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3D-Printing and Machine Learning 
Control of Soft Ionic Polymer-Metal 
Composite Actuators
James D. Carrico  1, Tucker Hermans2, Kwang J. Kim  3 & Kam K. Leang  4*

This paper presents a new manufacturing and control paradigm for developing soft ionic polymer-metal 
composite (IPMC) actuators for soft robotics applications. First, an additive manufacturing method 
that exploits the fused-filament (3D printing) process is described to overcome challenges with existing 
methods of creating custom-shaped IPMC actuators. By working with ionomeric precursor material, the 
3D-printing process enables the creation of 3D monolithic IPMC devices where ultimately integrated 
sensors and actuators can be achieved. Second, Bayesian optimization is used as a learning-based 
control approach to help mitigate complex time-varying dynamic effects in 3D-printed actuators. This 
approach overcomes the challenges with existing methods where complex models or continuous sensor 
feedback are needed. The manufacturing and control paradigm is applied to create and control the 
behavior of example actuators, and subsequently the actuator components are combined to create an 
example modular reconfigurable IPMC soft crawling robot to demonstrate feasibility. Two hypotheses 
related to the effectiveness of the machine-learning process are tested. Results show enhancement 
of actuator performance through machine learning, and the proof-of-concepts can be leveraged for 
continued advancement of more complex IPMC devices. Emerging challenges are also highlighted.

Ionic polymer metal composites (IPMC)s are electroactive-polymer soft actuators with application in biomedical 
devices and soft robotics. IPMCs consist of an ion-exchange membrane (also referred to as a polyelectrolyte) and 
electrode layers on opposing sides of the ion-exchange membrane. When hydrated and a voltage is applied across 
its electrodes, an IPMC deforms. Conversely, a hydrated IPMC device when deformed produces a measurable 
voltage and functions as a sensor1,2. The advantages of IPMCs include low activation voltage (<3 V), flexibility, 
and that they operate in aqueous environments1. Additionally, they are functional down to sub-micron scales3. 
Because of these advantages, IPMCs are attractive for applications such as active catheters4, manipulators3,5–7, 
grippers8, microfluidic valves and pumps9–11, and propulsion and sensing mechanisms in mobile robots12–20. 
However, the main challenges of working with IPMCs are the lack of novel manufacturing methods for creating 
complex monolithic actuator and sensor designs and limited approaches for effective actuator motion control 
that do not rely on complex modeling and analysis. Therefore, the main contribution of this paper is a paradigm 
whereby custom-shaped IPMC actuators can be manufactured as monolithic devices through 3D printing and 
effective motion control can be achieved through machine learning that avoids the need for modeling the com-
plex behaviors. Furthermore, the machine learning approach is also adaptable to time-varying degradation of the 
material through repeated use.

The polymer matrix of the ion exchange material in IPMCs contains hydrophilic networks that form due to 
ionic clustering. Consequently, the hydrated ion exchange material conducts charge via the soluble counterions 
that neutralize the material. When a voltage is applied across the electrodes of an IPMC, charge redistributes 
affecting the hydrophilic regions of the polymer, causing change in volume which leads to the material deform-
ing (e.g., macroscopic bending in cantilever-type actuators)1,2. Conversely, deforming the hydrated composite 
produces a voltage and thus the material acts as a sensor. IPMCs are most commonly fabricated as composites of 
a Nafion membrane with platinum metal electrodes, but a variety of other materials can be used to manufacture 
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IPMCs with tuned performance characteristics or reduced cost. For example, IPMCs have been successfully man-
ufactured from block ionomers and blends using polystyrene sulfonic acid (PSSA)21,22. Other membrane materi-
als include blends of polyvinylidene fluoride (PVDF), hexafluoropropylene (HFP), polyethylene oxide (PEO), and 
nitrile butanide rubber (NBR)23. Researchers have selected membrane materials to have favorable water uptake 
and ion exchange capacities as well as high ion conductivity22. Researchers have also used additives with Nafion to 
improve the membrane quality. For example, these approaches include blending amphipathic organic molecules 
with Nafion to improve the membrane’s ion conductivity and adding hygroscopic alumina layers to reduce water 
loss24. Notably, an actuator was recently fabricated with a 300 fold improved ion conductivity and a millisecond 
response time through the use of a single-ion-conducting polymer as the membrane material25. Researchers have 
employed carbon nanotubes and graphene paper as the electrode layer to create highly flexible actuators that 
are durable and have low solvent evaporation26. Other conductive materials that have been used in the electrode 
layers include polypyrrole (PPy) or Poly(3,4-ethylenedioxythiophene) (PEDOT)23.

Fabricating IPMCs typically involves shaping and plating commercially-available sheets and tubular struc-
tures of Nafion, Flemion, or Aquivion material. Unfortunately, this is a laborious and unreliable means of fabricat-
ing IPMC-based actuators and devices, and thus significantly hinders the use of IPMCs in practical applications. 
To overcome this challenge, dispersions of ionomeric material or molten precursor to ionomeric material are 
used in a mold6,27. However, these approaches are restrictive in that new designs require new molds, which are 
time consuming and costly to create. In comparison to these methods, free-form-based techniques where struc-
tures are created using a layer-by-layer manufacturing process has been proposed28,29, where layers of Nafion 
are dispensed into silicone casts and the solvent in the dispersion is allowed to evaporate. This process creates 
both the electrode layer and the ionomeric substrate. Unfortunately, a plasticizer is required to minimize brit-
tleness which increases drying time. The IPMCs that have been created had lower blocking force compared to 
traditionally-made IPMCs28. Alternatively, it has been shown that fused deposition modeling (3D printing) can 
be used to deposit a precursor to an ionomeric material as a monolithic body which can subsequently be func-
tionalized and plated, creating IPMCs of any desired shape20,30. However, with increasingly complex actuator 
designs, IPMCs become increasingly difficult to control for practical applications.

There are a number of challenges to controlling IPMCs. Specifically, two identical IPMC-based actuators, 
fabricated through the same process will exhibit appreciably different behaviors31. Also, the behavior of a single 
IPMC-based actuator will vary over time31 due to solvent evaporation, aging, and degradation from repeated 
use. IPMCs also exhibit nonlinearity and other complex dynamic behavior such as back-relaxation and higher 
order resonances32. Additionally, sophisticated, custom-shaped, multi-input-multi-output (MIMO), IPMC-based 
systems (as may be fabricated through 3D printing) will exhibit coupled nonlinear behavior that may be difficult 
to model and control. To address these challenges, prior works have developed sophisticated control-oriented 
dynamics models and advanced feedback-control methods to compensate for time-varying and complex dynamic 
behavior. However, existing models are limited in their applicability to custom-shaped IPMCs. Moreover, unre-
solved challenges to integrating IPMCs with sensors inhibits the use of feedback control33,34. A possible solution 
to these challenges is the use of feedforward learning-based control methods such as Bayesian optimization. 
These methods are especially applicable to devices that operate repetitively, where the processes of iteration can 
be exploited to evaluate and adjust control inputs that optimizes a relevant performance metric. Recent work on 
Bayesian optimization has shown it to succeed in spite of complex, idiosyncratic, and time-varying behavior35,36. 
These features, together with the ability of Bayesian optimization to incorporate prior knowledge to speed up 
convergence, make it an attractive candidate for use on more complex 3D-printed IPMC actuators and devices.

