12 research outputs found

    Wrist-Worn RFID Antenna Printed on Additive Manufactured Flexible Substrate

    Get PDF
    We assess the feasibility of fabricating a flexible RFID wrist-worn antenna printed on a substrate manufactured using 3D-printing technology, as to enable full customization of the bracelet at low cost. Numerical results show adequate power transmission to the RFID chip. Also, the fabricated prototype shows enough flexibility to be bent around the wrist.info:eu-repo/semantics/acceptedVersio

    Miniaturization of patch antenna using metasurface

    Get PDF
    postprin

    In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures

    Get PDF
    Polymer nanocomposites have always attracted the interest of researchers and industry because of their potential combination of properties from both the nanofillers and the hosting matrix. Gathering nanomaterials and 3D printing could offer clear advantages and numerous new opportunities in several application fields. Embedding nanofillers in a polymeric matrix could improve the final material properties but usually the printing process gets more difficult. Considering this drawback, in this paper we propose a method to obtain polymer nanocomposites by in situ generation of nanoparticles after the printing process. 3D structures were fabricated through a Digital Light Processing (DLP) system by disolving metal salts in the starting liquid formulation. The 3D fabrication is followed by a thermal treatment in order to induce in situ generation of metal nanoparticles (NPs) in the polymer matrix. Comprehensive studies were systematically performed on the thermo-mechanical characteristics, morphology and electrical properties of the 3D printed nanocomposites

    Developing Novel 3D Antennas Using Advanced Additive Manufacturing Technology

    Get PDF
    In today’s world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas

    An electrically-small, 3-D cube antenna fabricated with additive manufacturing

    No full text

    An electrically-small, 3-D cube antenna fabricated with additive manufacturing

    No full text

    An electrically-small, 3-D cube antenna fabricated with additive manufacturing

    No full text

    An electrically-small, 3-D cube antenna fabricated with additive manufacturing

    No full text

    An electrically-small, 3-D cube antenna fabricated with additive manufacturing

    No full text

    Additive Manufacturing for Antenna Applications

    Get PDF
    This thesis presents methods to make use of additive manufacturing (AM) or 3D printing (3DP) technology for the fabrication of antenna and electromagnetic (EM) structures. A variety of 3DP techniques based on filament, resin, powder and nano-particle inks are applied for the development and fabrication of antennas. Fully and partially metallised 3D printed EM structures are investigated for operation at mainly microwave frequency bands. First, 3D Sierpinski fractal antennas are fabricated using binder jetting printing technique, which is an AM metal powder bed process. It follows with the introduction of a new concept of sensing liquids using and non-planer electromagnetic band gap (EBG) structure is investigated. Such structure can be fabricated with inexpensive fuse filament fabrication (FFF) in combination with conductive paint. As a third method, inkjet printing technology is used for the fabrication of antennas for origami paper applications. The work investigates the feasibility of fabricating foldable antennas for disposable paper drones using low-cost inkjet printing equipment. It then explores the applicability of inkjet printing on a 3D printing substrate through the fabrication of a circularly polarised patch antenna which combines stereolithography (SLA) and inkjet printing technology, both of which use inexpensive machines. Finally, a variety of AM techniques are applied and compared for the production of a diversity WLAN antenna system for customized wrist-worn application
    corecore