© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. DOI: 10.1109/TVLSI.2017.2784807

Vector Processing-Aware
Advanced Clock-Gating Techniques for
Low Power Fused Multiply-Add

Ivan Ratkovi¢, Oscar Palomar, Milan Stani¢, Osman Unsal, Adrian Cristal, and Mateo Valero

Abstract—The need for power-efficiency is driving a rethink of design decisions in processor architectures. While vector processors

succeeded in the high-performance market in the past, they need a re-tailoring for the mobile market that they are entering now.
Floating point fused multiply-add, being a functional unit with high power consumption, deserves special attention. Although
clock-gating is a well-known method to reduce switching power in synchronous designs, there are unexplored opportunities for its
application to vector processors, especially when considering active operating mode. In this research, we comprehensively identify,
propose, and evaluate the most suitable clock-gating techniques for vector fused multiply-add units (VFU). These techniques ensure
power savings without jeopardizing the timing. We evaluate the proposed techniques using both synthetic and “real world”
application-based benchmarking. Using vector masking and vector multi-lane-aware clock-gating, we report power reductions of up to
52%, assuming active VFU operating at the peak performance. Among other findings, we observe that vector instruction-based
clock-gating techniques achieve power savings for all vector floating-point instructions. Finally, when evaluating all techniques together,
using “real world” benchmarking, the power reductions are up to 80%. Additionally, in accordance with processor design trends, we
perform this research in a fully parameterizable and automated fashion.

Index Terms—Digital Arithmetic, Clock-Gating, Low Power, Vector Processors, Fused Multiply-Add, Methodologies.

1 INTRODUCTION

OWER- and energy-efficiency have become the dominant

limiting factor to processor performance and have increased
significantly processor design complexity, especially when con-
sidering the mobile market. Being able to exploit high degrees
of data-level parallelism (DLP) at low cost in a power- and
energy-efficient way [2, 3, 4], vector processors are an attractive
architectural-level solution. Undoubtedly, the design goals for
mobile vector processors clearly differ from the performance-
driven designs of traditional vector machines [5]. Therefore,
mobile vector processors require a redesign of their functional
units (FU) in a power-efficient manner.

Clock-gating is a common method to reduce switching power
in synchronous pipelines [6, 7, 8, 9, 10]. It is practically a standard
in low-power design. The goal is to “gate” the clock of any
component whenever it does not perform useful work. In that
way, the power spent in the associated clock tree, registers and
the logic between the registers is reduced. It is the most efficient
power reduction technique for active operating mode'. Therefore,
the conditions under which clock-gating can be applied should be
extensively studied and identified. A widely used approach is to
clock-gate a whole FU when it is idle [6, 7]. A complementary

e [van Ratkovic is with Esperanto Technologies and Semidynamics. Oscar
Palomar is with University of Manchester. Milan Stanic¢ is with ASML.
Osman Unsal, Adrian Cristal, and Mateo Valero are with Barcelona
Supercomputing Center (BSC).

E-mail: ivan-srb@live.com, oscar.palomar@gmail.com,
stanic.milan@gmail.com, osman.unsal@bsc.es,
adrian.cristal@bssc.es, mateo.valero@bsc.es

e An earlier 8-page conference version of this paper appeared in
ISLPED [1]. This article extends the prior work with more background,
more explanations, upgraded methodology and new evaluations.

1. Active operating mode assumes a busy functioal unit.

and more challenging approach is clock-gating the FU or its sub-
blocks when it is active, i.e. operating at peak performance [8].
Furthermore there are characteristics of vector processors that
provide additional clock-gating opportunities (that we discuss in
Section 4).

Since fused multiply-add (FMA) units usually dissipate the
most power of all FUs, their design requires special attention.
Abundant floating-point (FP) FMA is typically found in vector
workloads such as multimedia, computer graphics or deep learning
workloads [11]. Although in the past FMA have been used
for high-performance, it recently have been included in mobile
processors as well [4, 12]. In contrast to high-performance vector
processors (e.g. NEC SX-series [13] and Tarantula [14]) that have
separated units for each FP operation, mobile vector processors’
resources are limited, thus, we typically have a single unit per
vector lane capable of performing multiple FP operations rather
than separate FP units [4]. Apart from that, additional advantages
of using FMA over separate FP adder and multiplier are: (1)
computation localization inside the same unit reduces the number
of interconnections (power- and energy-efficiency), (2) higher
accuracy (single, instead of two round/normalize steps), and (3)
improved performance (shorter latency).

In this paper, we investigate the design of a low power fully
pipelined double precision IEEE 754-2008 compliant FMA unit
for vector processors (VFU). In our main contribution, we compre-
hensively identify, propose, and evaluate (using both synthetic and
real world workloads) the most suitable clock-gating techniques
for VFU running at peak performance periods without jeopar-
dizing performance. We present three kinds of techniques: (1)
novel ideas to exploit unique characteristics of vector architectures
for clock-gating during active periods of execution (e.g. vector
instructions with a scalar operand or vector masking), (2) novel

montse aragues
Texto escrito a máquina
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/TVLSI.2017.2784807

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

ideas for clock-gating during active periods of execution that are
also applicable to scalar architectures but especially beneficial to
vector processors (e.g. gating internal blocks depending on the
values of input data), and (3) ideas that are already used in other
architectures and that we present as its application is beneficial
to vector processors, and for the sake of completeness (e.g. idle
VFU). Regarding the second and the third group of ideas, an
advantage of vector processing that extends the applicability of
clock-gating is that vector instructions last many cycles, so the
state of the clock-gating and bypassing logic remains the same
during the whole instruction. As a result, power savings typically
overcome the switching overhead of the added hardware (which is
often not a case in scalar processors).

To fulfill current trends in digital design that promote building
generators rather than instances [15, 16] we perform this research
in a fully parameterizable, scalable and automated manner. We de-
veloped an integrated architecture-circuit framework, that consists
of several generators, simulators and other tools, in order to join
architectural-level information (e.g. vector length or benchmark
configuration) with circuit-level outputs (e.g. VFU power and
timing measurements). We implement our clock-gating techniques
and generate hardware VFU models using a fully parameterizable
Chisel-based [17] FMA generator (FMAgen) and a 40nm low
power technology.

We discuss the related work individually for each of our clock-
gating techniques together with the description of the technique in
Section 4. Besides, in the context of alternative low power tech-
niques for FP units, interesting approaches have been proposed:
memoing (caching results that can be reused) and byte encoding
(computation performed over significant bytes). However, detailed
and accurate evaluation reveals that the actual savings are often
low and with an unaffordable area overhead [18].

In summary, the main contributions of the paper are:

« The first proposal of active clock-gating techniques for VFU.

(Section 4).

¢ An in-depth evaluation of the proposed techniques:

— Detailed power savings evaluation of limits of each pro-
posed technique separately using synthetic benchmarking
(Section 6.2).

— Realistic, combined, scenario evaluation using real
application-based benchmarking. We find the techniques
significantly reduce power with no performance loss (Sec-
tion 6.3).

« A fully automated, parameterizable, and scalable exploration
framework including our hardware and software (benchmark)

generators. (Section 5).

2 VECTOR PROCESSORS BACKGROUND

Vector processors operate on vectors of data within the same
instruction?. Vector instruction set architecture (ISA) provides
an efficient organization for controlling a large amount of com-
putation resources. Furthermore, vector ISAs emphasize local
communication and provide excellent computation/area ratios.
Vector instructions express DLP in a very compact form, thus
removing much redundant work (e.g. instruction fetch, decode,
and issue). For example, a vector FP FMA instruction (FPFMAV)
indicates the operation (FMA), three source vector registers and
one destination vector register. Thus, tuples of three elements, one

2. In contrast, a “traditional”, non-vector, processor can be defined as a
processor that operates on scalar values, hence known as scalar processors.

Fig. 1: A 2-lane, 4-stage VFU (MV;=EV;=64) executing FPFMAV
V3<-V0,V1,V2.

from each source register, are the inputs for the VFU, and the
result is written to the destination. All tuples can be processed
independently, and multiple elements could be accommodated in
a vector register.

The register file is designed so that a single named register
holds a number of elements. The entire architecture is designed to
take advantage of the vector style in organizing data. Additionally,
the memory system of vector processors allows efficient strided
and indexed memory access. The number of elements of a vector
register is denoted by the maximum vector length (MVy). Occa-
sionally fewer elements than the MV are used, which reduces the
effective vector length (E'Vy).

The vector execution model streamlines one vector register
element per cycle to a fully pipelined vector FU. As a result,
the execution time of a vector instruction is the start-up latency
(number of stages) of the vector FU plus the EV;. A common
technique to reduce this time is to implement multiple vector lanes
through replicated lock-stepped vector FU. Each lane accesses its
own “slice” of the vector register file, which reduces the need for
increasing the number of ports typically associated with a larger
number of FUs. Lock-stepping the lanes simplifies the control
logic and is power-efficient. These concepts are illustrated in Fig-
ure 1. Although lanes were proposed for increasing performance,
using multiple lanes can increase the energy-efficiency of a vector
architecture [3, 9, 10].