Currently, there are other closely-related soft actuators with similar challenges to IPMCs. For instance, hydro-
gels are a stimuli responsive material that have the potential for use in a variety of biomedical and robotic applica-
tions37. When these gels are realized as a polyelectrolytes and immersed in an electrolytic environment, they can 
be controlled by electric fields38. The electric field causes the counter-ions to migrate, leading to a concentration 
gradient that causes bending of the actuator38. In order to fabricate custom-shaped hydrogel actuators, a variety 
of 3D-printing techniques have been developed including extrusion-based, steriolithographic, and jetting-based 
methods37. Control of hydrogels is generally through thermal or hygroscopic stimuli, while polyelectrolyte gels 
are also stimulated by electric fields38. Lacking electrodes, polyelectrolyte gels are not individually controllable 
and must be immersed in an electrolytic environment in order to respond to electric stimuli. The response time of 
hydrogels is also significantly slower than other ionic electroactive polymers37. Another closely-related material 
to IPMCs are conjugated polymer actuators. Conjugated polymers, such as polypyrrole (PPy) and polyaniline 
(PANI), which have alternating single and double bonds, are organic semiconductors. When a sufficiently-large 
voltage is applied to a conjugated polymer, electrons are removed. If the material is in contact with an electrolyte, 
the material will then change size in proportion to its change in oxidation level39. Conjugated polymer actuators 
are generally layered bending actuators like IPMCs, involving a composite of a conjugated polymer with at least 
one noble metal electrode layer40. Addition of polyelectrolyte gels or electrolyte infused membranes to such com-
posites was developed to allow the actuator to operate outside of an electrolytic environment41. Well established 
micro-machining techniques have been developed for fabricating conjugated polymer actuators40, but not a 3D 
printing process. 3D printing has been developed for some conjugated polymers, but not for the composite neces-
sary for fabricating an actuator42. Like IPMCs, the behavior of polyelectrolyte gels and conjugated polymer actu-
ators is complex and time varying, and there are significant challenges to integrating sensors43–46. The machine 
learning approach proposed here is equally relevant to these materials to help improve performance.

To address the challenges to manufacturing and control of IPMCs and related materials, this paper considers 
3D printing for manufacturing and machine learning to control example IPMC actuator components, which 
together can be assembled to create a modular reconfigurable soft crawling robot platform to demonstrate fea-
sibility. The development of the platform is presented to illustrate the proof-of-concept of 3D-printing of IPMC 
actuators and application of machine learning for effective motion control. Since the use of Bayesian optimization 
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on IPMCs is new, this paper tests two hypotheses: (1) that Bayesian optimization will lead to convergence in fewer 
trials than a finite-difference policy gradient method making it more suitable for controlling IPMCs; and (2) that 
prior knowledge from a dynamics model (especially a known achievable target value) will lead to convergence in 
fewer number of trials than simply optimizing from a uniform prior distribution.

To investigate these hypotheses, first, the linear dynamics of the 3D-printed soft crawling platform are mod-
eled and then validated through simulation and in physical experiments. The dynamics model of the robot is 
then used to contrast the performance of Bayesian optimization and finite-difference policy gradient method in 
simulation, where convergence is achieved in fewer trials using Bayesian optimization35,47,48. Since these simula-
tions show the superiority of Bayesian optimization, the process is then applied to the real IPMC-based system. 
Experiments are presented to compare the performance of Bayesian optimization from a uniform prior with the 
performance of Bayesian optimization using a prior distribution obtained from optimizing in simulation on the 
dynamics model.

The contribution of this work is 3D printing of IPMCs and machine-learning control of the 3D-printed IPMCs 
and related actuators. The 3D-printing process, design and modeling of the actuator components, and Bayesian 
optimization as a learning-based control method are discussed in detail. Additionally, this paper compares the 
effectiveness of a finite-difference policy gradient method and Bayesian optimization as control methods for 
IPMCs. The results of the comparison highlight the advantage of Bayesian optimization’s ability to encode prior 
knowledge in the form of known reachable target values and simulation results from a linear dynamics model.

Methods
3D Printing of IPMCs. The 3D-printing process used to fabricate custom-shaped IPMCs involves four major 
steps as illustrated in Fig. 1. First, the fused-filament fabrication process requires manufacturing filament using 
Nafion’s (or Aquivion’s49) sulfonyl fluoride precursor. Next, a custom-designed 3D printer is required to pro-
cess the precursor material for 3D printing. Since the precursor is not electroactive immediately after being 3D 
printed, an in situ functionalization process is then employed to convert the precursor material to fully ionomeric 
Nafion. Subsequently, the ion-exchange properties of the ionomeric material is leveraged in an electroless plating 
process to create platinum electrodes on the ionomeric material’s surface.

Filament extrusion and 3d printing of ionomeric precursor. Since commercially-available ionomeric materials, 
such as Nafion (typically, in the sulfonic acid form −SO3

−H+), are not melt processable50,51, the sulfonyl fluoride 
precursor of Nafion (−SO2F), sometimes referred to as XR resin, is employed. Nafion precursor filament is cre-
ated using a filament extruder52. For example, XR resin is fed into a hopper system, where a drive mechanism, 
such as an auger or a piston, advances the precursor material for extrusion through a nozzle to form the filament. 
Cooling and a drawing mechanism may also be used to maintain dimensional consistency. Typical extrusion 
parameters include extrusion temperature range between 220 to 300 °C, and extrusion and drawing rates between 
10 to 125 mm/s, depending on desired filament diameters.

