
Implementing Synthetic Aperture Radar
Backprojection in Chisel – A Field Report

Niklas Rother1[0000−0001−6374−3379], Christian
Fahnemann1[0000−0002−1092−582X], and Holger Blume1[0000−0002−0640−6875]

Institute of Microelectronic Systems, Leibniz University Hannover, Hannover,
Germany

{rother,fahnemann,blume}@ims.uni-hannover.de

Abstract. Chisel is an emerging hardware description language which is
especially popular in the RISC-V community. In this report, we evaluate
its application in the field of general digital hardware design. A dedi-
cated hardware implementation of a Synthetic Aperture Radar (SAR)
processing algorithm is used as an example case for a real-world appli-
cation. It is targeting a modern high performance FPGA platform. We
analyze the difference in code size compared to a VHDL implementation.
In contrast to related publications, we classify the code lines into sev-
eral categories, providing a more detailed view. Overall, the number of
lines was reduced by 74% while the amount of boilerplate code was re-
duced by 83%. Additionally, we report on our experience using Chisel in
this practical application. We found the generative concept and the flex-
ibility introduced by modern software paradigms superior to traditional
hardware description languages. This increased productivity, especially
during timing closure. However, additional programming skills not as-
sociated with classic hardware design are required to fully leverage its
advantages. We recommend Chisel as a language for all hardware design
tasks and expect its popularity to increase in the future.

Keywords: Hardware description languages · Chisel · SAR · VHDL

1 Introduction

Following Moore’s law, the complexity of digital designs has continuously in-
creased in the last years. Today, most designs are not created from scratch, but
rather are modifications or combinations of existing blocks (IP cores). In this
context, the hardware description languages that are traditionally used in this
field—Verilog and VHDL—have begun to show their limitations. One attempt
to create a more modern hardware design language is Chisel [3], developed at
the University of California, Berkeley.

While Chisel has found adoption in the RISC-V community, its use as a
general language for digital design is limited up to now. In this paper we report on
the use of Chisel for an FPGA implementation of the Backprojection algorithm
used in Synthetic Aperture Radar (SAR). Our existing implementation [4] was

2 N. Rother et al.

Cordic.scala

top.scala

top.v

Input Files Scala Compiler Java Runtime Output File

bus.v

cpu.vhdl

scalac java

Synthesis

Interpol.scala

Fig. 1. Chisel synthesis process. The input files are compiled using the Scala compiler
and the result is executed on the Java Runtime. This results in a single Verilog file,
containing the generated code. This is used together with (optional) additional files in
the conventional synthesis workflow.

implemented in VHDL. To explore the possibilities of a more modern language,
the design was re-implemented from scratch in Chisel. This paper provides an
extensive comparison of both implementations in terms of code size. Additionally,
we describe our experience working with Chisel and list strengths and weaknesses
we discovered.

Chisel is described by its authors as a hardware construction language, com-
pared to Verilog and VHDL, which are hardware description languages [3]. The
latter were originally developed to describe and simulate existing hardware de-
signs. Only later, they have been repurposed for hardware synthesis. Current
digital designs often are a collection of pre-existing modules (IP cores) that are
parametrized and interconnected using a bus interface (e.g. AXI, Avalon, etc.)
to form larger systems (System-on-Chip, SoC). Highly configurable structures
were not envisioned during the design of Verilog and VHDL and are therefore
notoriously hard to describe with them.

Chisel is built around the idea of hardware generators, i.e. executable design
descriptions that can flexibly adapt themselves based on parameters. From a
technical point of view, Chisel is an extension of the Scala programming lan-
guage, which itself is build atop the Java Virtual Machine. The output of the
Chisel build flow is a Verilog file which can be processed by conventional tools.
A visual overview of this flow is shown in Fig. 1. The input files are compiled
using the Scala compiler, and the resulting program is executed using the Java
Runtime. This program then generates a single Verilog file as the output, con-
taining a description of the generated hardware. This file can then be processed
by conventional synthesis tools, optionally together with other source files writ-
ten in VHDL, Verilog, etc. From a user perspective, the complete process from
the input to the output files is usually orchestrated using the sbt tool and is
executed using sbt run.