Additionally, an interesting feature that vector processors typi-
cally offer is a vector mask control. Masked operations are used to
vectorize loops that include conditional statements. Masked oper-
ation uses an MV -bit vector mask register (VMR) for indicating
which operations of the vector instruction are actually performed.
In other words, masked vector instructions operate only on the
vector elements whose corresponding entries in the VMR are ‘1°.

Conventional vector processors should not be confused with
single instruction multiple data (SIMD) multimedia extensions
such as AVX-512 [19] that are an alternative way to exploit DLP
and indicate operations to perform on multiple elements®. The
main difference of these extensions with a conventional vector
processor is that they exploit subword-SIMD parallelism and are
typically implemented with multiple vector FUs that operate on all
independent elements in parallel. Having a vector FU per element
to operate on all them in parallel would be inefficient for vector
processors because they operate on much longer vectors. Instead, a
vector FU is fully pipelined, and the elements of the vector register
are streamlined to the unit, one per cycle, possibly using a small
number of vector lanes.

3 FLOATING-POINT FUSED MULTIPLY-ADD
This section briefly describes FP representation and FP FMA.
Additional details about floating-point arithmetic are available

3. Vector processors are SIMD architectures in Flynn’s taxonomy [20],
although by SIMD we refer to such type of multimedia extensions.

TABLE 1: IEEE754 single and double precision formats. The
number of bits for each field is shown (bit ranges are in square
brackets, 0 = least-significant bit).

[[[Sign [Exponent | Fraction |
Single Precision (32 bits) 1[31] 8 [30-23] 23 [22-0]
Double Precision (64 bits) 1[63] 11 [62-52] 52 [51-0]

in [21, 22, 23].

3.1 Floating-Point Representation

Floating-point (FP) representation is the most common way to
represent real numbers in computers. It is based on the scientific
notation to encode numbers, M * 10E, where M and E are the
mantissa and the exponent respectively. For example, 123.4 could
be represented as 1.234 x 102, In the same way the binary number
10100.1, could be represented as 1.01001 2%,

IEEE754 floating-point numbers have three basic components:
the sign (S), the exponent (E), and the fraction (F). IEEE754
double and single precision floating-point formats are shown in
Table 1. The sign bit ‘1’ indicates negative, while ‘0’ indicates
positive numbers. The mantissa is composed of the fraction and an
implicit (hidden) leading ‘1’%. The exponent base (2) is implicit
and needs not be stored. The exponent field contains the sum
of bias (B) and true exponent (E7). The bias is 127 for single
and 1023 for double precision numbers. Therefore the value
represented by an IEEE754 FP number is: (1 —28) M % 2E7 =
(1—28)*(1+F)*2E-B,

Special value NaN is used for representing undefined values.
This happens when one (or more) operand is NaN or when the
operation is: (1) Q% oo, (2) c0 — o0, (3) 0/0, o/c0, (4) x mod 0, oo
mod y, or (5) \/x, x < 0. Another important special value is infinity
(£20). This happens when either input is o or in case of division
by zero. NaN and < handling are explained in [21].

3.2 Fused Multiply-Add (FMA)

The FMA unit executes the FMA instruction (FMA R <— A,
B, C) that implements R = A * B+ C. In contrast to a multipli-
cation followed by an addition, the FMA instruction assumes all
three operands at the same time. It was introduced for the first time
in IBM’s RS/600 in 1990 [24]. IEEE754-2008 standard defines
the FMA instruction to be computed initially with unbounded
range and precision, rounding only once to the destination for-
mat. For this reason, FMA is faster and more precise than a
multiplication followed by an addition. The FMA unit performs
operand alignment in parallel with the multiplication. This leads
to shorter latency (ng) compared to a multiplication followed by
an addition. Additionally, the FMA operation reduces the number
of interconnections between floating-point units and the number
of adders and normalizers. The FMA instructions help compilers
to produce more efficient code. Potential drawbacks are increased
latency of FPADD and FPMUL instructions (if executed on the
FMA) and a complex normalizer. A simplified list of steps of the
computations the FMA flow are:

1) Mantissas multiplication (M4 * Mp), exponents addition (E4 +
Ep), alignment of the addend’s mantissa (M¢), and calcu-
lation of the intermediate result exponent Egx = max(E, +
Eg,Ec).

4. An exception are subnormal numbers where the implicit bit is ‘0’.

3
TABLE 2: A classification of the proposed techniques using
two criteria: (1) Vector Processing-Specific or -Beneficial and (2)
operating mode (Active or Idle).

[i VP-specific [VP-beneficial |
Active MaskCG, ScalarCG, ImplCG InputCG
Idle n/a 1dleCG

2) Addition of the product (M4 * Mp) and aligned Mc.

3) Normalization of the addition result and exponent update.
4) Rounding.

5) Determination of the exception flags and special values.

A simplified implementation block diagram of the FMA unit
used in our research is shown on Figure 2. As we assume double
precision we need a 162-bit adder and a 53x53 multiplier. For
the adder and the multiplier, we choose Brent-Kung and Wallace
algorithms, respectively, as it is aligned with our findings in [9,
10]. The aligner performs shifting of the addend based on the
exponents difference in order to align it with the product (My *
Mp).

Floating point addition using the FMA unit is implemented
by setting the first operand to 1 (A = 1.0), while floating point
multiplication is implemented by setting the third operand to 0
(C=0.0).

4 PROPOSED CLOCK-GATING TECHNIQUES

This section presents the proposed clock-gating techniques for
VFU. The classification is presented in Table 2.

4.1 Scalar Operand Clock-Gating (ScalarCG)

We propose this technique to tackle the cases in which one or two
operands do not change during the vector instruction. Table 3 lists
the types of instructions during which ScalarCG is active. As only
one of all the supported vector instructions has all three vector
operands, often at least one operand is scalar. Only the FPFMAV
instruction, in which all operands are vectors, does not benefit
from this technique.

During these instructions the corresponding input register(s) of
scalar operand(s) should latch a new value only on the first clock
edge of the execution of the instruction, while during the rest of
the instruction, they can be clock-gated. To implement this, we
introduce the signals VS[2..0] (Figures 2), where VS[i] = 0 means
that the i-th operand is gated after the mentioned first cycle. VS
signals are derived from the instruction OPCODE. Deriving VS
signals from the OPCODE is done before the first pipeline stage
(as indicated in Figure 2). This generation (decoding) requires
regular comparators and they are not on the critical path as the
OPCODE is available at least one cycle in advance. Table 3 shows
corresponding VS signals for all the instructions.

4.2

This technique is an additional optimization of ScalarCG and aims
to exploit further the information given through the instruction
OPCODE for clock-gating, operand isolation, and computation
bypassing. In the case of addition and subtraction instructions,
such as FPADDV and FPSUBV, the 53x53 mantissa multiplier is

Implicit Scalar Operand Clock-Gating (ImpICG)

5. Without loss of generality, we assume that the compiler puts the scalar
multiplicand and addend always as the second and third operand in these
instructions, respectively.

INSTYPR, VS[2..0] |[A, B, C [expWidth-1.expWidth-3] PROCESSING | | VMR[63..00]| [INSTRUCTION ISSUE]

:'::(r{xging s'caliéf;a i C InputCG B MaskCG A ¢ IdleCG M:s"'(acll’;le
sty IMEN S S o (e’ ly_
ScalarCG, ImplCG ScalarCG, ImplCG ScalarCG, ImpICG
L. mpucg _ - e, T B g LA NPT REGITERS |
Cmantissa Bmantissa Amantissa 1 clk dela
ImplCG, InputCG
] R e S 1<
ALIGNER MULTIPLIER (wallace)
S A B I e]S
v))
EXPONENT TEADING
AND INCREMENTER <« ADDER 2RO PATION
1 iCQI\ITRQ[f,:::i::::i%::::i::%:::i::::i Y.<
NORMALIZER
ROUNDING

¢ exception flags

vOut

Fig. 2: A simplified block diagram of a 1-lane, 4-stage, VFU with all clock-gating techniques applied (A/ICG technique). Input signals
for the baseline without clock-gating are multiplicands (A, B), addend (C), rounding mode, and operation sign (op_sign) while output
signals are result (Out) and exception flags. Details regarding applied clock-gating techniques are explained in Section 4.

TABLE 3: Types of instructions where ScalarCG and ImplCG
is applicable. Capital letters indicate vector operands. Third and
fourth column shows the corresponding VS and instruction type
signals, respectively.

Operation | Vector Instruction VS[0..2] | INSTYP

Axb+C FPFMAVSV - a multiplicand is a | 101 0
scalar

AxB+c FPFMAVVS - the addend is a | 110 0
scalar

Axb+c FPFMAVSS - a multiplicand and | 100 0
the addend are scalars

A*xB+0 FPMULV - the addend ¢ is a | 110 1
scalar (0)

Ax14+C FPADDV - the multiplicand b is | 101 1
a scalar (1)

A x/+ blc | FPMULVS/FPADDVS - 2 out of | 100 1
3 operands are scalars’

not needed as it is known that one of the multiplicands is ‘1’, thus,
we can bypass, isolate, and clock-gate it providing the value of
the other multiplicand directly to the adder. There is an analogous
situation for FPMULV, since the the addend is known to be ‘0’. In
this case, the 162-bit wide adder, leading zero anticipation and the
aligning part are not needed.