There are several challenges to 3D printing the Nafion precursor material including Nafion’s high 
glass-transition temperature, poor adhesion, material compressibility, and the tendency for the material to buckle 
in the drive gears of conventional 3D printers. These issues make it challenging to control the rate at which the 
material is extruded from the nozzle. Commercial 3D print heads cannot effectively handle the Nafion precursor 

Figure 1. Fused-filament 3D printing process for IPMCs: (a) printing of soft structure using precursor of 
ionomeric material, (b) functionalization of printed precursor structure, (c) plating process, and (d) segmenting 
and wiring of electrodes for multi-DOF actuation and/or sensing.
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material without modifications, thus a custom-designed system is often required. Such custom print heads can 
be designed and integrated into commercial motion control platforms. Additionally, the build stage must be able 
to heat to approximately 200 °C to enhance adhesion characteristics during printing. A constrained filament path 
is often needed to prevent filament buckling. A thermal barrier, which confines the transition and melt zones to 
the heater block and heated nozzle, prevents the filament from progressively softening as it approaches the heater 
block. The components of the heater block can reach temperatures exceeding 300 °C to melt the filament material. 
The melted filament collects in the nozzle and is extruded out onto a high temperature print bed to ensure that 
the printed material adheres52. More recently, it was determined that commercially-available print heads designed 
for soft polymer materials can be adapted to print Nafion precursor by incorporating a heater capable of reaching 
approximately 300 °C. Figure 2(a,b,d) show examples of 3D-printed Nafion precursor devices.

Functionalization process. After printing, the component has to be made electroactive through a functionaliza-
tion process. This involves converting the non-ionomeric Nafion precursor into fully ionomeric Nafion, which 
has sulfonate terminal groups that give Nafion its characteristic ion conducting ability. This process is done by 
base hydrolysis using a solution of 15 wt% KOH, 35 wt% DMSO, and 50 wt% deionized water at 75 °C as pre-
scribed by the manufacturer53. In this process, Florine is exchanged nucleophilicly with a hydroxyl group, and 
the hydrogen ion is then exchanged electrophilicly for a potassium ion. A hydration sphere then forms around 
the potassium ion which swells the material and permits the ingress of the functionalizing solution. At 75 °C, the 
process proceeds at a rate of approximately 1.3 μm per minute54. The printed components are left in the function-
alization solution for additional time (approximately 4 hours) after the estimated completion of the hydrolysis 
process, to facilitate the development of ionic clusters54. The material is then rinsed in two successive baths of 
deionized water at 75 °C for 30 minutes each time. To confirm complete hydrolysis (i.e., functionalization), the 
material can be stained using methylene blue, which only dyes the “activated” material54.

Electrode plating process. The ion-exchange properties of the now ionomeric material can be leveraged in an 
electroless plating process. Following functionalization, the material is converted to its acid form using 20% nitric 
acid (sulfuric acid can also be used). This exchanges the potassium ions neutralizing the material with hydrogen 
ions and is done as an intermediate step whenever attempting to change the neutralizing ionic species. The mate-
rial is then rinsed again in deionized water, following which it is immersed in a 0.2 molar solution of tetraamine-
platinum (II) chloridemonohydrate ([Pt(NH3)4] · Cl2 × H2O, Alfa Aesar) for a period of 2 to 4 hours. This deposits 
platinum ions in the surface layer of the Nafion. The platinum ions are then converted to elemental platinum 
by placing them in deionized water and repeatedly introducing a reducing agent such as sodium borohydride 
(NaBH4, Aldrich) into the solution over the course of 3 hours. Repetition of this process two or three times will 
significantly improve the responsiveness of the resulting IPMC. Subsequently, either electrical or electroless plat-
ing methods can be used to further develop these electrodes and decrease their surface resistance. The results of 
plating are shown in Fig. 2(c) and (e) for the printed robot body and leg components, respectively.

Fabrication and characterization of 3d-printed IPMC actuators. The IPMC 3D-printing process 
was used to fabricate a variety of custom-shaped IPMC actuators as shown in Fig. 2. These include an octopus 
printed in Nafion precursor material, as shown in Fig. 2(a), as well as an IPMC-based linear actuator, as shown 
in Fig. 2(b,c), and an IPMC-based gripper, as shown in Fig. 2(d,e). The linear actuator and gripper were first 
3D-printed using the fused-filament technique as described above. This consisted of first printing the desired 
geometry using the precursor filament material, then applying chemical activation, followed by plating and con-
ditioning the components, and finally segmenting the plated electrodes on the surfaces to create independent 
electrode pairs. As shown in Fig. 2(b,d), the printed product has a yellowish discoloration. The material is soft and 
pliable and has a Teflon-like texture. After the subsequent chemical processes, the resulting ionomeric material 
beneath the plated surface is clear and though still distensible, is stiffer than the original printed product. As can 
be seen in Fig. 2(c,e), the plated linear actuator and gripper have a dull gray coloration after the two step plating 
process. This indicates a high conductivity across the plated surface. The linear actuator is elliptically-shaped with 
its interior and exterior electrodes segmented into four distinct regions, as shown in Fig. 2(f). The linear actuator 
extends with an applied voltage such that the exterior is the anode and the interior is the cathode. The linear actu-
ator contracts with applied voltage such that the exterior is the cathode and the interior is the anode. The linear 
actuator has pockets for coupling with other devices such as the 3D-printed gripper. As shown in Fig. 2(g), the 
gripper is nominally a circular structure designed to fit around a tube. The gripper has two independent electrode 
pairs on the inside and outside of the individual arms, as shown in Fig. 2(h). When a positive voltage is applied 
such that the exterior electrodes are the anode side and the interior electrodes are the cathode side, the gripper 
opens, as shown in Fig. 3(d). When the voltage is applied to these electrode pairs in opposite polarity, the gripper 
closes, as shown in Fig. 2(h). Each gripper has a protrusion that extends off of it which engages in an interference 
fit with other devices, such as the 3D-printed linear actuators.

As shown in Fig. 2(h,i), periodic voltage signals were applied to the linear actuator and gripper over a range of 
amplitudes and frequencies to characterize the actuation performance. The linear actuator reaches its maximum 
displacement in response to 3 volt signals applied at 0.01 Hz, as can be seen in Fig. 2(h). The gripper reaches its 
maximum displacement in response to 3 volt signals applied at 0.05 Hz, as can be seen in Fig. 2(i). The actuation 
performance was deemed appropriate for developing a soft robotic testbed to demonstrate feasibility, as described 
below.

