76 research outputs found

    Novel Configurations of Ionic Polymer-Metal Composites (IPMCs) As Sensors, Actuators, and Energy Harvesters

    Get PDF
    This dissertation starts with describing the IPMC and defining its chemical structure and fundamental characteristics in Chapter 1. The application of these materials in the form of actuator, sensor, and energy harvester are reported through a literature review in Chapter 2. The literature review involves some electromechanical modeling approaches toward physics of the IPMC as well as some of the experimental results and test reports. This chapter also includes a short description of the manufacturing process of the IPMC. Chapter 3 presents the mechanical modeling of IPMC in actuation. For modeling, shear deformation expected not to be significant. Hence, the Euler-Bernoulli beam theory considered to be the approach defining the shape and critical points of the proposed IPMC elements. Description of modeling of IPMC in sensing mode is in Chapter 4. Since the material undergoes large deformation, large beam deformation is considered for both actuation and sensing model. Basic configurations of IPMC as sensor and actuator are introduced in Chapter 5. These basic configurations, based on a systematic approach, generate a large number of possible configurations. Based on the presented mechanisms, some parameters can be defined, but the selection of a proper arrangement remained as an unknown parameter. This mater is addressed by introducing a decision-making algorithm. A series of design for slit cylindrical/tubular/helical IPMC actuators and sensors are introduced in chapter 5. A consideration related to twisting of IPMCs in helical formations is reported through some experiments. Combinations of these IPMC actuators and sensors can be made to make biomimetic robotic devices as some of them are discussed in this chapter and the following Chapters 6 and 7. Another set of IPMC actuator/sensor configurations are introduced as a loop sensor and actuator that are presented subsequently in Chapter 6. These configurations may serve as haptic and tactile feedback sensors, particularly for robotic surgery. Both of these configurations (loop and slit cylindrical) of IPMCs are discussed in details, and some experimental measurements and results are also carried out and reported. The model for different inputs is studied, and report of the feedback is presented. Various designs of these configurations of IPMC are also presented in chapter 7, including their extension to mechanical metamaterials and soft robots

    Material selection for the actuator design for a biomimetic rolling robot conducive to miniaturization

    Get PDF
    The purpose of this thesis was to research, select, and test an actuator mechanism for ultimate use on a centimeter scale biomimetic rolling robot. The design of the actuator will allow a rolling motion that closely mimics cellular locomotion in addition to providing a novel motion for other applications. The basis of the design has been completed through previous mechanical design research. The existing robotic mechanism consists of a larger scale spherical body with legs which controllably extend and contract, yielding a trajectory which results in a rolling motion of the body. The previous research also derived a mathematical model of the kinematics of the motion. The current work seeks to improve on the previous work by selecting an actuation mechanism that preserves the biomimetic motion and that allows this device to eventually be utilized at the microscale. Material selection is of critical importance in developing actuation mechanisms at the microscale. Smart materials were extensively researched because of their actuation properties. Based on the strain percentage, power requirement, and force output, it was determined that the preferable actuation material was an electroactive polymer (EAP). Samples of Ionic Polymer-Metal Composite (IPMC), a type of EAP, were then fabricated, purchased, and tested. Test results from this work will enable future actuator designs and configurations to be fabricated with predicted results. This research also provided a basis for further mechanical design of the rolling robot with the incorporation of EAP actuators. Lastly, future work of combining sensors with the design, therefore compounding capabilities, of the rolling robot is discussed

    Active Tube-Shaped Actuator with Embedded Square Rod-Shaped Ionic Polymer-Metal Composites for Robotic-Assisted Manipulation

    Get PDF
    This paper reports a new technique involving the design, fabrication, and characterization of an ionic polymer-metal composite- (IPMC-) embedded active tube, which can achieve multidegree-of-freedom (MODF) bending motions desirable in many applications, such as a manipulator and an active catheter. However, traditional strip-type IPMC actuators are limited in only being able to generate 1-dimensional bending motion. So, in this paper, we try to develop an approach which involves molding or integrating rod-shaped IPMC actuators into a soft silicone rubber structure to create an active tube. We modified the Nafion solution casting method and developed a complete sequence of a fabrication process for rod-shaped IPMCs with square cross sections and four insulated electrodes on the surface. The silicone gel was cured at a suitable temperature to form a flexible tube using molds fabricated by 3D printing technology. By applying differential voltages to the four electrodes of each IPMC rod-shaped actuator, MDOF bending motions of the active tube can be generated. Experimental results show that such IPMC-embedded tube designs can be used for developing robotic-assisted manipulation

