989 research outputs found

    Wavelet analysis on symbolic sequences and two-fold de Bruijn sequences

    Full text link
    The concept of symbolic sequences play important role in study of complex systems. In the work we are interested in ultrametric structure of the set of cyclic sequences naturally arising in theory of dynamical systems. Aimed at construction of analytic and numerical methods for investigation of clusters we introduce operator language on the space of symbolic sequences and propose an approach based on wavelet analysis for study of the cluster hierarchy. The analytic power of the approach is demonstrated by derivation of a formula for counting of {\it two-fold de Bruijn sequences}, the extension of the notion of de Bruijn sequences. Possible advantages of the developed description is also discussed in context of applied

    The fine-structure of lambda calculus

    Get PDF

    Trusting Computations: a Mechanized Proof from Partial Differential Equations to Actual Program

    Get PDF
    Computer programs may go wrong due to exceptional behaviors, out-of-bound array accesses, or simply coding errors. Thus, they cannot be blindly trusted. Scientific computing programs make no exception in that respect, and even bring specific accuracy issues due to their massive use of floating-point computations. Yet, it is uncommon to guarantee their correctness. Indeed, we had to extend existing methods and tools for proving the correct behavior of programs to verify an existing numerical analysis program. This C program implements the second-order centered finite difference explicit scheme for solving the 1D wave equation. In fact, we have gone much further as we have mechanically verified the convergence of the numerical scheme in order to get a complete formal proof covering all aspects from partial differential equations to actual numerical results. To the best of our knowledge, this is the first time such a comprehensive proof is achieved.Comment: N° RR-8197 (2012). arXiv admin note: text overlap with arXiv:1112.179

    Higher Order Unification via Explicit Substitutions

    Get PDF
    AbstractHigher order unification is equational unification for βη-conversion. But it is not first order equational unification, as substitution has to avoid capture. Thus, the methods for equational unification (such as narrowing) built upon grafting (i.e., substitution without renaming) cannot be used for higher order unification, which needs specific algorithms. Our goal in this paper is to reduce higher order unification to first order equational unification in a suitable theory. This is achieved by replacing substitution by grafting, but this replacement is not straightforward as it raises two major problems. First, some unification problems have solutions with grafting but no solution with substitution. Then equational unification algorithms rest upon the fact that grafting and reduction commute. But grafting and βη-reduction do not commute in λ-calculus and reducing an equation may change the set of its solutions. This difficulty comes from the interaction between the substitutions initiated by βη-reduction and the ones initiated by the unification process. Two kinds of variables are involved: those of βη-conversion and those of unification. So, we need to set up a calculus which distinguishes between these two kinds of variables and such that reduction and grafting commute. For this purpose, the application of a substitution of a reduction variable to a unification one must be delayed until this variable is instantiated. Such a separation and delay are provided by a calculus of explicit substitutions. Unification in such a calculus can be performed by well-known algorithms such as narrowing, but we present a specialised algorithm for greater efficiency. At last we show how to relate unification in λ-calculus and in a calculus with explicit substitutions. Thus, we come up with a new higher order unification algorithm which eliminates some burdens of the previous algorithms, in particular the functional handling of scopes. Huet's algorithm can be seen as a specific strategy for our algorithm, since each of its steps can be decomposed into elementary ones, leading to a more atomic description of the unification process. Also, solved forms in λ-calculus can easily be computed from solved forms in λσ-calculus

    Design and Analysis of Cryptographic Pseudorandom Number/Sequence Generators with Applications in RFID

    Get PDF
    This thesis is concerned with the design and analysis of strong de Bruijn sequences and span n sequences, and nonlinear feedback shift register (NLFSR) based pseudorandom number generators for radio frequency identification (RFID) tags. We study the generation of span n sequences using structured searching in which an NLFSR with a class of feedback functions is employed to find span n sequences. Some properties of the recurrence relation for the structured search are discovered. We use five classes of functions in this structured search, and present the number of span n sequences for 6 <= n <= 20. The linear span of a new span n sequence lies between near-optimal and optimal. According to our empirical studies, a span n sequence can be found in the structured search with a better probability of success. Newly found span n sequences can be used in the composited construction and in designing lightweight pseudorandom number generators. We first refine the composited construction based on a span n sequence for generating long de Bruijn sequences. A de Bruijn sequence produced by the composited construction is referred to as a composited de Bruijn sequence. The linear complexity of a composited de Bruijn sequence is determined. We analyze the feedback function of the composited construction from an approximation point of view for producing strong de Bruijn sequences. The cycle structure of an approximated feedback function and the linear complexity of a sequence produced by an approximated feedback function are determined. A few examples of strong de Bruijn sequences with the implementation issues of the feedback functions of an (n+16)-stage NLFSR are presented. We propose a new lightweight pseudorandom number generator family, named Warbler family based on NLFSRs for smart devices. Warbler family is comprised of a combination of modified de Bruijn blocks (CMDB) and a nonlinear feedback Welch-Gong (WG) generator. We derive the randomness properties such as period and linear complexity of an output sequence produced by the Warbler family. Two instances, Warbler-I and Warbler-II, of the Warbler family are proposed for passive RFID tags. The CMDBs of both Warbler-I and Warbler-II contain span n sequences that are produced by the structured search. We analyze the security properties of Warbler-I and Warbler-II by considering the statistical tests and several cryptanalytic attacks. Hardware implementations of both instances in VHDL show that Warbler-I and Warbler-II require 46 slices and 58 slices, respectively. Warbler-I can be used to generate 16-bit random numbers in the tag identification protocol of the EPC Class 1 Generation 2 standard, and Warbler-II can be employed as a random number generator in the tag identification as well as an authentication protocol for RFID systems.1 yea
    corecore