Example modular reconfigurable soft crawling platform. There has been prior work on the additive 
manufacturing of soft actuators for soft robotic platforms, but the approaches required assembly with actuators 
and sensors after fabricating the soft robot body55,56. Notably, researchers have very successfully constructed soft 
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robots based on pneumatic and fluid elastomeric actuators57–62. Recently, multi-material additive manufactur-
ing methods have even been successfully employed to create soft robotic devices63,64. These devices utilize pres-
sure gradients provided by hosing, internal chemical reactions or electric motors for actuation. Consequently, 
the scale of the robot is limited by the size of the mechanisms required for actuation. Also, recent research has 
developed “4D printing” and origami-based robots, that are able to reconfigure into a functional shape after 
being fabricated (often as a flat sheet). These are very promising, but shape change is generally accomplished via 
heating or other nonelectric stimuli65–68. In general, the development of functional soft electroactive polymer 
based robotic platforms is limited. Thus, an important complimentary approach to these other techniques is the 
proposed 3D-printing process to create actuators for realizing soft robotic systems. As an example application to 
demonstrate proof-of-concept, the linear actuators and grippers shown in Fig. 2(b–e) are used to create a modular 
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Figure 2. Example 3D-printed Nafion precursor and functionalized and plated devices: (a) monolithic Nafion 
precursor octopus-shaped device prior to functionalization and electrode application; (b,c) linear actuator 
component for modular robotic device, printed, functionalized, and plated examples; (d,e) gripper mechanism 
for modular robotic device, printed, functionalized, and plated examples; (f) 3D-printed linear actuator 
extension and contraction as a function of applied voltage; (g) 3D-printed gripper actuator opening and closing 
as a function of applied voltage; (h) peak displacement response of linear actuator for a range of amplitudes 
and frequencies of the input signal, (i) peak displacement response of gripper for a range of amplitudes and 
frequencies of the input signal.
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reconfigurable soft crawling robot. The 3D-printed soft IPMC robot is inspired by a caterpillar or worm-like 
organism, as shown in Fig. 3(a1). The robot platform consists of modular grippers that act as its legs and linear 
actuators that act as its body segments. The robot is designed to “grip” onto a cylindrical tube and “inch” its way 
along the tube, as shown in Fig. 3(b1–b4). The modular components can be assembled into various configurations 
to create a robot of varying lengths. A leg-body segment of a crawling robot is assembled from a gripper and 
linear actuator. These segments can be chained together to create longer sections of the robot. The robot can be 
assembled into multiple configurations to test which results in faster locomotion and how the different configu-
rations effect gait performance. An example of the locomotion of a simple leg-body-body-leg robot is illustrated 
in Fig. 3(b1–b4). In this configuration, the nominal gait begins with the linear actuators contracted while the rear 
gripper closes and front gripper opens, as shown in Fig. 3(b1). Then, the linear actuators extends propelling the 
front end of the robot forward, as shown in Fig. 3(b2). Next, the front gripper closes and the rear gripper opens, 
as shown in Fig. 3(b3). Finally, the linear actuators contract, as shown in Fig. 3(b4), bring the rear end of the robot 
towards the stationary front end. The process is repeated enabling the robot to move forward.

Dynamics modeling and parameter estimation. The actuation behavior of the 3D-printed IPMC actu-
ators and gripper mechanisms described above are modeled and the model is used to predict the performance of 
the overall IPMC-based robotic testbed. Additionally, the model is exploited by the machine learning algorithm 
for gait optimization.

Electromechanical model. The electromechanical dynamics of an IPMC actuator consists of an electrical model, 
force transducer, and mechanical model as illustrated in Fig. 4. The electrical model is an equivalent circuit that 
relates the applied voltage V(s) (where ‘s’ is the Laplace variable) to the current I(s). The current I(s) then becomes 
the input to the force transducer Gf(s), modeled by an integral term, where the output is the mechanical force 
F(s). Finally, the force drives a lumped-parameter model of the structural dynamics of the actuator with output 
displacement X(s).

The transfer function that relates the applied voltage V(s) to the output current I(s) is given by

G s I s
V s

s

s
( ) ( )

( ) (1)
e

R

RC

1

1= =
+

.

In this model, R is the effective electrical resistance and C is the effective capacitance of the actuator.
Assuming that the effective IPMC force F(s) is linearly related to the density of the transferred charges3, then
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Figure 3. Example 3D-printed IPMC soft crawling robot inspired by a caterpillar: (a1) biological caterpillar 
showing body and leg segments that were modeled in the design of the crawling robot; (a2) assembled robot 
with two legs and two body sections, with electrical connections; (b1) back leg actuator closing and front leg 
actuator opening while body is contracted; (b2) extension of body actuators while back leg actuator is closed 
and front leg actuator is open propelling the robot forward; (b3) back leg actuator opening and front leg 
actuator closing while body is extended; (b4) contraction of body actuators while back leg actuator is open and 
front leg actuator is closed drawing up the back of the robot.
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α
= =G s F s

I s s
( ) ( )

( )
,

(2)f

where α is a constant. It is noted that this model is only valid over operating frequencies where back-relaxation 
effect, which is characteristic of IPMCs, is not significant69.

The robot’s structural dynamics, Gm(s), is modeled by inertial, elastic, and damping elements, as shown in 
Fig. 5(a2). The variable damping elements, c1, …, cn, shown in Fig. 5(a2), model the frictional contact behavior 
between the legs and the tube. Balancing forces on the masses in Fig. 5(b2) yields the following relationships:

m x b x x c x k x x F( ) ( ) , (3)1 1 1 2 1 1 1 1 2 1 1= − − + − −̈   

    = − + − − + −
+ − + −

− − + − −

+ −

̈m x b x x b x x c x k x x
k x x F F

( ) ( ) ( )
( ) , (4)

i i i i i i i i i i i i i

i i i i i

1 1 1 1 1

1 1

m x b x x c x k x x F( ) ( ) , (5)n n n n n n n n n n n1 1 1 1 1̈   = − − + − +− − − − −

where x1, …, xn are the displacements of the effective masses m1, …, mn, respectively; b1, …, bn−1 and k1, …, kn−1 
are the constants for the damping and elastic elements, respectively; and F1, …, Fn−1 are the forces applied to each 
inertial element.

The equations of motion can be written in the following matrix form:

Figure 4. An IPMC model: The applied voltage V(s) is the input to an equivalent electrical circuit model, where 
current I(s) is the output. A force transducer model (integral term) relates current I(s) to force F(s). Finally, the 
force is applied to a mechanical model where the output is the displacement of the IPMC mechanism.
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Figure 5. Modeling and parameter estimation of crawling robot: (a1) two body actuators and two leg actuators 
configured as a crawling robot; (a2) model of crawling robot as a chain of lumped masses, springs and dampers 
where m1, m2, and m3 are effective masses, k1 and k2 are springs, b1 and b2 are dampers, and c1 and c2 are 
damping elements that approximate the viscous friction between the legs and the tube; (b1) equivalent RC-
circuit model for the IPMC actuator and the measured step response of the body-segment behavior compared 
to the model V(t) = 0.6et/5.65 (R-squared value of 0.9911), where Re = 220Ω. (b2) schematic of the experiment 
for characterizing mechanical model parameters and the measured experimental frequency response of the 
actuator.
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The output of the model given by Eq. (6) can be compared to experimental results to validate the robot’s gait 
performance. Furthermore, the model can be used to help design a controller to enhance the robot’s gait.