One important aspect of Chisel is, that the hardware generators are runnable
programs that are executed during the elaboration phase to assemble the final

Implementing SAR Backprojection in Chisel – A Field Report 3

circuit. Since the generators are implemented in Scala, arbitrary code can be
executed in this stage to e.g. generate lookup tables or adapt the generated
design to the chosen parameterization. Chisel inherits most aspects of Scala, like
object-oriented design, type inference and functional programming. This allows
complex hardware generators to be expressed in a few lines of code. Besides this,
Chisel can also be used as a mere replacement for Verilog or VHDL. In this case,
some features of Chisel, like the bulk-connect operator (<>), can help to reduce
the verbosity of the code.

One shall note that Chisel is not a high level synthesis (HLS) language. The
hardware design must still be carried out at the register level, Chisel can not e.g.
extract a datapath design from a algorithmic description. Area and timing results
are therefore expected to be a close match to a Verilog or VHDL description of
the same circuit (cf. [9]).

Part of the Chisel ecosystem is ChiselTest [11], a testing library integrated
with ScalaTest. It allows to write unit-tests for hardware described in Chisel. The
tests can be either executed in a simulator implemented in Scala, or delegated
to Verilator, an open-source Verilog simulator. As the tests are implemented in
Scala, arbitrary Scala code can be executed during the test to generate test stim-
uli or check the expected results against a software implementation, in compar-
ison to classic workflows where stimuli and expected results are often generated
outside the testbench.

Comparable studies on the relation of Verilog and Chisel have previously
been reported [2, 3, 7, 9]. The original paper on Chisel [3] reports a 65% decrease
in lines of code (LoC) for a 3-stage 32-bit RISC processor converted from Verilog
to Chisel. Im et al. [7] also found a 53% decrease in LoC for a 64-bit RISC-V
processor. Both performed physical layout for an ASIC process and found com-
parable area requirements for the Chisel and Verilog version.

Lennon et al. [9] performed an extensive evaluation of a Chisel implementa-
tion compared to a workflow where Verilog code is generated using a Tcl script.
Typical building blocks of FPGA-designs, like arbiters and FIFOs were used
for evaluation. They found the synthesis time, FPGA resource requirements,
and maximum reachable frequency to be comparable, but noted that Chisel
did not support asynchronous resets1, which reduced the maximum frequency
for FPGAs not supporting synchronous resets. The LoC were reduced by 0%
to 37%, depending on the design. Compared to the Tcl+Verilog workflow, the
authors experienced an increase in coding speed by a factor of 3, which they
attribute to the more helpful error messages of Chisel and the fact that Tcl is
not aware of Verilog syntax. In their conclusion, Lennon et al. mention the steep
learning curve of Chisel and the need to understand the software aspects: “Al-
though Chisel designers require a foundation in software design to allow them to
utilize Chisel’s power, constructing circuits with Chisel requires an identical ap-
preciation of the hardware being described to that held by Verilog designers.” [9]

Arcas et al. [2] compared hardware implementations of algorithms com-
monly found in database applications. Verilog, Bluespec SystemVerilog, Altera

1 Support for asynchronous resets has since then been added to Chisel in version 3.2.0.

4 N. Rother et al.

OpenCL, LegUp, and Chisel were used for the comparison. Resource require-
ments and maximum frequency are reported to be on par between the Verilog
and Chisel implementation. The LoC of the Chisel implementation are reduced
by 11% to 16%, aside the “hash probe” design, where the LoC are increased
by 25%. They likewise conclude that “some Scala knowledge” [2] is needed to
efficiently work with Chisel.

The cited studies either focus on processors designs, or use very small ex-
amples to evaluate Chisel. While the reported results look promising, it remains
open whether Chisel is also beneficial for general data processing applications,
besides processor design. To the best of the authors knowledge, this is the first
report evaluating the use of Chisel for a sophisticated real-world application
involving a dedicated hardware architecture.

