3,351 research outputs found

    On Small Satellites for Oceanography: A Survey

    Get PDF
    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the ocean sciences. Remote sensing has long been within the repertoire of tools for oceanographers to study dynamic large scale physical phenomena, such as gyres and fronts, bio-geochemical process transport, primary productivity and process studies in the coastal ocean. We argue that the time has come for micro and nano satellites (with mass smaller than 100 kg and 2 to 3 year development times) designed, built, tested and flown by academic departments, for coordinated observations with robotic assets in situ. We do so primarily by surveying SmallSat missions oriented towards ocean observations in the recent past, and in doing so, we update the current knowledge about what is feasible in the rapidly evolving field of platforms and sensors for this domain. We conclude by proposing a set of candidate ocean observing missions with an emphasis on radar-based observations, with a focus on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table

    Space-Air-Ground Integrated 6G Wireless Communication Networks: A Review of Antenna Technologies and Application Scenarios

    Get PDF
    A review of technological solutions and advances in the framework of a Vertical Heterogeneous Network (VHetNet) integrating satellite, airborne and terrestrial networks is presented. The disruptive features and challenges offered by a fruitful cooperation among these segments within a ubiquitous and seamless wireless connectivity are described. The available technologies and the key research directions for achieving global wireless coverage by considering all these layers are thoroughly discussed. Emphasis is placed on the available antenna systems in satellite, airborne and ground layers by highlighting strengths and weakness and by providing some interesting trends in research. A summary of the most suitable applicative scenarios for future 6G wireless communications are finally illustrated

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial

    Cooperative and non-cooperative sense-and-avoid in the CNS+A context: a unified methodology

    Get PDF
    A unified approach to cooperative and noncooperative Sense-and-Avoid (SAA) is presented that addresses the technical and regulatory challenges of Unmanned Aircraft Systems (UAS) integration into nonsegregated airspace. In this paper, state-of-the-art sensor/system technologies for cooperative and noncooperative SAA are reviewed and a reference system architecture is presented. Automated selection of sensors/systems including passive and active Forward Looking Sensors (FLS), Traffic Collision Avoidance System (TCAS) and Automatic Dependent Surveillance - Broadcast (ADS-B) system is performed based on Boolean Decision Logics (BDL) to support trusted autonomous operations during all flight phases. The BDL adoption allows for a dynamic reconfiguration of the SAA architecture, based on the current error estimates of navigation and tracking sensors/systems. The significance of this approach is discussed in the Communication, Navigation and Surveillance/Air Traffic Management and Avionics (CNS+A) context, with a focus on avionics and ATM certification requirements. Additionally, the mathematical models employed in the SAA Unified Method (SUM) to compute the overall uncertainty volume in the airspace surrounding an intruder/obstacle are described. In the presented methodology, navigation and tracking errors affecting the host UAS platform and intruder sensor measurements are translated to unified range and bearing uncertainty descriptors. Simulation case studies are presented to evaluate the performance of the unified approach on a representative UAS host platform and a number of intruder platforms. The results confirm the validity of the proposed unified methodology providing a pathway for certification of SAA systems that typically employ a suite of non-cooperative sensors and/or cooperative systems

    Unmanned Aerial Systems: Research, Development, Education & Training at Embry-Riddle Aeronautical University

    Get PDF
    With technological breakthroughs in miniaturized aircraft-related components, including but not limited to communications, computer systems and sensors, state-of-the-art unmanned aerial systems (UAS) have become a reality. This fast-growing industry is anticipating and responding to a myriad of societal applications that will provide new and more cost-effective solutions that previous technologies could not, or will replace activities that involved humans in flight with associated risks. Embry-Riddle Aeronautical University has a long history of aviation-related research and education, and is heavily engaged in UAS activities. This document provides a summary of these activities, and is divided into two parts. The first part provides a brief summary of each of the various activities, while the second part lists the faculty associated with those activities. Within the first part of this document we have separated UAS activities into two broad areas: Engineering and Applications. Each of these broad areas is then further broken down into six sub-areas, which are listed in the Table of Contents. The second part lists the faculty, sorted by campus (Daytona Beach-D, Prescott-P and Worldwide-W) associated with the UAS activities. The UAS activities and the corresponding faculty are cross-referenced. We have chosen to provide very short summaries of the UAS activities rather than lengthy descriptions. If more information is desired, please contact me directly, or visit our research website (https://erau.edu/research), or contact the appropriate faculty member using their e-mail address provided at the end of this document

    Near-Space Communications: the Last Piece of 6G Space-Air-Ground-Sea Integrated Network Puzzle

    Full text link
    This article presents a comprehensive study on the emerging near-space communications (NS-COM) within the context of space-air-ground-sea integrated network (SAGSIN). Specifically, we firstly explore the recent technical developments of NS-COM, followed by the discussions about motivations behind integrating NS-COM into SAGSIN. To further demonstrate the necessity of NS-COM, a comparative analysis between the NS-COM network and other counterparts in SAGSIN is conducted, covering aspects of deployment, coverage, channel characteristics and unique problems of NS-COM network. Afterwards, the technical aspects of NS-COM, including channel modeling, random access, channel estimation, array-based beam management and joint network optimization, are examined in detail. Furthermore, we explore the potential applications of NS-COM, such as structural expansion in SAGSIN communication, civil aviation communication, remote and urgent communication, weather monitoring and carbon neutrality. Finally, some promising research avenues are identified, including stratospheric satellite (StratoSat) -to-ground direct links for mobile terminals, reconfigurable multiple-input multiple-output (MIMO) and holographic MIMO, federated learning in NS-COM networks, maritime communication, electromagnetic spectrum sensing and adversarial game, integrated sensing and communications, StratoSat-based radar detection and imaging, NS-COM assisted enhanced global navigation system, NS-COM assisted intelligent unmanned system and free space optical (FSO) communication. Overall, this paper highlights that the NS-COM plays an indispensable role in the SAGSIN puzzle, providing substantial performance and coverage enhancement to the traditional SAGSIN architecture.Comment: 28 pages, 8 figures, 2 table
    • …
    corecore