To control bypassing, isolation, and clock-gating of the men-
tioned submodules, we introduce signal INSTYP (Figure 2 and Ta-
ble 3), generated from the instruction OPCODE, which indicates
whether an FPFMAV or an FPADDV/FPSUBV/FPMULV instruction
is executed. INSTYP together with VS signals provide information
of the instruction type. For example, INSTYP=1 and VS[0]=1 and
VS[2]=0 indicate that we have an FPMULV instruction while IN-
STYP=1, and VS[1]=0 indicate that we have an FPADDV/FPSUBV
instruction. Figure 3 shows the simplified block diagram of gated
FMA submodules when the aforementioned instructions are exe-
cuted. Circuitry added for implementing Impl/CG mostly consists
of clock gating cells and MUXs.

In the context of instruction-dependent techniques, there is
interesting research done in the past for scalar processors [8].
The main advantages of our /mpl/CG proposal over the mentioned

‘ Bmantissa < | Amantissa <

[MULTIPLIER watbhce) |

v

‘ FPMULV MUX_ FPADDV ‘

{

‘ FPADDV MUX

FPMULV ‘

Rest of FMA datapath

Fig. 3: Gated FMA submodules during FPMULV (dark grey) and
FPADDV (light grey) instructions in case of ImplCG.

research are: (1) we apply the technique for a variable number of
pipeline stages, (2) we evaluate power, timing, and area, and (3)
we propose the technique for vector processors.

The advantage of applying this technique on a vector processor
over other models (e.g. scalar) is that vector instructions last many
cycles, so the state of the related hardware (clock-gating logic
and MUXs) maintains the same state during the whole instruction.
Thus, there will be less switching overhead than in the scalar case.

4.3 Vector Masking and Vector Multi-Lane-Aware

Clock-Gating (MaskCG)

Here we target cases in which there are idle cycles during the
vector mask instructions (e.g. FPFMAV_MASK). Common cases in
which vector mask control is used are: (1) sparse matrix operations
and (2) conditional statements inside a vectorized loop. Addition-
ally, we assume the same mechanism is also used to reduce the
EVy to less than the MV;. We assume that the control logic will
detect and optimize this case, skiping the last elements of the
vector corresponding to the trailing Os of the mask. However, in
vector designs with ny, lanes, there will still be mod (EVy, ny) idle
lanes in the last cycle of the operation.

TABLE 4: InputCG - conditions under which a hardware block
of mantissa arithmetic computations and corresponding input
registers can be bypassed, isolated and clock-gated. The fourth
column shows three highest bits of the exponent that we use for
the detection.

Hardware block Condition Subtechnique | Exp[11..9]
Full computation The result is NaN. InputCGyan 111
Full computation The result is oo, InputCGy ¢ 110
Multiplier Multiplicand is ‘0’. InputCG 10 000
Adder and aligner Addend is ‘0. InputCG aqq0 000

The VMR directly controls the clock-gating of the whole
arithmetic unit during these idle cycles (Figure 2). Regarding the
internal implementation, we perform clock-gating at pipeline stage
granularity [25], so we prevent useless cycles inside the unit i.e.
the data is latched in subsequent stages only if necessary. Once the
Enable signal of the first pipeline stage’s register gets the value ‘1°,
this Enable signal propagates to the end of the pipeline, one stage
per cycle (Figure 2). In other words, the Enable signal of n-th
stage is actually the first stage’s Enable signal delayed by n— 1
cycles. This is implemented by adding a 1-bit wide, ng — 1 long
shift register that drives clock-gating cells.

To the best of our knowledge, there is no related work that
aims to exploit vector conditional execution with VMR to lower
the power of vector processors.

4.4

Here we identify the scenarios in which, depending on the input
data, a part of mantissa processing is not needed for the correct
result and thus, can be bypassed. We use a recoded format for
internal representation [26], that allows us to detect special cases
(explained in Section 3.1) and zeros with an negligible hardware
overhead: it requires inspection of only three most significant bits
of the exponent (fourth column in Table 4). Table 4 presents
the identified scenarios (conditions) in which a hardware block
of mantissa arithmetic computations and the corresponding input
registers can be bypassed, isolated and clock-gated.

The recoded format allows detection of relevant scenarios by
using simple 3-bit comparators. They are located at the inputs of
VFU (A, B, C Processing block on Figure 2)°. In that way we
assure the mentioned detection comparators are not on the VFU’s
critical path, i.e. gating information is available in time.

The added internal hardware is similar as for ImplCG. Having
zero addend is analogue to FPMULV instruction case (Figure 3).
Zero multiplicand allows gating and bypassing all the modules
from Figure 3 except the registers that holds operand C value as in
that case the final result is operand C. In case of NaN and infinity
there is no need for any computation as the result which has to be
at VFU output is already known (explained in Section 3.1) so we
can gate/bypass/isolate vast majority of FMA submodules.

There are many workloads whose data contain a lot of zero val-
ues [27, 28], thus can fairly benefit from the last two subtechniques
presented in Table 4. Although these techniques are applicable to
other architectures as well, their application to vector processors
is more efficient since the recurrent values are common within
the vector data, thus lowering the switching overhead in added
hardware (clock-gating logic and MUXs).

Input Data Aware Clock-Gating (InputCG)

6. Formally they are located one stage before, in the instruction decode
stage.

Vec. PARAMS. uKernelPARAMS.

uKernel
param-uBench
ARCHITECTURAL
‘ VectorSim ‘

‘ LEVEL

app-uBench FMAgen PARAMS.
INPUT

PARAMETERS

traces l 1
| tBenchGen | | FMAgen |
tBench sof \ v CIRCUT
‘ NCSim RC (Synthesis + STA) ‘
.ved i v l
| EDI PowerSim EDI (PnR + STA) |
VP Af |

Fig. 4: A simplified block diagram of the framework.

While both ImplCG and InputCG techniques aim to exploit
cases when the addend is ‘O’, in this case, there is no external
information of ‘0’ existence via VS signals, but it has to be
detected, and the gating has to be done on time.

As in the case of ImplCG, the research done in [8] presents a
related data-driven technique for scalar processors. The main ad-
vantages (that enable additional savings) of our InputCG technique
over the mentioned research are (1) detection of zero operands,
(2) distinction between oo and NaN, and (3) gating the mantissa
multiplier when processing NaNs.

4.5 Idle Unit Clock-Gating (IdleCG)

This technique clock-gates the VFU when no data is supplied to
it. The clock (un)gate decision is made in the instruction issue
pipeline stage, where it is known if an instruction will be sent to
the VFU in the next cycle (Figure 2). As indicated on Figure 2,
this technique uses the same internal clock-gating circuitry as
MaskCG. A similar approach is widely used in scalar processors
and is known as Deterministic Clock-Gating [6, 7]. Nonetheless,
this technique has more potential for power savings than its scalar
equivalent as it can benefit from the following vector specific
advantages:

o Vector FUs are used in burst fashion (with idle periods be-
tween bursts), since a single FMA/ADD/SUB/MUL instruction
processes all vector elements in consecutive cycles. This
makes clock-gating more efficient as the overhead of its
buffers is minimized.

« For high frequency designs, the issue stage may need an
additional cycle to determine if a unit will be used in the
next cycle. In a scalar processor, we would need to waste that
cycle once per each scalar FMA/ADD/SUB/MUL instruction. In
a vector processor, we waste this cycle EV;, — 1 times less.

Although here we focus lowering power of VFU when it is active,
we present this technique for the sake of completeness.

5 METHODOLOGY

A simplified block diagram of the framework is depicted in
Figure 4. It includes architectural- (uKernel, VectorSim, FMAgen)
and circuit-level (RC, EDI, NCsim) simulators and tools, as well as
an interfacing tool (tBenchGen). For various parameters we obtain
power (P) and area (A) of the VFU.

The first step is feeding VectorSim (described in Section 5.1)
with vectorized microbenchmarks (uBench) and vector parameters

(MVy, and number of vector lanes (nz)). Using these inputs
VectorSim generates data and timing traces for the vector floating
point operations. We use two kinds of uBenchs (both explained in
Section 5.2):

o param-uBenchs are generated by feeding the parameteriz-

able microkernel uKernel with its parameters.

o app-uBenchs are manually vectorized kernels extracted from

applications.

The synthesizable Verilog netlists are generated using FMA-
gen (described in Section 5.3). The output of architectural-level
simulations together with FMAgen parameters are transformed
into Verilog test benchmarks (tBenchs) using tBenchGen, a tool
that we developed. The most important inputs are: data and
time traces from VectorSim, vector and FMAgen (explained in
Section 5.3) parameters, clock cycle, and tBench length expressed
in the number of Verilog test vectors. As output, it provides tBench
for each lane separately, and its profiling report.