    Ionic Electroactive Polymer Devices: Physics-Based Modeling with Experimental Investigation and Verification

    Full text link
    The primary focus of this study is to examine, understand, and model ionic electroactive polymer based systems in attempt to further develop this field of study. Physics-based modeling is utilized, as opposed to empirical modeling, to achieve a deeper insight to the underlying physics. The ionic electroactive polymer system of primary interest in this study is ionic polymer-metal composite (IPMC) devices. Other similar devices, such as anion-exchange membrane (AEM) type actuators and flow battery systems are also investigated using the developed model. The underlying physics are in the studies of transport phenomenon for describing the ionic flow within the polymer membrane, solid mechanics for describing deformation of the given devices, electric potential and electric currents physics for the voltage across the devices, and ion exchange along with chemical reaction in case of flow batteries. Specific details of these systems are analyzed, such as geometrical and electrode effects. The results in modeling IPMC actuators and sensors have been used to experimentally validate the modeling framework and have provided keen insight to the underlying physics behind these transduction phenomena. The developed models will benefit researchers in these fields and are expected to provide a better understanding of these systems. This study provides a framework for design and fabrication of advanced, highly integrated, ionic migration and exchange polymer-composite devices. In particular, this work focuses on finite element simulations of ionic electroactive polymers using COMSOL Multiphysics versions 4.3 through 5.2, with primary focus on ionic polymer-metal composite devices. The basic framework model for IPMCs is of greatest importance and is the initial focus of this work. This is covered in Chapter 3 in detail with experimental comparison of results. Other aspects of interest are geometrical and electrode effects of IPMCs, which are discussed in Chapter 3 and Chapter 4. Applications of the modeling framework, such as in modeling other electroactive polymer actuators is covered in Chapter 5 and Chapter 6, which includes simulations of electrodeless artificial cilia actuators in lithium chloride (LiCl) electrolyte, discussion and modeling of all-Vanadium oxidation reduction (redox) flow battery devices, fluid-structure interactions with IPMCs, and discussion of implementing the modeling framework for anion type IPMCs. Two publications from Journal of Applied Physics and one paper accepted for publication from the Marine Technology Society Journal are included herein, with publisher permission. These papers focus directly on topics of interest to this work. They underwent several revisions and are included in full or large excerpt form to provide the most accurate description and discussion of these topics. The author of this dissertation is first author and did much of the work of one of the three papers; specific author contributions for the other two papers are detailed before each paper is presented, in which the author of this dissertation was primarily responsible for finite element simulations, discussion, and revisions. Chapter 7 and Chapter 8 contain conclusions and recommendations for future work, respectively

    3D-Printing and Machine Learning Control of Soft Ionic Polymer-Metal Composite Actuators

    Get PDF
    This paper presents a new manufacturing and control paradigm for developing soft ionic polymer-metal composite (IPMC) actuators for soft robotics applications. First, an additive manufacturing method that exploits the fused-filament (3D printing) process is described to overcome challenges with existing methods of creating custom-shaped IPMC actuators. By working with ionomeric precursor material, the 3D-printing process enables the creation of 3D monolithic IPMC devices where ultimately integrated sensors and actuators can be achieved. Second, Bayesian optimization is used as a learning-based control approach to help mitigate complex time-varying dynamic effects in 3D-printed actuators. This approach overcomes the challenges with existing methods where complex models or continuous sensor feedback are needed. The manufacturing and control paradigm is applied to create and control the behavior of example actuators, and subsequently the actuator components are combined to create an example modular reconfigurable IPMC soft crawling robot to demonstrate feasibility. Two hypotheses related to the effectiveness of the machine-learning process are tested. Results show enhancement of actuator performance through machine learning, and the proof-of-concepts can be leveraged for continued advancement of more complex IPMC devices. Emerging challenges are also highlighted