The rest of this work is structured as follows: Section 2 describes the system
architecture and the underlying algorithm used for this evaluation. A quantita-
tive comparison of the Chisel and VHDL implementation are given in Section 3,
followed by a report on our experience while using Chisel in Section 4. A con-
clusion is drawn in Section 5.

2 System Description

In the following sections we briefly describe the principle and application of
Synthetic Aperture Radar (SAR), the image formation algorithm Backprojec-
tion (BP), and give an architectural overview of our implementation. Both, the
VHDL and the Chisel implementation, are fully working on an FPGA platform
and produce identical results.

2.1 Synthetic Aperture Radar (SAR)

Acquiring near-live images of remote locations has many applications ranging
from surveillance to disaster control. Often, electro-optic sensors (cameras) are
used for this. While these provide a good solution for aerial imaging in decent
environmental conditions, they cannot provide usable images without daylight
or when clouds or smoke block the cameras’ view.

An alternative imaging technique is synthetic aperture radar (SAR). Radar
pulses are transmitted continuously and the received echoes are captured and
stored while flying alongside the area of interest [5]. By merging the captured
echo signals using a SAR processor, an aerial image of the scene is generated
which shows the reflectiveness per ground area. Since radar waves have a much
lower frequency than visible light and actively illuminate the scene with their
signal, these systems can operate independent of daylight and penetrate most
weather phenomena and air pollution.

2.2 Backprojection (BP)

To generate a usable image from the acquired raw data, an image formation
step is necessary. The main part of this is called azimuth compression (AC)

Implementing SAR Backprojection in Chisel – A Field Report 5

and essentially synthesizes a huge virtual antenna which, in turn, has a high
spatial resolution. Historically, algorithms used in digital SAR processors have
been optimized using frequency domain operations. While these enable a com-
putationally efficient image formation, they are sensitive to deviations in the
flight path, which need to be compensated separately. In face of current technol-
ogy, especially in the field of FPGAs, time-domain-based image processing was
shown to be feasible. This enables ideal correction of known flight errors or even
deliberately chosen nonlinear flight trajectories [6].

One straightforward AC algorithm for SAR is Backprojection (BP). This
time domain based technique can be summarized as follows: The output image
is defined as a pixel grid of size X × Y encompassing the secene. For each of
these pixels gx,y, BP takes the echo captures dm of all radar pulses into account.
Based on the real-world locations of the the image pixel and the antenna while
capturing the echo, their geometric distance ∆r is calculated. This information
indicates, where echo data from this image position is stored. It is then used to
interpolate a sample dm[∆r] from the echo data. These complex-valued samples
from all radar pulses are then added per pixel. Also, a phase-correction factor k is
used to enable coherent processing. After this process, areas with strong reflectors
will have a high absolute pixel value while the coherent sum for non-reflective
pixels will dissolve into noise. Equation (1) summarizes the BP computation per
pixel.

gx,y =
∑

dm[∆r] · ei2k∆r (1)

Since there is no interdependence between the pixels, the image dimensions
x ∈ [0, (X − 1)] and y ∈ [0, (Y − 1)] yield two straight-forward parallelization
domains.

2.3 Architecture overview

This section gives an overview of our architecture for the SAR Backprojection
algorithm, so that the extent and complexity of the implementation can be
estimated. A more detailed description of the VHDL implementation has been
published earlier [4].

For our design we chose the aforementioned parallelization strategy in the
pixel domain: The basic processing element is called a “submodule”; a block
diagram of it is shown in Fig. 2. A submodule is capable of storing a number of
neighboring pixels in an output buffer, called the line accumulator. The required
part of the echo data from one pulse is fed into an input buffer. The input
buffer and accumulating output buffer both consist of two Block-RAM-based
memories each. These are swapped back and forth using multiplexers in order
to allow filling and flushing the buffers while the projection of the next/previous
line is ongoing.

The beginning of the processing chain is marked by the “Pixel Position Gen-
erator”, that successively generates the real-world coordinate of the pixels on
the current image region. The generated position is subtracted from the antenna

6 N. Rother et al.

image data

echo data

∆x

∆y

∆z

C
O
R
D
I
C

C
O
R
D
I
C

antenna pos.

geometry

∆r

const.