Afterwards, we use Cadence RTL Compiler (RC) to obtain
synthesized mapped netlists and to perform static timing analysis
(STA) of the VFU. All the designs are synthesized for the
minimum clock period that provides a safe slack on the critical
path. We optimize non-critical path logic for leakage using high-
Vry cells. We provide synthesized Verilog netlists together with
the physical layout information to the Cadence Encounter Digital
Implementation System (EDI) to get placed and routed designs
and to perform again STA. Additionally, the most critical paths
are verified with Cadence Spectre.

In order to verify the designs and extract resulting switching
activity information (written into Value Change Dump (vcd) files)
we simulate each VFU in Cadence NCSim for each matching
tBench with back-annotated delays using standard delay format
(sdf) files. Afterwards, we perform precise power estimation using
EDI PowerSim.

All designs are implemented using the mentioned low power
and low leakage TSMC40LP library for fypical operating con-
ditions (Vzg = 1.1V,temp = 25C). Since practically all existing
vector processors are developed using standard cells [29], we se-
lected this approach in our research. We use latch-based integrated
clock gating cells from the cell library. We set the tools to meet
timing constraints while prioritizing power over the area. All the
optimizations in all the tools are applied using high effort.

An initial target core density of 70% is selected as a sensible
balance between timing improvement and shrinking area for the
wide set of designs parameters that we use. We experimentally
found that, in place and route (PnR) stage in general, density
below 70% sometimes provides negligible faster timing for a
non-negligible area overhead while densities higher than 70%
can spoil timings noticeably as the tool suffers from the lack
of free space for optimizations and routing. Additionally, the
initial densities below 70% sometimes even cause DRC errors
and density (congestion) violations.

5.1 VectorSim

We built VectorSim based on the vector architecture library
(VALib) and the SimpleVector simulator [11], developed in our
group. VALIib is a library that implements vector instructions
and allows rapid manual vectorization and characterization of
applications. SimpleVector is a simple and very fast trace-based
simulator which helps to estimate the performance of a vector
processor. We took advantage of the fact that both tools have

TABLE 5: High-level VectorSim configuration.

Execution 32-bit in-order vector core; decoupled vector and
scalar core; vector chaining.

Vector Register | MVy: 16, 64, or 128 elements; Number of registers:

File 8.

Vector FU nr: 1,2, or 4; 1 32-bit arithmetic logic unit (ALU), 1

64-bit VFU; VFU latency (ng): 1-4.

L2 (direct access to L2, shared with scalar core):
IMB, 4-way, 128b cache line, hit latency: 7ns, miss
latency: 70ns; 1 load unit, 1 store unit.

Memory System

been designed to be easily extended with new instructions or
implementation alternatives. Therefore, we modified them to
satisfy our research goals and to enable its integration in our
exploration frameworks. Among other upgrades, we added a set
of vector floating-point FMA instructions to VectorSim. High-level
VectorSim configuration is presented in Table 5.

We setup VectorSim to model a decoupled 32-bit vector
machine with support for 64-bit floating point. The decoupled
execution model assumes separated in-order vector and scalar
execution units [14, 30, 31, 32]. They share instruction fetch and
decode, and they separate issue logic and functional units, allow-
ing in that way independent scalar execution. In-order execution is
common in low power processors due to its simplicity (e.g. some
of ARM Cortex-A architectures: cortexA7, cortexA8, cortexA32,
cortexA35, cortexAS53 [33]). It is more efficient in vector than
in scalar processing as in vector architectures the drawbacks of
in-order execution are diminished, especially if the vectors are
long. Additionally, we model chaining (vector equivalent of data
forwarding) and dead time elimination (allowing to reuse the ALU
immediately after the current instruction).

The vector execution engine is organized as ny, identical vector
lanes. Possible values of the number of lanes (n;) are 1, 2, and 4.
In our experiments, we do not examine more lanes as it would
not satisfy well a low power core budget’. Moreover, values that
we choose are typical in vector processor design [29]. Each lane
has a slice of the vector register file, a slice of the vector mask
file, 1 vector integer ALU, 1 VFU, and a private TLB. There is no
communication across lanes, except for gather/scatter, reduction,
and compress instructions. In addition to the vector ALU, each
lane also includes 1 logic unit that handles logic operations,
shifting and rotating. We assume the division is done in software,
since it is rare in vectorizable applications and the hardware
support is costly. Additionally, a control unit is needed to detect
hazards, both from conflicts for the functional units (structural
hazards) and from conflicts for register accesses (data hazards).

5.2 Benchmarking

This section explains two benchmarking methods that we employ
for an in-depth evaluation of the proposed techniques. The first
method has as goal to stress each of the techniques separately,
while the second tests all the techniques simultaneously and
provides the results for “real world” applications.

5.2.1 Fully Parameterizable Kernel - uKernel

We generate different param-uBenchs using the same uKernel. It is
a variant of the DAXPY loop: D = AxB+C. The inputs are random
values unless specified otherwise. uKernel parameters (Table 6)

7. The total number of functional units per core is in accordance with many
other low power processors [33, 34, 35].

TABLE 6: uKernel parameters.

Parameter Description
INSTYP It indicates whether we have FPFMAV (0) or
FPADDV and FPMULV (1) types of vector instruc-
tions.
ADD/MUL It indicates whether the instruction is addition (0)
or multiplication (1) if INSTYP=1.
MULS, ADDS | They indicate whether one of the multiplicands

and the addend are scalar values, respectively.

7

TABLE 7: Vectorized application-based microbenchmarks (app-
uBench). In brackets are given names of corresponding benchmark
suites.

Sphinx3 (SPEC2006-ref [36]) is a widely known speech recognition
system that includes both an acoustic trainer and various decoders, i.e.,
text recognition, phoneme recognition, N-best list generation, etc.

Facerec (SPEC2000-ref [36]) is an implementation of a face recognition
system.

Pm It indicates the probability that a bit in the VMR
during a vector operation is ‘0’. The probability
that one lane is idle in the last cycle is included in
Pm-
These indicate the probabilities that an operand is
o0, not a number (NaN), and 0, respectively.g.

Tir

Pinfs PNaN> PO

IR It indicates the Idleness Ratio, IR =

. TEg +Tir
where Tjg is the average pause length between
two subsequent vector instructions and Tgy is the
average execution time of vector instructions.

are used to determine the characteristics of the generated param-
uBench. There are parameters that modify the code (INSTYP,
ADD/MUL, MULS, ADDS), execution (IR, p,), and data (p,
PNans Po)- Listing 1 shows an example of uBench pseudocode
generated with the uKernel. We iterate param-uBench until we
reach 10000 test vectors to assure a representative sample, using
a uniform distribution. The aforementioned VS signals are derived
from INSTYP, ADD/MUL, MULS and ADDS parameters.

Listing 1: A simplified param-uBench pseudocode generated with
INSTYP=0, MULVS=0, ADDS=1, and pm>0.

for (i=0; i< length; i+=MVL) {
LDV VO <- A[i+0..63]
LDV V1 <- B[i+40..63]
LD R2 <= c
VMR <— MASK[1i+0..63]
FPFMAVVS_MASK V2 <- V0, V1, R2

STV D[i+0..63] <= V2

5.2.2 Application-Based Microbenchmarks - app-uBench

An app-uBench is a manually vectorized, floating-point intensive
microbenchmark (kernel) extracted from an application. It is a
representative part of the application and small enough (between
100k and 150k test vectors) to keep circuit simulation time
reasonable. We use four different app-uBenchs extracted from the
vectorized applications described in Table 7. We selected different
types of applications to make the results more general. These
applications are used in mobile devices and can also be found
in server workloads.

5.3 A Fully Parameterizable FMA Generator

We developed FMAgen as a hardware generator written in
Constructing Hardware in Scala Embedded Language (Chisel),
a hardware construction language aimed at designing hardware
by using parameterized generators [17]. Chisel is based on the
Scala programming language, and it supports a combination of
object-oriented and functional programming and good software
engineering techniques. We find it as an optimal way to design

8. To explore potential savings we use the whole range of probabilities,
including values that not represent a realistic case (e.g. 100% NaNs).

K-means (modified STAMP [37]) is one of the oldest and most
commonly used clustering algorithms. It is a prototype based clustering
technique defining the prototype in terms of a centroid which is consid-
ered to be the mean of a group of points and is applicable to objects in a
continuous n-dimensional space.

Disparity Map - computeSAD (San Diego Vision Benchmark [38])
computes depth information using dense stereo. It is used for robot vision
for stereo vision.

and test parameterizable FUs. On one side it provides the ability
to design and connect hardware blocks in the same way as in other
hardware description languages (HDL)s (Verilog or VHDL), while
on another side it is significantly more flexible (parameterizable)
than existing HDL and provides significantly faster testing. Chisel
allows users to code their designs in one source description and
target multiple backends without rewriting their designs. The
Chisel code is compact, due to its higher level of description than
traditional HDL. Not surprisingly, as a general problem of high-
level design approaches, a disadvantage of Chisel-based digital
design is that it sometimes has worse quality of results than hand-
crafted Verilog [39].

