11,513 research outputs found

    An empirical evaluation of High-Level Synthesis languages and tools for database acceleration

    Get PDF
    High Level Synthesis (HLS) languages and tools are emerging as the most promising technique to make FPGAs more accessible to software developers. Nevertheless, picking the most suitable HLS for a certain class of algorithms depends on requirements such as area and throughput, as well as on programmer experience. In this paper, we explore the different trade-offs present when using a representative set of HLS tools in the context of Database Management Systems (DBMS) acceleration. More specifically, we conduct an empirical analysis of four representative frameworks (Bluespec SystemVerilog, Altera OpenCL, LegUp and Chisel) that we utilize to accelerate commonly-used database algorithms such as sorting, the median operator, and hash joins. Through our implementation experience and empirical results for database acceleration, we conclude that the selection of the most suitable HLS depends on a set of orthogonal characteristics, which we highlight for each HLS framework.Peer ReviewedPostprint (author’s final draft

    Vector processing-aware advanced clock-gating techniques for low-power fused multiply-add

    Get PDF
    The need for power efficiency is driving a rethink of design decisions in processor architectures. While vector processors succeeded in the high-performance market in the past, they need a retailoring for the mobile market that they are entering now. Floating-point (FP) fused multiply-add (FMA), being a functional unit with high power consumption, deserves special attention. Although clock gating is a well-known method to reduce switching power in synchronous designs, there are unexplored opportunities for its application to vector processors, especially when considering active operating mode. In this research, we comprehensively identify, propose, and evaluate the most suitable clock-gating techniques for vector FMA units (VFUs). These techniques ensure power savings without jeopardizing the timing. We evaluate the proposed techniques using both synthetic and “real-world” application-based benchmarking. Using vector masking and vector multilane-aware clock gating, we report power reductions of up to 52%, assuming active VFU operating at the peak performance. Among other findings, we observe that vector instruction-based clock-gating techniques achieve power savings for all vector FP instructions. Finally, when evaluating all techniques together, using “real-world” benchmarking, the power reductions are up to 80%. Additionally, in accordance with processor design trends, we perform this research in a fully parameterizable and automated fashion.The research leading to these results has received funding from the RoMoL ERC Advanced Grant GA 321253 and is supported in part by the European Union (FEDER funds) under contract TTIN2015-65316-P. The work of I. Ratkovic was supported by a FPU research grant from the Spanish MECD.Peer ReviewedPostprint (author's final draft

    Modeling the Speed and Timing of American Sign Language to Generate Realistic Animations

    Get PDF
    While there are many Deaf or Hard of Hearing (DHH) individuals with excellent reading literacy, there are also some DHH individuals who have lower English literacy. American Sign Language (ASL) is not simply a method of representing English sentences. It is possible for an individual to be fluent in ASL, while having limited fluency in English. To overcome this barrier, we aim to make it easier to generate ASL animations for websites, through the use of motion-capture data recorded from human signers to build different predictive models for ASL animations; our goal is to automate this aspect of animation synthesis to create realistic animations. This dissertation consists of several parts: Part I, defines key terminology for timing and speed parameters, and surveys literature on prior linguistic and computational research on ASL. Next, the motion-capture data that our lab recorded from human signers is discussed, and details are provided about how we enhanced this corpus to make it useful for speed and timing research. Finally, we present the process of adding layers of linguistic annotation and processing this data for speed and timing research. Part II presents our research on data-driven predictive models for various speed and timing parameters of ASL animations. The focus is on predicting the (1) existence of pauses after each ASL sign, (2) predicting the time duration of these pauses, and (3) predicting the change of speed for each ASL sign within a sentence. We measure the quality of the proposed models by comparing our models with state-of-the-art rule-based models. Furthermore, using these models, we synthesized ASL animation stimuli and conducted a user-based evaluation with DHH individuals to measure the usability of the resulting animation. Finally, Part III presents research on whether the timing parameters individuals prefer for animation may differ from those in recordings of human signers. Furthermore, it also includes research to investigate the distribution of acceleration curves in recordings of human signers and whether utilizing a similar set of curves in ASL animations leads to measurable improvements in DHH users\u27 perception of animation quality