Identifying the model parameters. From Fig. 5(b1), the transfer function for circuit model relating the applied 
voltage V(s) to the voltage Ve(s) across the resistor Re is given by

=



 +










 +





τ

V s
V s
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,
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where τ = (R + Re)C. Then for a step input, the time response is
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To find the model parameters, a step input is applied to the IPMC and the measured voltage across a series 
resister with the IPMC is used to determine the parameters of the electrical model through curve-fitting. Table 1 
lists the experimentally-determined parameters of the electrical model, where “n/m” denotes “not measured”.

For the mechanical model, the effective spring constant is determined by the ratio between an applied known 
load and the measured actuator deflection. The equivalent mass and damping constant are determined by analyz-
ing the measured frequency response (obtained with an HP 35665 A digital signal analyzer) of the IPMC actuator, 
as shown in Fig. 5(b2). The boundary conditions for these experiments are shown in Fig. 5(b2), where one side of 
a body or joined body and leg are fixed and the displacement of the free end is measured by a laser displacement 
sensor (Keyence LK-2001). For body sections, experiments were conducted both with an attached gripper (leg) 
and without a gripper. More details about the experimental parameter identification process can be found in prior 
work20.

R (Ohms) C (mF) τ (sec) ωc (rad-sec−1) m1 (g) m2 (g) b (Dyn-s-cm−1) c (Dyn-s-cm−1) k (N-cm−1)

Body-actuator one 140 16 2.2 0.45 1.4 1.0 59 56 1.30

Body-actuator two 260 24 6.2 0.16 1.2 0.7 63 57 0.65

Leg-actuator one 100 55 5.6 0.17 N/M N/M N/M N/M N/M

Leg-actuator two 170 56 9.5 0.11 N/M N/M N/M N/M N/M

Leg-actuator three 210 52 10.9 0.09 N/M N/M N/M N/M N/M

Table 1. Values for parameters of the electromechanical model, where “N/M” denotes not measured.
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Machine learning control via bayesian optimization. Modeling, control, and higher level planning 
of IPMC-based actuators is complicated by both the flexibility of the material as well as the material’s complex 
electrochemical behavior. The flexibility of the material can potentially be addressed in manners similar to that 
of other soft and elastomeric devices70. As with pneumatic or fluid elastomer actuators, curvature is controlled 
in IPMC-based systems. Kinematic models can thus be developed by modeling IPMC-based systems with 
piece-wise functions that describe segments’ deformations from their original undeflected states3,71. Further, the 
mechanical behavior of IPMCs can be modeled similar to that of other polymers or elastomers72. But the response 
of IPMCs to electrical inputs suffers from non-repeatability, nonlinear effects, and there are still significant chal-
lenges to integrating sensors on IPMC actuators to measure state. These difficulties make it difficult to implement 
conventional feedback controllers32,33. Machine learning control (which encompasses a wide variety of tech-
niques) is an attractive solution for control of IPMC-based devices because, like conventional adaptive control, 
the approach can adjust control policy parameters to address non-repeatability and complex non-linear effects. 
However, the fundamental difference between conventional adaptive control and machine learning control is that 
conventional adaptive control theoretically employs continuous-time feedback signals, whereas machine learning 
control is an iterative process, where improvements are done from one operating cycle to the next. Consequently, 
the requirements for sensor feedback can be minimal for some machine learning control techniques. For instance, 
use of direct policy search methods in highly repetitious tasks (like gait optimization for a walking robot or opti-
mization of the stroke of a diaphragm pump) are excellent examples of machine learning being employed with 
minimal sensor feedback. In these cases, a gross performance metric is only sampled once at the end of an itera-
tion (such as a period of attempted walking or a period of attempted pumping). This is particularly relevant to soft 
actuators because in practical applications it may often be possible to take periodic measurements of cumulative 
performance (like distance traveled or volume of fluid pumped) but not to continuously monitor a system output 
(like actuator displacement). This use of reinforcement learning reflects a larger trend in which control methods 
are being developed to suite the compromised accuracy, repeatability, and internal sensing capabilities of low-cost 
robots and devices73.

Direct policy search methods belong to the broader family of reinforcement learning which is extensively 
used in soft robotics. Reinforcement learning iteratively evaluates the reward associated with states, policies and/
or actions in an attempt to optimize a control policy. Broadly speaking, there are three kinds of reinforcement 
learning methods: model-based methods, value-based model-free methods, and policy-based model-free meth-
ods (or direct policy search methods). Model-based methods attempt to learn a model of the system (generally 
in the form of a Markov decision process) and then solve for the optimal control policy based on cumulative 
reward73,74. Most recently, model-based methods employing neural networks as models have been deployed on 
a variety of platforms including a tensegrity-based mobile robot and a pneumatic manipulator75,76. Value-based 
model-free methods attempt to learn a function of the total possible cumulative reward, but do not employ a state 
transition distribution. Most recently, the temporal difference (TD) algorithm has been employed to control the 
position and stiffness of a fluid actuated soft robotic arm77,78 and Q learning has been employed to learn an effec-
tive control policy for the dielectric elastomer actuators employed in an artificial cuttlefish robot79. In contrast to 
these methods, policy-based model-free methods do not employ either a model or a cumulative value function, 
but rather directly optimize control parameters in the policy space74. Direct policy search methods include policy 
gradient methods47 and genetic algorithms80. The general advantages of direct policy search methods are that they 
are simpler and often are more computationally efficient.

Recently, Bayesian optimization has been successfully employed as a direct policy search method to learn a 
walking gait for a biped robot35,81. In comparison to gradient-based methods and methods employing genetic 
algorithms, Bayesian optimization converges in significantly fewer iterations and is theoretically guaranteed to 
find the global optimum82. Bayesian optimization assumes the objective function can be modeled as a Gaussian 
process (GP) and utilizes all previous evaluation points to select future ones. Therefore, it sacrifices computa-
tional efficiency to make better use of available data48. Previous works have emphasized Bayesian optimization’s 
ability to function as a black box optimizer without requiring expert knowledge (such as in the form of a dynam-
ics model)35,74. However, another notable feature of Bayesian optimization is precisely its ability to incorporate 
incomplete or imperfect expert knowledge to speed up convergence to the true global optimum. This can be done 
by encoding known reachable performance targets. It can also be done by incorporating a prior distribution based 
on simulation data that, while not capturing every aspect of a system dynamics, is known to be generally accu-
rate74. In previous uses of Bayesian optimization since optimization was conducted without the benefit of a model 
to generate simulated results, the selection of the initial evaluation points were effectively random35. In one of 
the methods employed here, a dynamics model of the robot is exploited and Bayesian optimization is conducted 
first in simulation on the model. The Gaussian process trained in simulation is then used as the prior for Bayesian 
optimization on the real robot.