C
O
R
D
I
C

�1

Interpolator

p
o
s

output buffer Line Accu.

input buffer

Pixel Pos.

Generator

ei2k∆r

dm[∆r]

Fig. 2. GBP submodule core architecture. Two CORDICs are used to calculate the
distance ∆r for each pixel, which is sent to the interpolator. The result dm[∆r] is
multiplied by a phase correction factor ei2k∆r and stored in the accumulator. Arrow
types denote data types: for normal busses and for AXI Stream connections.

position, and two CORDIC instances [12] are used to calculate the 3D vector
length, which is the distance∆r from the antenna to the pixel. The result is given
to the interpolator, which fetches the required samples from the input buffer.
Additionally, a phase correction ei2k∆r is calculated using another CORDIC in-
stance. The phase correction is applied before the sample is transferred to the
accumulator and is stored in the output buffer. After all input data has been
processed, the output buffer is flushed to main memory and a new set of pixels
is computed.

An arbitrary number of these submodules can be used in parallel, each com-
puting different subsets of the final image. As all submodules operate on the
same echo data, this data can be broadcasted, keeping memory read accesses
constant. The outer interface of these submodules consists of the echo data in-
put stream, the image data output stream, control signals, and ports for the
geometric parameters (cf. Fig. 2).

While the older VHDL implementation manages the coordination of the sub-
modules using a central finite state machine (FSM), the newer Chisel implemen-
tation uses a miniature control processor called PacoBlaze [8]. This has the
advantage of providing more flexibility and reprogrammability compared to a
hardcoded FSM while still not taking up as much area as a full-featured micro-
controller.

The interpolator implements a sinc interpolation to generate a sample at a
fractional position, using a structure similar to a FIR filter. A block diagram
of the interpolator is shown in Fig. 3. The incoming position is split into an
integer and a fraction part. The integral part is used to select samples from
the input buffer. The buffer memory is organized in a way that t samples are
stored in a single memory word. It is implemented with dual port access so that
two locations can be accessed at the same time. To perform the interpolation,
two adjacent words—containing 2t samples in total—are fetched. From them,

Implementing SAR Backprojection in Chisel – A Field Report 7

. . .

pos

out

/t %t

+1

t

t

frac

in
t

Sample Selection

coeff. ROM coeff. ROM coeff. ROM

A1

A2

D1

D2

input

buffer

Fig. 3. Interpolator architecture. The incoming position is split into an interger and a
fractional part. The integral part is used to fetch t samples from the dual-port memory,
centered around the requested position. The samples are multiplied by coefficients
selected by the fractional part, and summed up to form the interpolation result.

t samples, centered around the integer position, are extracted. The fractional
part is used to select a set of coefficients which a pre-calculated and stored in
a ROM. Every sample is multiplied with one of the coefficients; and the sum of
these forms the interpolation result.

Outside of the submodules, apart from the control unit, there are only mem-
ory interfaces and other bus infrastructure. This is highly dependent on the
platform and not in the scope of this paper. Although both implementations are
proven to work on the system level, comparisons will focus on the internals of the
submodule (including the interpolator), since they are closely matched among
both implementations.

3 Measurements

In order to assess the expressivity of Chisel we performed measurements of the
code size (number of lines of code) and the readability of the generated Ver-
ilog code. Both investigation considered only the backprojection submodule de-
scribed above, which is implemented similar in the VHDL and Chisel version of
the code. The remaining parts of the systems, namely the control logic and bus
infrastructure was realized differently between both versions and would there-
fore be meaningless to compare. While the Chisel implementation describes the
same hardware design, it was created independently of the existing VHDL code,
as opposed to a mere transcription between languages. Both designs have been
carried out by experienced hardware designers.

8 N. Rother et al.

Comment
Whitespace

1000 ← 0→ 1000 2000 3000 4000

Chisel

VHDL

Boilerplate
MeaningfulIgnored Lines

Lines of Code (LoC)

Functional Definitions Imports Structural
Misc. Boiler. B. Definitions Sequential P. Proc. Headers

Fig. 4. Bar chart of the code size analysis result, divided into ignored lines, meaningful
code and boilerplate code.

