631 research outputs found

    Robust Reduced-Rank Adaptive Processing Based on Parallel Subgradient Projection and Krylov Subspace Techniques

    Full text link
    In this paper, we propose a novel reduced-rank adaptive filtering algorithm by blending the idea of the Krylov subspace methods with the set-theoretic adaptive filtering framework. Unlike the existing Krylov-subspace-based reduced-rank methods, the proposed algorithm tracks the optimal point in the sense of minimizing the \sinq{true} mean square error (MSE) in the Krylov subspace, even when the estimated statistics become erroneous (e.g., due to sudden changes of environments). Therefore, compared with those existing methods, the proposed algorithm is more suited to adaptive filtering applications. The algorithm is analyzed based on a modified version of the adaptive projected subgradient method (APSM). Numerical examples demonstrate that the proposed algorithm enjoys better tracking performance than the existing methods for the interference suppression problem in code-division multiple-access (CDMA) systems as well as for simple system identification problems.Comment: 10 figures. In IEEE Transactions on Signal Processing, 201

    Adaptive Quadratic-Metric Parallel Subgradient Projection Algorithm and its Application to Acoustic Echo Cancellation

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Florence, Italy, 200

    Distributed Adaptive Learning with Multiple Kernels in Diffusion Networks

    Full text link
    We propose an adaptive scheme for distributed learning of nonlinear functions by a network of nodes. The proposed algorithm consists of a local adaptation stage utilizing multiple kernels with projections onto hyperslabs and a diffusion stage to achieve consensus on the estimates over the whole network. Multiple kernels are incorporated to enhance the approximation of functions with several high and low frequency components common in practical scenarios. We provide a thorough convergence analysis of the proposed scheme based on the metric of the Cartesian product of multiple reproducing kernel Hilbert spaces. To this end, we introduce a modified consensus matrix considering this specific metric and prove its equivalence to the ordinary consensus matrix. Besides, the use of hyperslabs enables a significant reduction of the computational demand with only a minor loss in the performance. Numerical evaluations with synthetic and real data are conducted showing the efficacy of the proposed algorithm compared to the state of the art schemes.Comment: Double-column 15 pages, 10 figures, submitted to IEEE Trans. Signal Processin

    Subsampling Algorithms for Semidefinite Programming

    Full text link
    We derive a stochastic gradient algorithm for semidefinite optimization using randomization techniques. The algorithm uses subsampling to reduce the computational cost of each iteration and the subsampling ratio explicitly controls granularity, i.e. the tradeoff between cost per iteration and total number of iterations. Furthermore, the total computational cost is directly proportional to the complexity (i.e. rank) of the solution. We study numerical performance on some large-scale problems arising in statistical learning.Comment: Final version, to appear in Stochastic System

    Robust Subspace Tracking Algorithms in Signal Processing: A Brief Survey

    Get PDF
    Principal component analysis (PCA) and subspace estimation (SE) are popular data analysis tools and used in a wide range of applications. The main interest in PCA/SE is for dimensionality reduction and low-rank approximation purposes. The emergence of big data streams have led to several essential issues for performing PCA/SE. Among them are (i) the size of such data streams increases over time, (ii) the underlying models may be time-dependent, and (iii) problem of dealing with the uncertainty and incompleteness in data. A robust variant of PCA/SE for such data streams, namely robust online PCA or robust subspace tracking (RST), has been introduced as a good alternative. The main goal of this paper is to provide a brief survey on recent RST algorithms in signal processing. Particularly, we begin this survey by introducing the basic ideas of the RST problem. Then, different aspects of RST are reviewed with respect to different kinds of non-Gaussian noises and sparse constraints. Our own contributions on this topic are also highlighted
    • …
    corecore