    Theoretical and Experimental Investigation on the Multiple Shape Memory Ionic Polymer-Metal Composite Actuator

    Full text link
    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. The ionic polymer-metal composite (IPMC) is an emerging smart material in actuation and sensing applications, such as biomimetic robotics, advanced medical devices and human affinity applications. Here, we report a Multiple Shape Memory Ionic Polymer-Metal Composite (MSM-IPMC) actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. Theoretical and experimental investigation on the MSM-IPMC actuator were performed. To date, the effect of the surface electrode properties change on the actuating of IPMC have not been well studied. To address this problem, we theoretically predict and experimentally investigate the dynamic electro-mechanical response of the IPMC thin-strip actuator. A model of the IPMC actuator is proposed based on the Poisson-Nernst-Planck equations for ion transport and charge dynamics in the polymer membrane, while a physical model for the change of surface resistance of the electrodes of the IPMC due to deformation is also incorporated. By incorporating these two models, a complete, dynamic, physics-based model for IPMC actuators is presented. To verify the model, IPMC samples were prepared and experiments were conducted. The results show that the theoretical model can accurately predict the actuating performance of IPMC actuators over a range of dynamic conditions. Additionally, the charge dynamics inside the polymer during the oscillation of the IPMC are presented. It is also shown that the charge at the boundary mainly affects the induced stress of the IPMC. This study is beneficial for the comprehensive understanding of the surface electrode effect on the performance of IPMC actuators. In our study, we introduce a soft MSM-IPMC actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of our knowledge, this MSM-IPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. The shape memory properties of MSM-IPMC were theoretically and experimentally studied. We presented the multiple shape memory properties of Nafion cylinder. A physics based model of the IPMC was proposed. The free energy density theory was utilized to analyze the shape properties of the IPMC. To verify the model, IPMC samples with the Nafion as the base membrane was prepared and experiments were conducted. Simulation of the model was performed and the results were compared with the experimental data. It was successfully demonstrated that the theoretical model can well explain the shape memory properties of the IPMC. The results showed that the reheat glass transition temperature of the IPMC is lower than the programming temperature. It was also found that the back-relaxation of the IPMC decreases as the programming temperature increases. This study may be useful for the better understanding of the shape memory effect of IPMC. Furthermore, we theoretically modeled and experimentally investigated the multiple shape memory effect of MSM-IPMC. We proposed a new physical principle to explain the shape memory behavior. A theoretical model of the multiple shape memory effect of MSM-IPMC was developed. Based on our previous study on the electro-mechanical actuation effect of IPMC, we proposed a comprehensive physics-based model of MSM-IPMC which couples the actuation effect and the multiple shape memory effect. It is the first model that includes these two actuation effects and multiple shape memory effect. Simulation of the model was performed using finite element method. To verify the model, an MSM-IPMC sample was prepared. Experimental tests of MSM-IPMC were conducted. By comparing the simulation results and the experimental results, both results have a good agreement. The multiple shape memory effect and reversibility of three different polymers, namely the Nafion, Aquivion and GEFC with three different ions, which are the hydrogen, lithium and sodium, were also quantitatively tested respectively. Based on the results, it is shown that all the polymers have good multiple shape memory effect and reversibility. The ions have an influence on the broad glass transition range of the polymers. The current study is beneficial for the better understanding of the underlying physics of MSM-IPMC. A biomimetic underwater robot, that was actuated by the MSM-IPMC, was developed. The design of the robot was inspired by the pectoral fish swimming modes, such as stingrays, knifefish and cuttefish. The robot was actuated by two soft fins which were consisted of multiple IPMC samples. Through actuating the IPMCs separately, traveling wave was generated on the soft fin. Experiments were performed for the test of the robot. The deformation and the blocking force of the IPMCs on the fin were measured. A force measurement system in a flow channel was implemented. The thrust force of the robot under different frequencies and traveling wave numbers were recorded. Multiple shape memory effect was performed on the robot. The robot was capable of changing its swimming modes from Gymnotiform to Mobuliform, which has high deformability, maneuverability and agility

    Microfabricated tactile sensors for biomedical applications: a review

    Get PDF
    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described
    • …
    corecore