3.1 Code size

The Chisel implementation of the Backprojection submodule consists of 19 files
with 1736LoC in total, whereas the VHDL description consists of 25 files and
5755LoC. To further investigate the differences of the two languages, we classified
every line of code into one of the following categories:

Whitespace (WS) Empty lines
Comment (COM) Lines containing only source code comments
Structural (STR) Lines containing only structual syntax elements, such as

opening or closing braces ({/}) or begin/end
Imports (IMP) Import statements for other namespaces/packages
Boilerplate Definitions (BD) Lines consisting only of a declaration of a signal

(VHDL) or Wire (Chisel), without any value assignment
Sequential Process (SQ) (VHDL only) Lines attributed to the sequential

process of the Two Process design methodology [10] which separates the
register description from combinatorial logic

Process Headers (PH) (VHDL only) Lines containing process headers, in-
cluding sensitivity lists

Misc. Boilerplate (MB) Miscellaneous statements required for syntax, but
containing no actual information; i.a. component declarations in VHDL

Definitions (DEF) Definitions of types, entities, Bundles and functions
Functional code (FUN) Everything else, i.e. code that describes the system’s

actual function, including module instantiations and signal connections

Examples for every category, as well as the distributions of the lines over the
categories can be found in Table 1. A graphical overview of the line counts per
category is shown in Fig. 4. Additionally, Appendix A contains a code example
with classifications in VHDL and Chisel. The code examples are stylistically
similar to the real implementations.

For all further analyses, lines from the Whitespace and Comment categories
will be excluded. Furthermore, the categories Structural, Imports, Boilerplate

Implementing SAR Backprojection in Chisel – A Field Report 9

Definitions, Sequential Process, Process Headers, and Misc. Boilerplate can be
summed up as Boilerplate code; Definitions and Functional code as Meaningful
code. With this high-level separation, it can be seen that the amount of Mean-
ingful code is reduced by 67% comparing the VHDL and Chisel implementation,
while the the amount of Boilerplate code decreased by 83%. This gives a first
indication that Chisel generally allows for more compact and expressive code,
while especially verbose and redundant code is reduced.

Concerning the meaningful code, most of the surplus lines in the VHDL im-
plementation can be attributed to individual signal connections among entities.
Chisel allows complete bi-directional Bundles to be connected using the bulk-

Table 1. Code categories with examples, line count and their prevalence in the two
implementations. Examples annotated using the markers can be found in Appendix A.

Category Marker Examples LoC Frac. [%]

Chisel

Whitespace WS 264 15.2
Comment COM // single line comment

/* multi line comment ...
450 25.9

Functional FUN val reg_b = RegNext(c);
inst_d.io.x <> inst_e.io.y;

524 30.2

Definitions DEF class X (...) extends Module
val in_a = Input(SInt(n.W));

166 9.6

Imports IMP import chisel3._ 125 7.2
Structural STR)}; 155 8.9
Misc. Boilerplate MB val io = IO(new Bundle { 19 1.1
Boilerplate Def. BD val wire_a = Wire(Bool()); 33 1.9

VHDL

Whitespace WS 921 16.0
Comment COM -- single line comment 724 12.6
Functional FUN constant B : integer := C+1;

sig_b <= not sig_c;
1689 29.3

Definitions DEF in_a : in std_logic;
entity X is

426 7.4

Imports IMP use ieee.std_logic.all; 172 3.0
Structural STR begin

end if;
490 8.5

Misc. Boilerplate MB architecture Y of X is
port map (
component Z ...

449 7.8

Boilerplate Def. BD signal sig_b : std_logic;
variable var_k : real;

443 7.7

Sequential Process SQ process (clk)
if rising_edge(clk) then

333 5.8

Process Headers PH process (a, b, c, d) 108 1.9

10 N. Rother et al.

Table 2. Number of signal names in the Verilog code generated by Chisel, split by
readability.