In deploying Bayesian optimization on the crawling robot, the goal is to determine the input amplitudes and 
relative phases of the inputs that are applied to the leg and body section such that the robot achieves robust loco-
motion. To do so, an effective crawling gait is learned using Bayesian optimization. In this approach, a Gaussian 
process (GP) models robot speed, f(θ), over a domain of gait parameters, θ (the phase and amplitudes of inputs 
into the robot actuators). The GP is trained from the set of past evaluation points of the objective function, that 
constitutes the training data, . The GP is then mapped to a surface via an acquisition function. A new evaluation 
point is selected by optimizing over the resultant surface35. This technique is employed first on the robot in simu-
lation and then on the real robot experimentally using the GP from optimizing in simulation as the prior distri-
bution. The general Bayesian optimization algorithm is given in Alg. 1.

A Gaussian process is used in Bayesian optimization to define what is termed the “virtual objective function”, 
ˆ θf ( ). The Gaussian process models the relation between parameters, θ, and the experimental performance results 
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from testing those parameters, f(θ), as a distribution over functions35. The function f ( )θˆ  is defined by a mean 
function m(θ) and a covariance function k(θ):

ˆ θ θ θ θ∼ ′ .f GP m k( ) ( ( ), ( , ))
The virtual objective function is used to predict probable performance results f* at selected parameter values 

Θ*. These future predictions are modeled as jointly Gaussian with prior data, {Θ,f}. This is expressed as follows:
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where m is a vector of mean values and K is the covariance matrix83. It follows that the posterior probability dis-
tribution of f* is given by the equation,
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In the case of a zero prior mean, Eq. (9) becomes
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If a model of the objective function exists, Eq. (10) can still be used to predict the error between future predic-
tions and predictions of the existing model. In that case error is defined as follows: e(θ) = f(θ) − fe(θ), where e(θ) is 
the error and fe(θ) is the prediction of the existing model at θ. Equation (10) then becomes

⁎
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Subsequently, f(θ*) can then be determined from f(θ*) = e(θ*) + fe(θ*), which is the summation of two normally 
distributed random variables. Use of the error requires modification to the Bayesian optimization, however. The 
Gaussian process is now trained on the error, but optimization is still conducted with respect to f ( )ˆ θ . Therefore, 
computing the response surface involves combing the existing model, θf̂ ( )e , and the predicted error, θe( )ˆ . 
Moreover, the actual error at an evaluation point must be computed from the difference between the actual per-
formance and the prediction of the existing model. This modified Bayesian optimization algorithm is shown in 
Alg. 2.

Here, the covariance function used is the squared exponential kernel, which is defined as

k( , ) exp 1
2

( ) ( ) ,
(11)f

T
w pqp q p q p q

2 2θ θ σ θ θ λ θ θ σ δ=


− − −



 +

where σf
2 is the functional variance, λ is a diagonal matrix of characteristic lengths, σw

2 is the noise variance, and 
δpq is the Kronecker delta. The parameters σf

2, λ, and σw
2 are set by way of automatic relevance determination. 

The acquisition function employed to map the response surface to the acquisition surface is the probability of 
improvement (PI) which is defined as

α θ μ θ
σ θ

=
−T( ) ( )

( )
,

(12)
⁎

⁎

⁎

where T is the target, μ(θ*) is the predicted mean, and σ(θ*) is the predicted standard deviation of f(θ*). The 
target, is generally defined as the best evaluated response on the real system; that is T = max(f), where, 
max(f) = max(e + fe), when using a model to inform the prior. Optionally, a value that diminishes with successive 
evaluations may be added to this. Alternatively, the target may be set to a known reachable value. Both the option 
of adding a successively diminishing value and defining the target as a known reachable value causes the acquisi-
tion function to be more explorative in selecting earlier evaluation steps.

Algorithm 1. Bayesian optimization algorithm.
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Results and Discussion
To validate the dynamics model of both the leg-body-body-leg and leg-body-leg-body-leg configurations of the 
crawling robot, test gaits were determined by first optimizing on the respective dynamics models in simulation. 
These gaits were then applied to the real robot and the performance compared to that of the simulations. These 
results show good agreement between the performance of the real crawling robot and its performance in sim-
ulation. The validated dynamics model for the leg-body-body-leg configuration was then used in simulation to 
compare the performance of Bayesian optimization to a finite difference policy gradient method to motivate the 
use of Bayesian optimization as a gait learning method. These simulations showed that Bayesian optimization 
outperformed a finite difference policy gradient method, supporting the hypothesis that Bayesian optimization 
will lead to convergence in fewer trials than a finite-difference policy search method making it more suitable for 
deployment on IPMC based robots in real-time. Bayesian optimization was then conducted on the real crawling 
robot, specifically to compare Bayesian optimization conducted from a uniform prior distribution and Bayesian 
optimization using a Gaussian process trained in simulation as the prior. Unfortunately, unexpected degradation 
of the IPMCs was observed with extended use. By the end of successive experiments the IPMC could not replicate 
its same level of performance upon application of the same crawling gait. This technically violates the assumption 
that successive evaluations would be independent and identically distributed (IID) and thus invalidates the use 
of a Gaussian process to model the objective function. In spite of this, both approaches to Bayesian optimization 
show improving performance with successive evaluations. This section will first discuss the simulation methods 
and results and then the experiment methods and results.

Simulation results and discussion. Optimization conducted to determine the test gaits for both the 
leg-body-body-leg and leg-body-leg-body-leg configurations was done by running successive simulations on the 
dynamics models in Simulink using 10-minute runs (simulation-time), using automatic solver selection with a 
variable step size. The Gaussian process used as the prior for subsequent optimization on the real robot was also 
obtained from the simulation on the dynamics model of the leg-body-body-leg configuration.

Comparison of Bayesian optimization and the policy gradient method were conducted by running successive 
simulations on the dynamics model of the leg-body-body-leg configuration of the crawling robot in Simulink 
using 15-second runs (simulation-time), using automatic solver selection with a variable step size. A random 
variable was added to the simulated distance traveled to add noise to the results. The decision variables used for 
optimization were the phases of the inputs to the individual body and leg components. Each optimization method 
was tested under three different noise levels (no noise, a signal to noise ratio of 1 and a signal to noise ratio of 
10). Two initial conditions were tested under each noise level. For each initial condition, two trials were run to 
account for randomness in the simulations. Since, an advantage of Bayesian optimization is its ability to encode 
a known reachable target value, the performance of both Bayesian optimization where the target is defined as 
the maximum of the training data and Bayesian optimization where the target is defined as 95% the maximum 
possible distance are tested.