As a base for FMAgen, we take an open source floating-point
library - Berkeley Hardware Floating-Point Units (BHFPU) [26].
This open source library internally uses a recoded format (the
exponent has an additional bit) to detect and handle special
cases, such as subnormal numbers, more efﬁciently9. BHFPU
can produce FMAs for a configurable floating-point format, i.e.
arbitrary number of mantissa and exponent bits.

FMAgen generates synthesizable Verilog code of 1-lane VFUs
according to the input parameters (FMAgen parameters): Clock-
Gating technique type (CGyype), latency - number of pipeline
stages (ng), and the input floating-point format. The presented
advanced clock-gating techniques are compatible with each other
and can be arbitrarily combined. Therefore, possible values for
CGyype are any combination of the aforementioned clock-gating
techniques (IdleCG, MaskCG, ScalarCG, ImplCG, and InputCG),
including all of them together (A//CG) or none of them (NoCG).
A combination of clock-techniques that is discussed below is
ActiveCG, which combines all active clock-gating techniques from
Table 2 (MaskCG, ScalarCG, ImplCG, InputCG). ng can be an
arbitrary number. In this study, we put 4 stages as a reasonable
limit for a low power processor. Additionally, we set the VFU
input floating-point format to double precision.

Apart from the mentioned features that we added to BHFPU
(support for all the clock-gating techniques as well as support
for combining them arbitrarily, pipelining, and different pipelining
styles), we also added full IEEE754-2008 compliance [40] (which
introduces some timing overhead). A simplified block diagram of
modeled VFU is shown on Figure 2.

We paid special attention to ensure that clock-gating logic does
not create a critical timing path. The only circuitry that could
be on the critical path are bypassing multiplexors (see Figure 3).

9. We assume recoding is done when loading and storing to memory.

However, compared to the rest of FMA submodules, their delay
impact is fairly small. Additionally, we debug timing and apply
retime'® when necessary. Therefore, timing cost of added circuitry
is almost negligible, especially in case of 4-stage VFU (the most
relevant one).

Since we target low power, we do not incorporate any spec-
ulative hardware for improving performance, thus, no energy is
wasted on precomputed results that get discarded.

6 EVALUATION

This section presents an evaluation of the presented vector pro-
cessing aware clock-gating proposals in terms of power savings
(S) and area efficiency. Regarding power measurements, first
we evaluate each technique separately using the benchmarking
method from Section 5.2.1, and afterwards we evaluate combined
scenarios using the method explained in Section 5.2.2.

VFU designs with 1, 2, 3, and 4 stages are synthesized and run
at 0.45, 0.85, 1.1, and 1.3 GHz respectively. We assume a NoCG
VFU as a baseline. Its power in case of 2-lane VFU is 15.6, 30.9,
44.9, and 59.2 mW for 1, 2, 3, and 4 stages respectively.

We observe that the static (leakage) power is practically
negligible compared to dynamic power. For noCG it is around
0.01% ot total power in average. The leakage is highest for IdleCG
when it is up to 1%. It is practically negligible due to the following
reasons: (1) arithmetic topologies produce high switching (high
dynamic power), (2) the technology that we use has low leakage,
and (3) we optimize non-critical path logic for leakage using
high-Vry cells. Although it is negligible when considering active
operating modes (i.e. the execution inside a vector kernel), when
the execution is outside a vector Kernel (i.e. when the vector core is
inactive), the leakage might be additionally suppressed via power
gating.!! However, power gating is out of the scope of this research
since we target lowering power during active operating modes with
no performance loss.

We focus on 4-stage results as they are the most important
from the processor design perspective. Nonetheless, the 1-stage
results are presented as a reference and in most cases it has the
highest overhead in terms of power and area across all ng. For
the sake of simplicity, in the rest of this section we typically omit
results for 2- and 3-stage designs, but we observe these results
regularly scale between results for 1 and 4 stages.

6.1 Area Efficiency

Table 9 shows the area efficiency of the proposed techniques. Area
for a NoCG 2-lane VFU configuration is 36191, 38060, 40693, and
43419 um? for 1, 2, 3, and 4 stages respectively. Area overhead is
in some cases higher than expected because: (1) during synthesis,
we prioritized timing and power over area to assure power savings
without spoiling timing and (2) Chisel generated Verilog code
is sometimes less area efficient than equivalent manually written
Verilog [39]. However, we observe this overhead has a strong
decreasing trend as the ng increases.

6.2 Per Technique Power Analysis

Figure 5 and Table 8 reveal the results for each of the pre-
sented vector processing aware clock-gating proposals separately,

10. Critical path optimization by adjusting the position of the flip-flops.
11. The gate signal in this case could be generated from vector kill instruc-
tion KILLV (similar to VRIP instruction in Cray X1 instruction set [41]).

8

TABLE 8: Evaluation of power savings for ScalarCG and ImplCG
depending on the instruction type against the baseline (NoCG).
INSTYP, ADD/MUL, MULS, and ADDS uKernel parameters are
varied in these experiments to test all the instructions separately,
while the rest of parameters are zero.

[Vector Instruction [ns [[SscatarcG(%) [Simpica(%)]

FPFMAV i _3‘;@3 _33%
FPFMAVSV i _12}‘; _ii;;
FPFMAVVS zll 73‘11:3; 732:;3
FPFMAVSS i _123(7) _1;;;

FPADDV i _1222 ggg;
FPADDVS i qg;i Zg?g

FPMULV i 733‘:?3 725:2(1)
FPMULVS l]Sgg 2§8i

in terms of power savings for 4- and 1-stage VFU. In these
experiments we set MV, and the number of vector lanes (n;) to 64
and 2 respectively.

We observe that in most of the cases the savings grow with ng,
as more pipeline stages enable finer granularity of clock-gating.
Due to its higher practical importance, in the rest of the discussion
we focus on 4-stage results.

Figure 5 shows results for MaskCG, InputCG, and 1dleCG:

4 MaskCG. Due to its simplicity, this technique comes with
practically no overhead and the savings are between 8% and 52%
depending on the p,,. The saving attainable when p,,=1 (5=52%)
is the maximum possible power reduction for active 4-stage VFU.

4 InputCG. In order to isolate savings for each of the mentioned
subtechniques (Table 4), we test all them separately by asserting
the probabilities pj;,r, pyan, and po (Table 6) to the operands.
In InputCGe, InputCGyyy, and InputCG,,,10, the corresponding
probability affects operand A, while in InputCG,440 it affects
operand C, the addend.

The maximum saving of 48.3% is available when p;,r or pyan
is 1 (InputCG. and InputCGy,y). The same savings are available
when an operand is NaN or oo, as in both cases the same hardware
is clock-gated. The minimum probability py.v or pir (of any
operand) necessary for saving power is the spot where the savings
graph crosses the probability axis (16%).

When considering InputCG 50, the maximum saving is 40%,
and the minimum probability po (of any multiplicand) necessary
for saving power is 18.5%.

Much lower maximum saving (2.3%) is available when the
addend is a zero (InputCG,g40), as the adder consumes much less
power than the multiplier (around 5 times in average). However, by
combining these scenarios at the same time (which is reasonable to
assume in a real application case), higher savings would be avail-
able. Therefore, even though the savings associated with detecting
zero addend and clock-gating the adder and the corresponding
aligner and input registers are not enough to justify its existence
by itself, supporting this case improves overall savings of the
complete InputCG technique when a real, combined scenario is
considered. Since it shares some hardware with other InputCG
subtechniques, the overhead of adding it is less then the saving it

IdleCG , IR (a)
MaskCG , pm
—A— InputCG , Apinf

—— InputCG,
70H —=— InputCG ,

ApO
Cp0

60—+ —— -~ — 1t -~ ——F —t— =~ —

50

40

Savings [%]

30
20
10

0

-10

801 —— InputCG , Apnan — '~ — = — ~ A

T T T
IdleCG, IR
MaskCG , pm

—A— InputCG , Apinf
80—— InputCG, Apnan| —
=
|

InputCG ,
InputCG ,

60 — 4+ — ==~ — 71—~

50 — 5 - - — = — -

30} -

201 - -

|
|
|
|
¥
|
gof - L oL :77
|
|
|
|
|
|

101 XA~ - — 1+ ———— - —

-0+ - L =L

0 I I I
00 01 0.2 03 04 05 06 0.7 08 09

Probability

—20E 2 I I | | | |
00 01 02 03 04 05 06 0.7 08 09

Probability

Fig. 5: Evaluation of power savings over the baseline (NoCG), as a function of uKernel parameters for IdleCG, MaskCG, and InputCG
for 4-stage (a) and 1-stage (b) 2-lane VFU. For each graph, only one uKernel probability parameter from Table 6 is assumed to be
variable while other parameters are zero. This is indicated in the legend with technique, probability pairs.