Category Example Count Fraction [%]

Clear resetAccu 6650 86.0
Derived dmaIndex_T_5 478 6.2
Opaque GEN_47 607 7.8

connect operator (<>), which significantly reduces the number of lines required.
Another cause for the reduced code size in Chisel is the implicit connection of
clock and reset signals, as well as the implementation of the lookup table gener-
ation for the CORDICs and the interpolator, which is very verbose in VHDL.

The additional boilerplate code in VHDL is twofold. First, in the VHDL
code a component declaration exists for every entity referenced; in Chisel this
is not required. Second, register definitions are much more verbose in VHDL
than in Chisel. In VHDL, following the Two Process methodology, a typical
register definition consists of the declaration of two signals, an entry in the
sequential process and the sensitivity list of the combinatorial process, and a reset
definition. In Chisel, a register, together with its reset value, can be declared in
one line of code; the clock and reset connections are implicit. Generally, Chisel
allows signals to be declared inline with their driving logic, while in VHDL
declaration and assignment have to be split up.

3.2 Transparency of Generated Code

Generally, the Verilog code files generated by Chisel are not intended to be
human-readable and should be considered an opaque artifact. On the other hand,
the warnings reported in the synthesis process and messages from timing analysis
always refer to this generated code. It is therefore important to be able to find
the Chisel source code location which is related to a certain Verilog line. A classic
example is timing closure, where a failing path may be reported, consisting of
Verilog signal names. To measure how easy it will be to find the root cause of
a timing violation, we counted the number of signal definitions in the generated
Verilog code and divided them into three categories: Clear names, having exactly
the name of a Chisel signal; derived names, starting with a Chisel name but
having a suffix in the form of “_T_1”; and opaque names, which are purely
artificial and have the form like “GEN_57”.

Numerous wires from the latter category are used to describe the content of
read-only memories (e.g. the instruction memory of the microcontroller). This
memory is inferred as Block-RAM by the synthesis tool, the wires therefore were
excluded from the counting. We performed this measurements using Chisel 3.5.0.
The results are reported in Table 2. Only 7.8% of the signal names were found
to be opaque; most of them occurred in more abstract code like an AXI register
file generator.

Implementing SAR Backprojection in Chisel – A Field Report 11

4 Experience using Chisel

In this section we summarize our own experience while working with Chisel. The
author had no prior knowledge in Chisel and used the re-implementation of the
described Backprojection module as an opportunity to learn Chisel.

We found working with Chisel to be highly productive. As shown in Sec-
tion 3.1 VHDL is overly verbose when it comes to declaring registers or connect-
ing large busses. Also the fact that only synthesizable hardware can be described
in Chisel made the coding experience more pleasant; the feeling of "fighting the
tool" to reach a certain implementation was removed.

As described above, our design includes the PacoBlaze softcore [8], which
is only available as Verilog code. We used a Chisel BlackBox to include it in
the design. This generally worked well, although simulation with ChiselTest and
Verilator was only possible after combining all source files of the PacoBlaze into
a single file. Generally, the workflow of writing small modules and thoroughly
testing them using unit tests with ChiselTest has proven to be very successful. In
many cases, the expected test results and stimuli could be generated using a soft-
ware implementation of the algorithm in Scala, so that all code was implemented
in the same language. Compared to the typical workflow, where test vectors are
generated in MATLAB or Python and then executed using a Verilog/VHDL test-
bench, this approach turned out to have less overhead, encouraging the designer
to actually include tests for every single module.

Timing closure for the design was easy to achieve. The mapping from re-
ported timing violations in the synthesis tool (Xilinx Vivado in our case) to the
corresponding Chisel source code location was generally easy. As shown above,
only about 8% of the wires in the generated Verilog code used generic names,
therefore the reported paths always included enough information to find their
context. To insert a register in a problematic path, it often was enough to wrap
the expression with RegNext(). When the failing path was inside an AXI-
Stream, a more complex register slice needed to be inserted. The object-oriented
approach of Chisel allowed us to define a concise generator function to insert
an arbitrary number of these register slices. Combined with the bulk-connect
operator of Chisel, this could be applied with a single line of code, similar to
a simple register. We generally found the iteration speed in timing closure very
high.

