families. All the benign samples were scanned through

JOURNAL OF CYBER SECURITY TECHNOLOGY 23

VirusTotal [6] to make sure that the benign class does not include any
malware samples. The dataset contains 2000 samples, and the proposed
method was evaluated using 5-fold stratified cross-validation on this
dataset. In addition, all experiments were carried out on a 64-bit
Microsoft Windows 11 Professional operating system with hardware
including an Intel (R) Core (TM) i5-8365 U @ 1.60 GHz and 1.90 GHz CPU,

Figure 8. Training and test accuracy over epochs.

Table 4. MadDroid evaluation results.
Execution No Accuracy% Precision% Recall% F1%

Run 1 98.35 98.51 98.19 98.34
Run 2 98.53 98.41 98.67 98.53
Run 3 97.76 97.21 98.35 97.77
Run 4 98.91 98.83 98.99 98.90
Run 5 97.65 97.61 97.71 97.65
Average 98.24 98.11 98.38 98.24

24 S. SERAJ ET AL.

16.00GB of RAM, and an Intel UHD Graphics 620 GPU. Figures 8 and 9
show the training/test accuracy and loss over the course of 5 epochs for
each of the five folds for the 5-fold cross-validation for the 1st run, the
final evaluation results of which are presented in the top row of Table 4.
Table 4 shows the accuracy, precision, recall, and F1 scores across 5
different cross-fold executions, and at the end is the average of these
completed executions.

8.1. Comparisons with the other adware detection works

Table 5 presents the obtained results from the proposed method using CNN
compared to other adware studies using the proposed dataset. The table indicates

Figure 9. Model loss over epochs.

JOURNAL OF CYBER SECURITY TECHNOLOGY 25

that the proposed method is more successful in classifying benign and adware
applications.
The algorithms used in the comparisons are the following

1 Multilayer Perceptron: activation: ‘relu’, solver: ‘adam’, learning_rate_init:
0.001, 200 iterations

2 Linear Regression: fit_intercept: True, normalize: False, copy_X: True, n_jobs:
None, positive: False, precompute: False

3 Linear Discriminant Analysis: solver: ‘svd’
4 K-Nearest Neighbor: n_neighbors: 5
5 Decision Tree: criterion: ‘gini’, splitter: “best
6 Naive Bayes: priors: None, var_smoothing: 1e-9
7 Random Forest: n_estimators: 100
8 Support Vector Machine: C: 1.0

9. Conclusion and future works

In this paper, we present a novel method for detecting malicious Android
adware using Android permissions and a tuned convolutional neural net-
work. To the best of our knowledge, we are the first researchers to use
permissions as features and apply the CNN model to detect malicious
Android adware. To begin, we downloaded 1500 benign apk files from
the Google Play Store from various categories and 500 apk files infected
with malicious adware to create our own dataset based on permissions. The
AndroidManifest.xml files that provided access to the permissions granted
to each application were then extracted using reverse engineering from
1500 benign and 500 malicious adware apps from our self-made dataset.
Finally, in a 5-fold cross-validation experiment, we trained and tested
a proposed CNN model using the employed dataset. Our experiments
show that the proposed method outperforms several conventional ML
methods in this field, achieving 98.24% accuracy and 98.11% precision.
These promising results suggest that the proposed method can detect

Table 5. Comparisons with the other adware detection work.
Reference Features Method Accuracy% Precision% Recall% F1%

AdStop
Ref [2]
2022

Network Traffic MLP1 95.7 94.7 93.9 93.7

Ref [12]
2019

Adware Behaviour LR2 96.0 94.5 94.9 94.6
LDA3 96.2 94.3 95.7 95.0

K-NN4 95.1 92.4 95.2 93.6
DT5 94.2 92.2 91.8 92.5
NB6 68.8 71.2 77.1 67.0

Ref [4] 2019 Malicious Codes Dynamic
Random Forest7

96.6 95.1 95.4 95.1

AdDetect, Ref [7]
2014

Module of apps SVM8 95.4 93.7 94.1 93.8

MadDroid Permissions CNN 98.24 98.11 98.38 98.24

26 S. SERAJ ET AL.

Android Adware using the permissions provided. In the future, we intend to
investigate how permissions can be used to detect other types of mal-
wares, such as Ransomware, scareware and SMS malware. Furthermore, we
intend to use other types of features in conjunction with permissions to
detect sophisticated Android malware.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Nikolaos Polatidis http://orcid.org/0000-0003-4249-4953

References

[1] Javaid A, Rashid I, Abbas H, et al. (2018, June). Ease or privacy? a comprehensive
analysis of Android embedded adware. In 2018 IEEE 27th International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Paris, France
(pp. 254–260). IEEE.

[2] Alani MM, Awad AI. AdStop: efficient flow-based mobile adware detection using machine
learning. Computers & Security. 2022;117:102718. doi: 10.1016/j.cose.2022.102718

[3] Ndagi JY, Alhassan JK (2019, December). Machine learning classification algorithms for
adware in android devices: a comparative evaluation and analysis. In 2019 15th
International Conference on Electronics, Computer and Computation (ICECCO), Abuja,
Nigeria (pp. 1–6). IEEE.

[4] Lee K, Park H (2019, July). Malicious adware detection on android platform using
dynamic random forest. In International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (pp. 609–617). Springer, Cham.