TABLE 9: Area efficiency of the proposed clock-gating techniques against the baseline (NoCG) for ng =1 and 4.

[CGype [ns][1dleCGIMaskCG | ScalarCG | ImplCG | StageCG | InputCG | ALLCG |
Ratio(%) |L 98.1 153.8 184.6 98.1 129.0 185.4
MK 96.3 104.6 1254 96.9 107.3 148.0

can achieve.

The power overhead of the added hardware can be identified
in the case when the probability is 0, i.e. when InputCG is
never active. The cost is a bit higher than expected taking into
account the amount of additional logic that we include (detecting,
bypassing, and clock-gating logic). In line with our discussion
of area results, Chisel generated designs sometimes suffer from
unexpected overhead, and our initial experiments confirm it.
However, we observe it significantly decreases as ng increases,
thus, we expect this to be negligible for high ng.

4 IdleCG. This technique provides savings between 8% and
95.3%. Although it uses the same hardware as MaskCG, the
savings are higher in average because here the input data is stable,
while in MaskCG it is not, thus incurring some switching albeit
the first pipeline stage is gated. The saving attainable when /R=1
(95.3%) is the maximum possible power reduction when the VFU
is idle.

The results for ScalarCG and ImplCG are shown in Table 8:

4 ScalarCG. Savings are available for all the combinations of
INSTYP, ADD/MUL, MULS, and ADDS uKernel parameters, i.e.
for all vector floating point instructions. Not surprisingly, as the
internal multiplier dissipates more power than the adder, latching
multiplicand’s mantissas provides more savings than latching
addend’s mantissa (FPFMAVSV and FPADDV vs. FPFMAVVS and
FPMULV).

4 ImplCG. This technique significantly improves savings for
FPADDV/FPMULV instructions compared to ScalarCG. The high-
est savings, and the largest improvements compared to ScalarCG,
are available for FPADDV and FPADDVS instructions as in these

cases the multiplier is gated. As for ScalarCG, there are savings
for all vector floating-point instructions. Incidentally, we can
observe that for FPADDV and FPADDVS power savings are higher
for 1- than for 4-stage VFU. The reason is that the mantissa
multiplier contributes a higher percentage of total power when
only one pipeline stage is present.

6.3 Application-Based Combined Power Evaluation

Table 10 shows the evaluation of the presented clock-gating pro-
posals as well as workload profiling results for all combinations of
app-uBench and vector parameters (MV,, and n;), while figures 6,
7, and 8 visualize the key metrics from the table. For the reasons
explained above, we focus on VFUs with 4 stages. The results
shown in the table and the figures are:

« § - power savings percentage,

o Active Execution / Idle Execution - Active/ldle VFU execu-
tion, i.e percentage of app-uBench execution time that VFU
is active/idle,

e 1dleCG, ScalarCG, ImplCG, InputCG and InputCG subtech-
niques efficiency - percentage of execution time that the
corresponding technique is used,

e AlICG efficiency - percentage of execution time that any
clock-gating technique is used,

o ActiveCG efficiency - percentage of execution time that any
active clock-gating technique is used, and

o ActiveExeCG efficiency - percentage of active VFU execution
that any active clock-gating technique is used. Therefore, it
disregards idle cycles and considers only the cycles in which

there is a vector instruction executing in the unit, rather than
the total execution time like in ActiveCG.

We show the profiling results as well to understand the VFU
behavior and where the savings come from. Data for MaskCG,
InputCGgy, and InputCGi,y are not present in the Table 10
as they are 0%. The reason is that the selected app-uBenchs
do not have vector mask instructions. Also, none of the input
values are NaNs nor infinities. However, abundant vector mask
instructions could be found in any vector workload that has
conditional execution [42], so in this kind of workloads we can
expect fair savings as the result of MaskCG technique. Regarding
NaNs and infinities, for some other applications and/or input data
sets their occurrence might be more common, thus, the benefit
of InputCGnan and InputCGi,r subtechniques will be visible.
Common cases of NaN and infinity processing are explained in
[21].

Figure 6 and Table 10 reveal that AIICG efficiency is very high,
i.e. clock-gating is often used almost 100% of total execution time.
This is a consequence of the fact that the proposed clock-gating
techniques are used during both idle and active VFU execution
(i.e. both ActiveCG and IdleCG are used). Due to this very high
AlICG efficiency, the power savings are also fairly high. We
observe that power savings are available for practically all the
combinations of app-uBenchs and vector parameters. The highest
savings are obtained for computer vision app-uBenchs (Facerec
and Disparity) and are between 60% and 80%. The only case
in which the techniques do not result in savings is K-Means,
MV;=16 and n;=4. There are two reasons for that: (1) the clock-
gating efficiency (i.e. the percentage of execution time that any
clock-gating technique is used) is not high and (2) with n;=4 and
MV; =16 the effective vector length per lane is 4 which makes
ImplCG (the most used technique in this case) less fruitful since it
is used only 3 consecutive cycles per vector on each lane (which as
a result has more switching activity in clock-gating and bypassing
logic). Additionally, from Table 10, we observe that presented
novel ideas/approaches (ActiveCG) provide significant savings in
addition to the standard one (IdleCG).

Figure 7 shows that ratio of active and idle VFU execution
varies across app-uBenchs and vector parameters, and explains the
nature for each combination of parameters. There are situations in
which the VFU is most of the time active and vice versa. However,
we can notice there is a trend that vector processors with MV, of
128 have its VFU most of the time active (busy) as with longer
vectors the effects of cache misses are diminished. IdleCG is used
whenever the VFU is idle, thus, IdleCG efficiency inside these
idle periods is 100%. When considering active VFU execution,
the efficiency (ActiveExeCG) varies across the app-uBenchs and
vector parameters and is shown on Figure 8. As we can observe
from the figure, a very high percentage of the time at least one
of the active clock-gating techniques is used and depending on
the benchmark it goes up to 100%. Table 10 shows that in all
these cases the used techniques are some variants of ImplCG'?
and InputCG. Also, there are cases when these techniques overlap.

ActiveCG techniques can arbitrarily overlap and there are
two potential kinds of overlaps. The first group of overlaps
refers to the cases when the techniques jointly produce higher
savings than each technique separately. This happens when the
techniques target different hardware. For example, when we have
a zero addend inside a FPADDV instruction, InputCGgqq0 gates

12. As explained before, ScalarCG is integrated in ImplCG.

10

the mantissa adder and the aligner, while ImpICG gates the input
register of the A operand and the mantissa multiplier. The second
group of overlaps happens when one technique gates just part
of the hardware that another technique gates. In these cases, the
savings are equal to the savings of the technique that has a larger
scope. For example, if the corresponding bit in VMR is ‘0’ and
the current instruction is FPFMAVVS, the savings are going to be
equal to the savings achieved by MaskCG alone.

7 CONCLUSIONS

In this research, we extensively identify, propose, and evaluate the
most suitable clock-gating techniques for vector FMA (VFU) con-
sidering peak performance, and focusing on the active operating
mode. We propose techniques that are either (1) completely novel
ideas to lower the power of VFU using active clock-gating (e.g.
vector instructions with scalar operand or vector masking) or (2)
ideas that exist in some form in scalar architectures and that we
extend to achieve more savings by taking advantage of vector
processing characteristics. We find that each of the proposed
optimizations achieves power reductions while maintaining the
performance. As a consequence of this fact, sometimes an area
increase is observed.

An in-depth evaluation is performed, and each of the tech-
niques is evaluated separately as well as combined with other
techniques. For this evaluation, both synthetic and real application-
based benchmarks are employed. We considered a variety of
benchmarks with different behavior to assure a fair evaluation and
general conclusions.

In the case of active 4-stage vector fused multiply-add unit
(VFMA) with 2 lanes actively operating at the peak performance,
power savings are up to 52% are available when using a single
technique. Regarding the vector instruction-dependent techniques
that we propose, we observe savings for all floating-point vector
instructions.

Testing all the techniques together and using real application
benchmarks (especially computer vision ones) reveals fairly high
power reductions that go up to 80%. Clock-gating efficiency
(percentage of time that some of the proposed techniques are
used) is quite high, often close to 100%. When considering the
efficiency of only active clock-gating techniques, this number is
usually between 70% and 100%. We observe that these novel
ideas/approaches (applied when VFU is active) provide significant
savings in additional to the standard ones (idle VFU). Moreover,
we notice the trend that savings for the proposed techniques rise
with the number of pipeline stages.

We performed this research in a fully parameterizable, scalable
and automated manner using simulators and tools at many levels.
Although targeting floating-point FMA, as the major consumer
among all functional units, similar low power techniques as well
as the framework could be re-tailored for other vector functional
units as well. We would also like to stress that the combination
of Chisel-based generators and state-of-the-art synthesis and PnR
tools is a powerful tool for flexible hardware generation with
Verilog-like quality of results.