While implementing the CORDIC algorithm we found the possibility to ex-
ecute arbitrary Scala code during elaboration time very useful. Using this, we
could calculate the CORDIC gain constant and the angular lookup tables for ar-
bitrary iteration counts on the fly, without falling back to hard-coded constants
in the source code.

One downside of Chisel is its steep learning curve. This is partly due to Chisel
being a relatively young language, so not much learning material being available
yet. Also the documentation of Chisel is sparse in some parts. In line with the
findings of Lennon et al. and Alon et al. [9, 1], we also see a requirement to have
some experience in modern programming languages—something not necessarily
found among hardware designers—to fully harness the power of Chisel. Since

12 N. Rother et al.

the full knowledge of digital design is still required, this raises the bar for new
designers. On the other hand we would not consider that a shortcoming of Chisel,
but as an effect coming from the situation the field of digital design is in: Chisel
can be used on a very similar level as Verilog or VHDL, and then mainly helps
to reduce the verbosity. For complex and parametrizable designs, as today’s IP
cores, a certain complexity in the hardware description will always be required.
Chisel here allows for highly sophisticated hardware generators which enable a
flexibility that might be unreachable using a classic Tcl+Verilog design flow.

5 Conclusion

In this field report, we analyzed the practical use of the Chisel hardware de-
scription language. As an example design, we used an implementation of the
Backprojection algorithm for Synthetic Aperture Radar (SAR). To assess the
advantages over traditional languages, we examined the differences to a VHDL
implementation by classifying every line of code into one of several categories.
The analysis showed that the number of code lines was reduced by about 74%
from the VHDL to the Chisel implementation; boilerplate code was reduced by
83%. This indicates that Chisel is more expressive and allows to describe the
same design in fewer lines of code. Especially, the amount of boilerplate code
was reduces significantly.

Furthermore, we analyzed the Verilog code generated by Chisel and found
only 7.8% of the signals to have generic, meaningless names. Thus, few problems
are to be expected when trying to find the Chisel code corresponding to a signal
in the generated code.

Finally, we gave a personal impression of our experience with Chisel. We
generally found Chisel to be very productive and powerful, but also saw the need
of some programming knowledge to fully unleash the power of the language. It
allows for higher productivity and flexible reuse of designs.

In our opinion, Chisel is an exciting new technology that has the power to
free the field of digital design from the corset of traditional hardware descrip-
tion languages. It is by far not limited to processor design and thus should be
considered for all fields of digital hardware design.

References

1. Alon, E., Asanović, K., Bachrach, J., Nikolić, B.: Open-source EDA tools and IP,
a view from the trenches. In: Proceedings of the 56th Annual Design Automation
Conference 2019. ACM (jun 2019). https://doi.org/10.1145/3316781.3323481

2. Arcas-Abella, O., Ndu, G., Sonmez, N., et al.: An empirical evaluation of high-level
synthesis languages and tools for database acceleration. In: 2014 24th International
Conference on Field Programmable Logic and Applications (FPL). pp. 1–8. IEEE
(2014). https://doi.org/10.1109/FPL.2014.6927484

3. Bachrach, J., Vo, H., Richards, B., et al.: Chisel: constructing hardware in a scala
embedded language. In: DAC Design Automation Conference 2012. pp. 1212–1221.
IEEE (2012). https://doi.org/10.1145/2228360.2228584

Implementing SAR Backprojection in Chisel – A Field Report 13

4. Cholewa, F., Pfitzner, M., Fahnemann, C., Pirsch, P., Blume, H.: Synthetic aper-
ture radar with backprojection: A scalable, platform independent architecture
for exhaustive fpga resource utilization. In: 2014 International Radar Conference.
pp. 1–5. IEEE (2014). https://doi.org/10.1109/RADAR.2014.7060455