Table  2 gives the optimized phases of the inputs for both the the leg-body-body-leg and the 
leg-body-leg-body-leg configurations. In this table, the bodies and legs are enumerated moving forward along the 
direction of travel. As can be seen from Table 2, Bayesian optimization for the leg-body-body-leg configuration 
results in converged gait phases of 0°, 0°, 270° and 90° for body 1, body 2, leg 1 and leg 3 respectively and Bayesian 
optimization for the leg-body-leg-body-leg configuration results in converged gait phases of 0°, 30°, 270°, 0° and 
110° for body 1, body 2, leg 1, leg 2, and leg 3 respectively. The effect of adding the middle leg to the robot is to 
cause the maximum possible speed to decrease. Notably the converged gait for the leg-body-leg-body-leg config-
uration only has body 2 and leg 3 slightly lagging their converged phases in the leg-body-body-leg configuration.

Figure 6 compares the use of finite-difference policy gradient method47 and Bayesian optimization in sim-
ulation on the dynamics model of the leg-body-body-leg configuration of the crawling robot. Figure 6(a1–a3) 
shows the performance of the finite difference policy gradient method. Figure 6(b1–b3) shows the performance 
of Bayesian optimization using the probability of improvement acquisition function where the target is defined 

Body 1 Body 2 Leg 1 Leg 2 Leg 3

leg-body-body-leg 0° 0° 270° n/a 90°

leg-body-leg-body-leg 0° 30° 270° 0° 110°

Table 2. Optimized phases for Bayesian optimization in simulation.

Algorithm 2. Modified algorithm.
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as the maximum of the training data. Figure 6(c1–c3) shows the performance of Bayesian optimization using the 
probability of improvement acquisition function where the target is defined as 95% the maximum possible dis-
tance of the robot. Bayesian optimization using both the maximum of the training data as the target and 95% the 
maximum possible distance as the target, perform as well or better than the policy gradient method. These results 
support the hypothesis that Bayesian optimization will be superior for use on the real crawling robot.

Experiment results and discussion. Experiments on the crawling robot were conducted using Simulink 
real-time and Ni-Daq control hardware to output control signals and LM675T power amplifiers were used 
to power the signals. For comparison of the simulated and experimental performance of the crawling robot 
in response to the test gaits determined by optimizing in simulation, video recordings were taken and the 
Kanade-Lucas-Tomasi (KLT) algorithm was used to track points on the robots at the locations of the rear leg (x1), 
central leg or central joint (x2), and front leg (x3), respectively, in the videos of the experimental trials.

To compare Bayesian optimization conducted starting from a uniform prior distribution to that of Bayesian 
optimization using Gaussian process trained in simulation as the prior, the leg-body-body-leg configuration was 
used and a webcam was added to track the robot’s position for 60 second evaluations of a set of gait parameters, as 
shown in Fig. 7. The direction of each trial was selected to automatically center the robot (i.e., if the robot was to 
the right of its origin at the beginning of a trial it would move left and vice-versa).

Figure 8 shows the experimental motion of the tracked locations for the leg-body-body-leg configuration and 
the leg-body-leg-body-leg configuration over 20 seconds compared to their simulated motion. Figure 8(a2,b2) 
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Figure 6. Policy gradient method using finite-difference gradient estimation vs. Bayesian optimization using 
probability of improvement (PI) acquisition function, with multiple trials from different ICs and signal to noise 
ratios (SNR)s: (a1) policy gradient with no noise, (a2) policy gradient with SNR = 100, (a3) policy gradient 
with SNR = 10, (b1) Bayesian optimization with target equal to maximum of training data with no noise, 
(b2) Bayesian optimization with target equal to maximum of training data with SNR = 100, (b3) Bayesian 
optimization with target equal to maximum of training data with SNR = 10, (c1) Bayesian optimization with 
target equal to 95% maximum possible distance with no noise, (c2) Bayesian optimization with target equal 
to 95% maximum possible distance with SNR = 100, (c3) Bayesian optimization with target equal to 95% 
maximum possible distance with SNR = 10.
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show the motion of the rear legs, Fig. 8(a3,b3) show the motion of the central joint, and Fig. 8(a4,b4) show 
the motion of the front legs. The real speed of the leg-body-body-leg configuration with input phases of 0°, 0°, 
270° and 90° for body 1, body 2, leg 1 and leg 2 respectively is 2.15 cm/min as compared to the simulated speed 
of 2.9 cm/min. The real speed of the leg-body-leg-body-leg configuration with input phases of 0°, 30°, 270°, 0° 
and 110° for body 1, body 2, leg 1, leg 2, and leg 3 respectively is 1.8 cm/min as compared to the simulated 
speed of 2.3 cm/min. Neglecting non-linear friction in the model is responsible for the discrepancies between the 
simulated and experimental performance. For instance, comparing the plots of the experimental and simulated 
motion in Fig. 8(b2), there are spans of time during which the velocity of the leg of the real robot is 0. By contrast, 
the velocity of the leg of the simulated robot is only momentarily zero. This difference is because the dynamics 
of crawling robot were characterized assuming a linear viscous friction effect. This neglects a nonlinear stiction 
effect by which there is a range of inputs for which the robot will not move, after coming to rest.

Figure 9 shows the results of Bayesian optimization on the crawling robot using a uniform prior distribution 
and of Bayesian optimization using a Gaussian process trained in simulation as the prior. Specifically, Fig. 9 shows 
the speed attained at each evaluation step for both optimization methods. Figure 9(a) shows these speeds in the 
leftwards direction and Fig. 9(b) shows the these speeds in rightwards direction. Neither the optimization from 
a uniform prior nor the optimization using a GP trained in simulation as the prior show clear convergence for 
the leftwards direction. The optimization from a uniform prior reaches a maximum speed of 0.5 cm/min and 
optimization using the GP trained in simulation as the prior reaches a maximum speed of about 0.6 cm/min. 
Both optimization from a uniform prior and using the GP trained in simulation as the prior converge to a speed 
of 0.5 cm/min for optimization in the rightwards direction. The optimization from a uniform prior converges 
after 20 evaluations and the optimization using the GP trained in simulation as the prior converges after 15 
evaluations. Table 3 shows the final optimized gait phases for both the leftwards and rightwards directions. For 
the leftwards direction the optimization does not seem to converge but the final input phases were 0°, 40°, 100° 
and 250° for body 1, body 2, leg 1 and leg 2 respectively. For the rightwards direction the converged input phases 
were 0°, 0°, 240° and 100° for body 1, body 2, leg 1 and leg 2 respectively. The lower speeds compared with those 
achieved using test gaits derived from optimizing in simulation could be due to the degradation of the IPMC 
performance with successive evaluations. This would also effect the optimization algorithm, possibly preventing 
it from converging to the optimum gait. As a consequence of the degradation of the IPMC actuators performance 
over time, the objective function being optimized over would in fact be time dependent. This would invalidate the 
assumption implicit in a Gaussian process, that successive evaluations of the same parameter set would be from 
identical distributions. This problem could possibly be ameliorated by using different policy representations and 
ensemble methods in the future.