REFERENCES

[1] 1. Ratkovié, O. Palomar, M. Stani¢, O. Unsal, A. Cristal,
and M. Valero, “A Fully Parameterizable Low Power Design
of Vector Fused Multiply-Add Using Active Clock-Gating

11

TABLE 10: Power savings and clock-gating statistics. All the results are expressed in percentages.

app- MVL| nL S AlICG Active Exe ActiveCG ActiveExeCG Idle Exe, 1dleCG ScalarCG/ImplCG InputCG InputCG,,.0 Input,gq0
uBench
1 70.32 98.96 16.68 15.63 93.74 83.32 15.63 7.50 0.00 7.50
16 2 73.99 98.83 9.36 8.19 87.49 90.64 8.19 4.21 0.00 4.21
Facerec 4 || 7648 | 9877 491 3.68 74.99 95.09 3.68 221 0.00 221
1 59.84 99.65 44.33 43.98 99.21 55.67 43.98 19.90 0.00 19.90
128 2 65.50 99.55 28.81 28.35 98.43 71.19 28.35 12.93 0.00 12.93
4 71.04 99.47 16.83 16.30 96.87 83.17 16.30 7.55 0.00 7.55
1 37.54 84.96 49.48 3443 69.59 50.52 32.06 17.67 2.37 15.29
16 2 38.61 85.05 43.04 28.10 65.27 56.96 26.03 15.37 2.07 13.30
Sphinx3 4 46.13 87.83 28.07 15.90 56.63 71.93 14.55 10.02 1.35 8.68
1 30.55 82.25 69.67 51.92 74.53 30.33 48.31 25.27 3.61 21.66
128 2 22.09 76.98 88.49 65.47 73.98 11.51 60.89 32.10 4.58 27.52
4 23.43 77.70 82.26 59.96 72.89 17.74 55.70 29.84 4.26 25.58
1 75.55 97.85 38.41 36.26 94.41 61.59 36.26 25.90 0.00 25.90
16 2 74.20 97.10 24.38 21.49 88.11 75.62 21.49 16.44 0.00 16.44
Disparity 4 73.17 96.69 13.51 10.20 75.52 86.49 10.20 9.11 0.00 9.11
1 79.69 100.00 81.38 81.38 100.00 18.62 82.60 60.81 0.00 60.81
128 2 78.90 100.00 76.24 76.24 100.00 23.76 76.77 56.97 0.00 56.97
4 77.71 99.45 61.60 61.05 99.10 38.40 61.05 46.03 0.00 46.03
1 19.56 60.22 76.26 36.49 47.84 23.74 35.87 0.61 0.00 0.61
16 2 4.61 47.97 94.05 42.02 44.68 5.95 41.27 0.76 0.00 0.76
K-Means 4 ||-11.24 | 4500 88.93 33.93 38.15 11.07 33.21 071 0.00 0.71
1 24.62 60.53 96.44 56.97 59.07 3.56 50.46 6.51 0.00 6.51
128 2 2291 58.65 100.00 58.65 58.65 0.00 51.90 6.75 0.00 6.75
4 20.77 57.81 100.00 57.81 57.81 0.00 51.05 6.75 0.00 6.75
100% —
W Power Savings (S)
80% —+———F1——— —— ¥ —— — = = =
? AIICG Efficiency
0% 0« 0 0 — — —
40% —E— — —
20% - - B
0% -
1124|1241 /2|4 /1|2 /4122|4224 /1|2 /|12 4
20% | | | | | | | \
° 16 128 | 16 128 | 16 128 | 16 128 |
Facerec ‘ Sphinx3 ‘ Disparity ‘ K-Means ‘
N,, MVL, app-uBench

(2]
(31

(4]

Fig. 6: Power savings (S) and AlICG efficiency.

Techniques,” in Proceedings of the International Symposium
on Low Power Electronics and Design (ISLPED), 2016, pp.
362-367.

K. Asanovié¢, “Vector Microprocessor,” 1998, PhD Thesis,
UC Berkeley.

Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Bat-
ten, and K. Asanovié, “Exploring the Tradeoffs Between Pro-
grammability and Rfficiency in Data-Parallel accelerators,”
in Proceedings of the 38th Annual International Symposium
on Computer Architecture (ISCA), 2011, pp. 129-140.

B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevti¢, B. Keller,
S. Bailey, M. Blagojevi¢, P.-F. Chiu, H.-P. Le et al., “A RISC-

(3]

(6]

V Vector Processor With Simultaneous-Switching Switched-
Capacitor DC-DC Converters in 28 nm FDSOIL,” IEEE
Journal of Solid-State Circuits, vol. 51, no. 4, pp. 930-942,
2016.

R. Espasa, M. Valero, and J. E. Smith, “Vector Architec-
tures: Past, Present and Future,” in Proceedings of the 12th
International Conference on Supercomputing (SC), 1998, pp.
425-432.

H. Li, S. Bhunia, Y. Chen, T. Vijaykumar, and K. Roy, “De-
terministic Clock Gating for Microprocessor Power Reduc-
tion,” in Proceedings of the Ninth International Symposium
on High-Performance Computer Architecture (ISCA), 2003,

(71

(8]

(9]

[10]

(1]

12

100%
g EEEE o o BN BE BE BE BE BE BN BE BE BE BE BE BE BE BE BB
E 80% +— — — — — — — — —
I ENCIEE Bn B B B B BE B BN BE
3 60% - — — 11—
2 50% 88 = 8
T 40% -
N
= 30% -
E 20% - Idle Execution
[=] . .
Z 10% M Active Execution
0% -
112412
16‘128‘16‘128‘16‘128‘16‘128‘
Facerec ‘ Sphinx3 ‘ Disparity ‘ K-Means ‘
N, MVL, app-uBench
Fig. 7: ActiveCG/IdleCG - Active/ldle VFU execution.
100%

90%

80%

70%
60%
50%
40%
30%
20%
10%

0%

Normalized Active VFU Execution Time

Facerec ‘

Sphinx3

N, MVL, app-uBench

Disparity ‘

Fig. 8: ActiveExeCG efficiency.

pp. 113-122.

N. Mohyuddin, K. Patel, and M. Pedram, “Deterministic
Clock Gating to Eliminate Wasteful Activity due to Wrong-
Path Instructions in Out-Of-Order Superscalar Processors,”
in Proceedings of IEEE International Conference on Com-
puter Design (ICCD), 2009, pp. 166—172.

J. Preiss, M. Boersma, and S. M. Mueller, “Advanced Clock-
gating Schemes for Fused-Multiply-Add-Type Floating-
Point Units,” in Proceedings of 19th IEEE Symposium on
Computer Arithmetic (ARITH), 2009, pp. 48-56.

I. Ratkovié, O. Palomar, M. Stanié¢, O. S. Unsal, A. Cristal,
and M. Valero, “On the Selection of Adder Unit in Energy
Efficient Vector Processing,” in Proceedings of 14th Inter-
national Symposium on Quality Electronic Design (ISQED),
2013, pp. 143-150.

I. Ratkovi¢, O. Palomar, M. Stani¢, M. Duric, D. Pesi¢,
O. Unsal, A. Cristal, and M. Valero, “Joint Circuit-System
Design Space Exploration of Multiplier Unit Structure for
Energy-Efficient Vector Processors,” in Proceedings of IEEE
Computer Society Annual Symposium on VLSI (ISVLSI),
2015, pp. 19-26.

M. Stanic, O. Palomar, I. Ratkovi¢, M. Duric, O. Unsal, and
A. Cristal, “VALib and SimpleVector: Tools for Rapid Initial
Research on Vector Architectures,” in Proceedings of the
11th ACM Conference on Computing Frontiers (CS), 2014,

[12]
[13]

(14]

[15]

[16]

(17]

(18]

p-7.

(2016) http://arm.com/.

S. Momose, “NEC Vector Supercomputer: Its Present and
Future,” in Sustained Simulation Performance. Springer,
2015, pp. 95-105.

R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gra-
munt, I. Hernandez, T. Juan, G. Lowney, M. Mattina et al.,
“Tarantula: a Vector Extension to the Alpha Architecture,”
in Proceedings of 29th Annual International Symposium on
Computer Architecture (ISCA), 2002, pp. 281-292.

O. Shacham, O. Azizi, M. Wachs, W. Qadeer, Z. Asgar,
K. Kelley, J. P. Stevenson, S. Richardson, M. Horowitz, B.-
W. Lee et al., “Rethinking digital design: Why design must
change,” Micro, IEEE, vol. 30, no. 6, pp. 9-24, 2010.

B. Nikolic, “Simpler, more efficient design,” in Proceedings
of 41st European Solid-State Circuits Conference (ESS-
CIRC), 2015, pp. 20-25.

J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avizienis, J. Wawrzynek, and K. Asanovié, “Chisel:
Constructing Hardware in a Scala Embedded Language,” in
Proceedings of the 49th Annual Design Automation Confer-
ence (DAC), 2012, pp. 1216-1225.

K. R. Gandhi and N. R. Mahapatra, “A Study of Hardware
Techniques that Dynamically Exploit Frequent Operands to
Reduce Power Consumption in Integer Function Units,” in

Proceedings of 21st International Conference on Computer
Design (ICCAD), 2003, pp. 426—428.