    High Performance Computing via High Level Synthesis

    Get PDF
    As more and more powerful integrated circuits are appearing on the market, more and more applications, with very different requirements and workloads, are making use of the available computing power. This thesis is in particular devoted to High Performance Computing applications, where those trends are carried to the extreme. In this domain, the primary aspects to be taken into consideration are (1) performance (by definition) and (2) energy consumption (since operational costs dominate over procurement costs). These requirements can be satisfied more easily by deploying heterogeneous platforms, which include CPUs, GPUs and FPGAs to provide a broad range of performance and energy-per-operation choices. In particular, as we will see, FPGAs clearly dominate both CPUs and GPUs in terms of energy, and can provide comparable performance. An important aspect of this trend is of course design technology, because these applications were traditionally programmed in high-level languages, while FPGAs required low-level RTL design. The OpenCL (Open Computing Language) developed by the Khronos group enables developers to program CPU, GPU and recently FPGAs using functionally portable (but sadly not performance portable) source code which creates new possibilities and challenges both for research and industry. FPGAs have been always used for mid-size designs and ASIC prototyping thanks to their energy efficient and flexible hardware architecture, but their usage requires hardware design knowledge and laborious design cycles. Several approaches are developed and deployed to address this issue and shorten the gap between software and hardware in FPGA design flow, in order to enable FPGAs to capture a larger portion of the hardware acceleration market in data centers. Moreover, FPGAs usage in data centers is growing already, regardless of and in addition to their use as computational accelerators, because they can be used as high performance, low power and secure switches inside data-centers. High-Level Synthesis (HLS) is the methodology that enables designers to map their applications on FPGAs (and ASICs). It synthesizes parallel hardware from a model originally written C-based programming languages .e.g. C/C++, SystemC and OpenCL. Design space exploration of the variety of implementations that can be obtained from this C model is possible through wide range of optimization techniques and directives, e.g. to pipeline loops and partition memories into multiple banks, which guide RTL generation toward application dependent hardware and benefit designers from flexible parallel architecture of FPGAs. Model Based Design (MBD) is a high-level and visual process used to generate implementations that solve mathematical problems through a varied set of IP-blocks. MBD enables developers with different expertise, e.g. control theory, embedded software development, and hardware design to share a common design framework and contribute to a shared design using the same tool. Simulink, developed by MATLAB, is a model based design tool for simulation and development of complex dynamical systems. Moreover, Simulink embedded code generators can produce verified C/C++ and HDL code from the graphical model. This code can be used to program micro-controllers and FPGAs. This PhD thesis work presents a study using automatic code generator of Simulink to target Xilinx FPGAs using both HDL and C/C++ code to demonstrate capabilities and challenges of high-level synthesis process. To do so, firstly, digital signal processing unit of a real-time radar application is developed using Simulink blocks. Secondly, generated C based model was used for high level synthesis process and finally the implementation cost of HLS is compared to traditional HDL synthesis using Xilinx tool chain. Alternative to model based design approach, this work also presents an analysis on FPGA programming via high-level synthesis techniques for computationally intensive algorithms and demonstrates the importance of HLS by comparing performance-per-watt of GPUs(NVIDIA) and FPGAs(Xilinx) manufactured in the same node running standard OpenCL benchmarks. We conclude that generation of high quality RTL from OpenCL model requires stronger hardware background with respect to the MBD approach, however, the availability of a fast and broad design space exploration ability and portability of the OpenCL code, e.g. to CPUs and GPUs, motivates FPGA industry leaders to provide users with OpenCL software development environment which promises FPGA programming in CPU/GPU-like fashion. Our experiments, through extensive design space exploration(DSE), suggest that FPGAs have higher performance-per-watt with respect to two high-end GPUs manufactured in the same technology(28 nm). Moreover, FPGAs with more available resources and using a more modern process (20 nm) can outperform the tested GPUs while consuming much less power at the cost of more expensive devices

    Implementing Synthetic Aperture Radar Backprojection in Chisel – A Field Report

    Get PDF
    Chisel is an emerging hardware description language which is especially popular in the RISC-V community. In this report, we evaluate its application in the field of general digital hardware design. A dedicated hardware implementation of a Synthetic Aperture Radar (SAR) processing algorithm is used as an example case for a real-world application. It is targeting a modern high performance FPGA platform. We analyze the difference in code size compared to a VHDL implementation. In contrast to related publications, we classify the code lines into several categories, providing a more detailed view. Overall, the number of lines was reduced by 74% while the amount of boilerplate code was reduced by 83%. Additionally, we report on our experience using Chisel in this practical application. We found the generative concept and the flexibility introduced by modern software paradigms superior to traditional hardware description languages. This increased productivity, especially during timing closure. However, additional programming skills not associated with classic hardware design are required to fully leverage its advantages. We recommend Chisel as a language for all hardware design tasks and expect its popularity to increase in the future

    AxleDB: A novel programmable query processing platform on FPGA

    Get PDF
    With the rise of Big Data, providing high-performance query processing capabilities through the acceleration of the database analytic has gained significant attention. Leveraging Field Programmable Gate Array (FPGA) technology, this approach can lead to clear benefits. In this work, we present the design and implementation of AxleDB: An FPGA-based platform that enables fast query processing for database systems by melding novel database-specific accelerators with commercial-off-the-shelf (COTS) storage using modern interfaces, in a novel, unified, and a programmable environment. AxleDB can perform a large subset of SQL queries through its set of instructions that can map compute-intensive database operations, such as filter, arithmetic, aggregate, group by, table join, or sort, on to the specialized high-throughput accelerators. To minimize the amount of SSD I/O operations required, AxleDB also supports hardware MinMax indexing for databases. We evaluated AxleDB with five decision support queries from the TPC-H benchmark suite and achieved a speedup from 1.8X to 34.2X and energy efficiency from 2.8X to 62.1X, in comparison to the state-of-the-art DBMS, i.e., PostgreSQL and MonetDB.The research leading to these results has received funding from the European Union Seventh Framework Program (FP7) (under the AXLE project GA number 318633), the Ministry of Economy and Competitiveness of Spain (under contract number TIN2015-65316-p), Turkish Ministry of Development TAM Project (number 2007K120610), and Bogazici University Scientific Projects (number 7060).Peer ReviewedPostprint (author's final draft
    • …
    corecore