[5] Bagui S, Benson D. Android adware detection using machine learning. Int J Cyber Soc
Educ (IJCRE). 2021;3(2):1–19. doi: 10.4018/IJCRE.2021070101

[6] VirusTotal. Free online virus, malware and URL scanner, https://www.virustotal.com/ .
[7] Narayanan A, Chen L, Chan CK (2014, April). Addetect: automated detection of android

ad libraries using semantic analysis. In 2014 IEEE Ninth International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore (pp.
1–6). IEEE.

[8] https://www.spiceworks.com/it-security/security-general/articles/what-is-adware/
[9] Hoffman C. What is malvertising and how do you protect yourself. HowTo Geek. 2015.

[10] Suresh S, Di Troia F, Potika K, et al. An analysis of Android adware. J Comput Virol Hack
Tech. 2019;15(3):147–160. doi: 10.1007/s11416-018-0328-8

[11] Aboosh OSA, Aldabbagh OAI (2021, September). Android adware detection model
based on machine learning techniques. In 2021 International Conference on Computing
and Communications Applications and Technologies (I3CAT) (pp. 98–104). IEEE.

[12] Dobhal DC, Purushottam D, Aswal K. Detection of Android adware by using machine
learning algorithms (IJEAT) ISSN: 2249–8958. Volume- Issue-4S, April. India: BEIESP; 2019.

JOURNAL OF CYBER SECURITY TECHNOLOGY 27

https://doi.org/10.1016/j.cose.2022.102718
https://doi.org/10.4018/IJCRE.2021070101
https://www.virustotal.com/
https://www.spiceworks.com/it-security/security-general/articles/what-is-adware/
https://doi.org/10.1007/s11416-018-0328-8

[13] Arul E, Punidha A (2021). Adware attack detection on IoT devices using deep Logistic
Regression SVM (DL-SVM-IoT). In Congress on Intelligent Systems: Proceedings of CIS
2020, Volume 1 (pp. 167–176). Springer Singapore.

[14] Lee K, Park H (2020). Malicious adware detection on android platform using dynamic
random forest. In Innovative Mobile and Internet Services in Ubiquitous Computing:
Proceedings of the 13th International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS-2019), Sydney, Australia (pp. 609–617).
Springer International Publishing.

[15] Ideses I, Neuberger A (2014, December). Adware detection and privacy control in
mobile devices. In 2014 IEEE 28th Convention of Electrical & Electronics Engineers in
Israel (IEEEI), Eilat, Israel (pp. 1–5). IEEE.

[16] Soto-Valero C, González M. Empirical study of malware diversity in major android
markets. J Cyber Secur Technol. 2018;2(2):51–74. doi: 10.1080/23742917.2018.1483876

[17] Dowling S, Schukat M, Barrett E. Improving adaptive honeypot functionality with
efficient reinforcement learning parameters for automated malware. J Cyber Secur
Technol. 2018;2(2):75–91. doi: 10.1080/23742917.2018.1495375

[18] Rauti S, Laurén S, Mäki P, et al. Internal interface diversification as a method against
malware. J Cyber Secur Technol. 2021;5(1):15–40. doi: 10.1080/23742917.2020.1813397

[19] https://www.unb.ca/cic/datasets/
[20] Yerima SY, Alzaylaee MK, Shajan A. Deep learning techniques for android botnet

detection. Electronics. 2021;10(4):519. doi: 10.3390/electronics10040519
[21] Bayazit EC, Sahingoz OK, Dogan B (2022, June). A deep learning based Android malware

detection system with static analysis. In 2022 International Congress on Human-Computer
Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey (pp. 1–6). IEEE.

28 S. SERAJ ET AL.

https://doi.org/10.1080/23742917.2018.1483876
https://doi.org/10.1080/23742917.2018.1495375
https://doi.org/10.1080/23742917.2020.1813397
https://www.unb.ca/cic/datasets/
https://doi.org/10.3390/electronics10040519

	Abstract
	1. Introduction
	2. Background
	2.1. Overview of adware
	2.2. Adware and history
	2.3. Adware and illegal use
	2.4. Adware and the dark side
	2.5. Types of adware
	2.5.1. Legitimate fc
	2.5.2. Potentially unwanted applications (PUAs)
	2.5.3. Legal abusive adware PUA
	2.5.4. Legal deceptive adware PUA
	2.5.5. Illegal malicious adware PUA

	2.6. Types of attacks/threats
	Attack/Threats are described below
	As described in <xref ref-type="table" rid="t0001">Table 1</xref> summarizes the relationship between them where the impact of attacks/threats on ‘Adversary developers’, users and platforms are described

	3. Related work
	4. Dataset creation
	4.1. Phase A: Data collection
	4.2. Phase B: Feature extraction
	4.3. Phase C: Feature selection
	4.4. Phase D: Data labelling

	5. Dataset
	6. Proposed methodology
	6.1. Convolutional neural network (CNN)
	6.2. Static analysis
	6.3. Preprocessing
	6.3.1. Feature reduction

	6.4. Proposed Classifier

	7. Experimental evaluation
	7.1. Cross-Validation
	7.2. Evaluation metrics

	8. Results
	8.1. Comparisons with the other adware detection works

	9. Conclusion and future works
	Disclosure statement
	ORCID
	References