Emerging Challenges
In the development of the 3D printing and learning-based control of IPMC actuators, several challenges have 
emerged that can be addressed by future research. One of the emerging challenges specific to 3D printing IPMCs 
is that increased printing resolution leads to increased failures in the printing process. This impedes the printing 
of thin-walled actuators that exhibit large displacements when actuated. This can potentially be ameliorated by 
a thorough study of the printing process variables. Additionally, alternative melt-processing-based 3D printing 
methods for Nafion precursor such as selective laser sintering (SLS) or use of alternative precursor materials, such 
as polystyrene in the FDM 3D printing process could also lead to increased resolution. In the use of Nafion pre-
cursor in an SLS 3D printing process, the critical inquiries would be into how the powder should be prepared and 
the required print settings for fabricating solid fused structures in Nafion precursor with high-resolution features, 
such as walls as thin as 0.1 mm or less. Alternative materials, such as Polystyrene, which are more easily printed 
than Nafion precursor through the FDM process, might also be considered. Materials such as polystyrene are 
more controllable in FDM 3D printing, because they are more rigid in their solid state, and have a lower melting 

Figure 7. Experimental setup for optimization showing the robot, and the target and camera used to acquire 
the robot’s position. Optimization and control is conducted using Matlab and Simulink Real-Time software 
package.
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temperature. However, a critical research consideration in adapting alternative materials to the print then func-
tionalize paradigm is that these materials require in situ functionalization processes. In the case of polystyrene, 
for instance, this material requires identification of an in situ partial sulfonation process to obtain the functional 
material, lightly-sulfonated polystyrene, which acts as an ion-exchange membrane.

Another challenge to the 3D printing of IPMCs is control of electrode development in the post printing pro-
cess, such that discrete electrode regions are generated without need for segmentation. This is especially needed 
for the manufacturing of complex multi-input-multi-output IPMC devices and systems, which require multiple 
electrode pairs. A potential solution to this challenge is incorporating a secondary material in the printing pro-
cess, specifically to control electrode development in the post-printing steps. Since electrode development using 
reduction processes, such as are used for developing platinum on Nafion membranes, can only deposit platinum 
ions in functional materials, secondary materials can prevent the development of electrodes in selected regions by 
masking the ion-exchange material. Alternatively, another approach might be to print electrode materials directly 
onto the precursor or functionalized material.
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Figure 8. Experimental and simulated performance for optimized gaits for both the leg-body-body-leg and 
leg-body-leg-body-leg configurations showing the positions of the rear leg, the central joint and the front leg 
respectively as functions of time: (a1) leg-body-body-leg configuration of real robot, (a2) position of front leg 
of leg-body-body-leg configuration, (a3) position of central joint of leg-body-body-leg configuration, (a4) 
position of rear leg of leg-body-body-leg configuration, (b1) leg-body-leg-body-leg configuration of real robot, 
(b2) position of front leg of leg-body-leg-body-leg configuration, (b3) position of central leg of leg-body-leg-
body-leg configuration and (b4) position of rear leg of leg-body-leg-body-leg configuration.
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Figure 9. Speed for each evaluation step in Bayesian optimization on the real robot done both from a uniform 
prior (without a model) and using the GP trained in simulation as the prior (with a model): (a) in the leftwards 
direction (b) in the rightwards direction.

Body 1 Body 2 Leg 1 Leg 2

Leftwards 0 40° 100° 250°

Rightwards 0 0° 240° 100°

Table 3. Optimized phases for Bayesian optimization on robot.
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In the area of motion control, performance degradation, especially when operated above the electrolysis volt-
age of the hydrating solvent84, is a significant emerging challenge to the control of IPMCs. This performance 
degradation is not well understood and can lead to significant under performance if performance degradation is 
not planned for or avoided. Since performance degradation changes the dynamic behavior of IPMCs over time, it 
invalidates control policies trained on an IPMC’s past performance. This is a challenge for conventional Bayesian 
optimization which treats each data point as drawn from an identical distribution. Moreover, since conventional 
control methods do not optimize the performance of a device over its functional lifetime, these methods could 
lead to accelerated degradation. To address this challenge, control techniques are needed that anticipate and 
plan for performance degradation. One possible approach is use of Gaussian processes to project IPMC perfor-
mance over time, based on general trends for similar IPMCs and real-time degradation data of the IPMC being 
controlled.

Conclusions
This paper described 3D printing for manufacturing and machine learning for control of example IPMC actuator 
components. A prototype modular reconfigurable soft crawling robot platform was described. The development 
of the platform was presented to illustrate the proof-of-concept of 3D-printing of IPMCs actuators and the appli-
cation of machine learning for effective motion control. Furthermore, this paper tested two hypotheses: (1) that 
Bayesian optimization will lead to convergence in fewer trials than a finite-difference policy gradient method 
making it more suitable and practical for controlling IPMCs; and (2) that prior knowledge from a dynamics 
model (especially a known achievable target value) will lead to convergence in fewer number of trials than simply 
optimizing from a uniform prior distribution. To investigate these hypotheses, the dynamics of the crawling robot 
were modeled and the model was used to test various learning-based control methods in simulation. Bayesian 
optimization was also applied directly to the crawling robot to investigate the practical impact of the degra-
dation on this motion control strategy. Simulation results indicate that Bayesian optimization employing prior 
knowledge in the form of a known achievable performance target does lead to much faster convergence than 
either Bayesian optimization without this knowledge or a conventional finite difference policy gradient method. 
Experiments directly on the crawling robot indicated that performance degradation is significant (reducing the 
crawling robot performance to less than a quarter of its initial achievable performance over the duration of opti-
mization). This invalidates the performance level explicitly incorporated as the target in the acquisition function 
for Bayesian optimization. Technically, this would also invalidate the assumption implicit in the manner in which 
the GP was used, that successive evaluations of the same parameter set would be from identical distributions. 
None-the-less, Bayesian optimization still demonstrated continuous performance improvement with successive 
trials on the crawling robot. These results also established proof-of-concept for continued advancement of more 
complex IPMC devices.
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