[19] (2016) https://software.intel.com/en-us/blogs/2013/avx-512-
instructions/.

[20] M. J. Flynn, “Very High-Speed Computing Systems,” Pro-
ceedings of the IEEE, vol. 54, no. 12, pp. 1901-1909, 1966.

[21] D. Goldberg, “What Every Computer Scientist Should Know
About Floating-Point Arithmetic,” ACM Computing Surveys
(CSUR), vol. 23, no. 1, pp. 5-48, 1991.

[22] P. Behrooz, “Computer arithmetic: Algorithms and hardware
designs,” Oxford University Press, 2000.

[23] M. Ercegovac and T. Lang, Digital Arithmetic.
Kaufmann, 2003.

[24] E. Hokenek, R. K. Montoye, and P. W. Cook, “Second-
Generation RISC Floating Point with Multiply-Add Fused,”
Solid-State Circuits, IEEE Journal of, vol. 25, no. 5, pp.
1207-1213, 1990.

[25] T. Xanthopoulos and A. P. Chandrakasan, “A Low-Power
IDCT Macrocell for MPEG-2 MP@ ML Exploiting Data
Distribution Properties for Minimal Activity,” Solid-State
Circuits, IEEE Journal of, vol. 34, no. 5, pp. 693-703, 1999.

[26] (2016) https://github.com/ucb-bar/berkeley-hardfloat/.

[27] S. Balakrishnan and G. S. Sohi, “Exploiting Value Locality
in Physical Register Files,” in Proceedings of 36th Annual
IEEE/ACM International Symposium on Microarchitecture
(2003). 1EEE, 2003, pp. 265-276.

[28] M. Ekman and P. Stenstrom, “A Robust Main-Memory Com-
pression Scheme,” in ACM SIGARCH Computer Architecture
News, vol. 33, no. 2, 2005, pp. 74-85.

[29] J. Hennessy, D. Patterson, and K. Asanovi¢, Computer Ar-
chitecture, Appendix G. MK, 2011.

[30] D. Abts, A. Bataineh, S. Scott, G. Faanes, J. Schwarzmeier,
E. Lundberg, T. Johnson, M. Bye, and G. Schwoerer, “The
Cray BlackWidow: a Highly Scalable Vector Multiproces-
sor,” in Proceedings of the ACM/IEEE conference on Super-
computing (SC), 2007, p. 17.

[31] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Sto-
janovic, and K. Asanovic, “A 45nm 1.3 GHz 16.7 double-
precision GFLOPS/W RISC-V processor with vector accel-
erators,” in 40th European Solid State Circuits Conference
(ESSCIRC), 2014, pp. 199-202.

[32] B.Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevtic, B. Keller,

S. Bailey, M. Blagojevic, P.-F. Chiu, H.-P. Le et al., “A

RISC-V Vector Processor with Tightly-Integrated Switched-

Sapacitor DC-DC Converters in 28nm FDSOL” in Proceed-

ings of Symposium on VLSI Circuits. 1EEE, 2015, pp. C316-

C317.

(2016) https://www.arm.com/products/processors /cortex-a.

(2016) http://www.anandtech.com/show/6936/intels-

silvermont-architecture-revealed-getting-serious-about-

mobile.

(2016) https://www.qualcomm.com/products/

snapdragon/cpu-specifications.

[36] J. L. Henning, “SPEC CPU2006 enchmark Descriptions,”
ACM SIGARCH Computer Architecture News, vol. 34, no. 4,
pp. 1-17, 2006.

[37] S. K. Rethinagiri, O. Palomar, A. Sobe, G. Yalcin, T. Knauth,
R. T. Gil, P. Prieto, M. Schneegal3, A. Cristal, O. Unsal
et al., “ParaDIME: Parallel Distributed Infrastructure for
Minimization of Energy for Data Centers,” Microprocessors
and Microsystems, vol. 39, no. 8, pp. 1174-1189, 2015.

Morgan

(33]
[34]

[35]

13

[38] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “SD-VBS: The San Diego vi-
sion benchmark suite,” in Proceedings of IEEE International
Symposium on Workload Characterization (IISWC), 2009,
pp. 55-64.

[39] O. Arcas-Abella, G. Ndu, N. Sonmez, M. Ghasempour,
A. Armejach, J. Navaridas, W. Song, J. Mawer, A. Cristal,
and M. Lujan, “An Empirical Evaluation of High-Level
Synthesis Languages and Tools for Database Acceleration,”
in Proceedings of 24th International Conference on Field
Programmable Logic and Applications (FPL), 2014, pp. 1-
8.

[40] I. S. Committee et al., “754-2008 IEEE standard for floating-
point arithmetic,” IEEE Computer Society Std, vol. 2008,
2008.

[41] R. M. Russell, “The cray-1 computer system,” Communica-
tions of the ACM, vol. 21, no. 1, pp. 63-72, 1978.

[42] J. E. Smith, G. Faanes, and R. Sugumar, “Vector Instruction
Set Support for Conditional Operations,” in Proceedings
of the 27th Annual International Symposium on Computer
Architecture (ISCA), 2000, pp. 260-269.

Ivan Ratkovié¢ received the BS and MS degree
in Electrical Engineering and Computer Science
from the University of Belgrade (Serbia) and
the PhD degree in Computer Architecture from
Polytecnic University of Catalonia (Spain). He
is currently CPU R&D engineer at Esperanto
Technologies and Semidynamics. In the past, Dr.
Ratkovi¢ was involved with BSC Microsoft Re-
search Center, Barcelona Supercomputing Cen-
ter, and Berkeley Wireless Research Center.
His research interests include low power design,
computer architecture, vector and SIMD processors, digital arithmetic,
VLSI design flows, and embedded systems.

Oscar Palomar received a B.S. in Computer
Science and PhD degree on Computer Architec-
ture from the Polytechnic University of Catalonia
(UPC), Spain. He joined the Computer Architec-
ture for Parallel Paradigms research group at the
Barcelona Supercomputing Center as a post-
doc. There he led research on vector architec-
ture and worked on the hardware architecture
workpackage in the ParaDIME project. He was
granted a Newton International Fellowship from
the Royal Society, joining the Advanced Pro-
cessor Technologies research group at the University of Manchester.
His current research interests are computer vision algorithms, FPGA
acceleration, low power computer architectures and vector processors.

Milan Stani¢ received the BS degree in Elec-
trical Engineering and Computer Science from
the University of Belgrade (Serbia) and the MS
and PhD degree in Computer Architecture from
Polytecnic University of Catalonia (Spain). He
worked as a researcher at Barcelona Supercom-
puting Center and he is currently software de-
veloper at ASML His research interests include
Computer architecture, SIMD and vector archi-
tectures, high-performance computing, many-
core and heterogeneous architectures, workload
characterization, simulation, ISA and microarchitecture development,
power and energy efficiency, code optimization.

Osman Sabri Unsal is co-leader of the Archi-
tectural Support for Programming Models group
at the Barcelona Supercomputing Center. In the
past, Dr. Unsal was involved with Intel Micropro-
cessor Research Labs, BSC Microsoft Research
Center, and Intel/BSC Exascale Lab. He holds
BS, MS, and PhD degrees in electrical and com-
puter engineering from Istanbul Technical Uni-
versity, Brown University, and University of Mas-
sachusetts, Amherst, respectively. His research
interests are in computer architecture, low-power
and energy-efficient computing, fault-tolerance and transactional mem-
ory.

Adrian Cristal received the licenciatura in Com-
puer Science from Universidad de Buenos Aires
(FCEN) in 1995 and the PhD. degree in Com-
puter Science in 2006, from the Universitat Po-
litecnica de Catalunya (UPC), Spain. From 1992
to 1995 he has been lecturing in Neural Net-
work and Compiler Design. In UPC, from 2003
to 2006 he has been lecturing on computer
organization. Currently, and since 2006, he is
researcher in Computer Architecture group at
Barcelona Supercomputing Center. He is cur-
rently co-manager of the Computer Architecture for parallel paradigms.
His research interests cover the areas of microarchitecture, multicore
architectures, and programming models for multicore architectures. He
has published around 60 publications in these topics and participated
in several research projects with other universities and industries, in
framework of the European Union programmes or in direct collaboration
with technology leading companies.

Mateo Valero is full professor at Computer Ar-

chitecture Department at the Universitat Politc-

nica de Catalunya and the Director Barcelona

: 3 Supercomputing Center. His research focuses

F G on high-performance computer architectures.

; Published 700 papers. Served in organization

/ of 300 international conferences. Main awards:

A Seymour Cray, Eckert-Mauchly, Harry Goode,

¥ /) ACM Distinguished Service, "Hall of Fame”

) member IST European Program, King Jaime | in

research, two Spanish National Awards on Infor-

matics and Engineering. He is Honorary Doctorate by 9 Universities. He

is a fellow of IEEE and ACM and is and Intel Distinguished Research
Fellow. He is member of 5 academies.

14