5. Curlander, J.C., McDonough, R.N.: Synthetic aperture radar, vol. 11. Wiley, New
York (1991)

6. Duersch, M.I.: Backprojection for synthetic aperture radar. Ph.D. thesis, Brigham
Young University (2013)

7. Im, J., Kang, S.: Comparative analysis between verilog and chisel in risc-v core de-
sign and verification. In: 2021 18th International SoC Design Conference (ISOCC).
pp. 59–60. IEEE (2021). https://doi.org/10.1109/ISOCC53507.2021.9614007

8. Kocik, P.B.: Pacoblaze - a synthesizable behavioral verilog picoblaze clone.
https://bleyer.org/pacoblaze/, accessed: 31/01/2022

9. Lennon, P., Gahan, R.: A comparative study of chisel for fpga design. In:
2018 29th Irish Signals and Systems Conference (ISSC). pp. 1–6. IEEE (2018).
https://doi.org/10.1109/ISSC.2018.8585292

10. Pedroni, V.A.: Finite state machines in hardware: theory and design (with VHDL
and SystemVerilog). MIT press (2013)

11. Richar Lin, Kevin Laeufer, C.M., et al.: Chiseltest: The official testing library for
chisel circuits. https://github.com/ucb-bar/chiseltest, accessed: 31/01/2022

12. Volder, J.E.: The cordic trigonometric computing technique. IRE
Transactions on Electronic Computers EC-8(3), 330–334 (1959).
https://doi.org/10.1109/TEC.1959.5222693

A Code examples

This appendix provides the code of an example design in Chisel and VHDL
to make our methodology more clear. Every line of the source code has been
classified according to Table 1. The code presented here is not part of the original
source used for this study, but is written in a similar style. In can be seen,
that especially the amount of boilerplate code (categories MB, BD, and SQ) is
reduced, but the Chisel code is also less verbose in general.

A.1 Chisel code

DEF
WS
IMP

WS
DEF
STR
BD
DEF

STR
WS
FUN

WS
FUN

WS
FUN
STR

package example

import chisel3._
import chisel3.util._

class Example(n : Int) extends Module
{

val io = IO(new Bundle {
val in_val = Input(UInt(n.W))
val out_val = Output(UInt(n.W))

})

val bypass = RegNext(io.in_val, init = 0.U)
val in_masked = io.in_val & "b111".U

val exampleInst = Module(new Example2())
exampleInst.io.data_in := in_masked

io.out_val := Mux(io.in_val > 5.U, exampleInst.io.data_out, bypass)
}

14 N. Rother et al.

A.2 VHDL code

IMP

WS
DEF
STR
DEF
STR

DEF

STR

WS
MB
BD

STR
BD

STR

DEF

STR
FUN

WS
FUN
STR
FUN
STR
FUN

STR
WS
SQ

WS
PH
STR
FUN

STR

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity example is
generic (

N : integer := 8
);
port (

clk : in std_logic;
reset : in std_logic;
in_val : in std_logic_vector(N-1 downto 0);
out_val : out std_logic_vector(N-1 downto 0)

);
end entity;

architecture rtl of example is
component example2
generic (N : integer);
port (

clk : in std_logic;
reset : in std_logic;
data_in : in std_logic_vector(N-1 downto 0);
data_out : out std_logic_vector(N-1 downto 0)

);
end component;
signal c_bypass, n_bypass : std_logic_vector(N-1 downto 0);
signal in_masked : std_logic_vector(N-1 downto 0);
signal comp_out : std_logic_vector(N-1 downto 0);

begin
in_masked <= in_val and std_logic_vector(to_unsigned(2#111#, N));
n_bypass <= in_val;

example_inst : example2
generic map (

N => N
) port map (

clk => clk,
reset => reset,
data_in => in_masked,
data_out => comp_out

);

SEQ : process(clk)
begin
if rising_edge(clk) then
if reset = ’1’ then

c_bypass <= (others => ’0’);
else

c_bypass <= n_bypass;
end if;
end if;

end process;

MUX : process (c_bypass, in_val, comp_out)
begin

out_val <= c_bypass;
if unsigned(in_val) > 5 then

out_val <= comp_out;
end if;

end process;
end rtl;

