441 research outputs found

    Wildcard dimensions, coding theory and fault-tolerant meshes and hypercubes

    Get PDF
    Hypercubes, meshes and tori are well known interconnection networks for parallel computers. The sets of edges in those graphs can be partitioned to dimensions. It is well known that the hypercube can be extended by adding a wildcard dimension resulting in a folded hypercube that has better fault-tolerant and communication capabilities. First we prove that the folded hypercube is optimal in the sense that only a single wildcard dimension can be added to the hypercube. We then investigate the idea of adding wildcard dimensions to d-dimensional meshes and tori. Using techniques from error correcting codes we construct d-dimensional meshes and tori with wildcard dimensions. Finally, we show how these constructions can be used to tolerate edge and node faults in mesh and torus networks

    Unconstraining Graph-Constrained Group Testing

    Get PDF
    In network tomography, one goal is to identify a small set of failed links in a network using as little information as possible. One way of setting up this problem is called graph-constrained group testing. Graph-constrained group testing is a variant of the classical combinatorial group testing problem, where the tests that one is allowed are additionally constrained by a graph. In this case, the graph is given by the underlying network topology. The main contribution of this work is to show that for most graphs, the constraints imposed by the graph are no constraint at all. That is, the number of tests required to identify the failed links in graph-constrained group testing is near-optimal even for the corresponding group testing problem with no graph constraints. Our approach is based on a simple randomized construction of tests. To analyze our construction, we prove new results about the size of giant components in randomly sparsified graphs. Finally, we provide empirical results which suggest that our connected-subgraph tests perform better not just in theory but also in practice, and in particular perform better on a real-world network topology

    Optimal cube-connected cube multiprocessors

    Get PDF
    Many CFD (computational fluid dynamics) and other scientific applications can be partitioned into subproblems. However, in general the partitioned subproblems are very large. They demand high performance computing power themselves, and the solutions of the subproblems have to be combined at each time step. The cube-connect cube (CCCube) architecture is studied. The CCCube architecture is an extended hypercube structure with each node represented as a cube. It requires fewer physical links between nodes than the hypercube, and provides the same communication support as the hypercube does on many applications. The reduced physical links can be used to enhance the bandwidth of the remaining links and, therefore, enhance the overall performance. The concept and the method to obtain optimal CCCubes, which are the CCCubes with a minimum number of links under a given total number of nodes, are proposed. The superiority of optimal CCCubes over standard hypercubes was also shown in terms of the link usage in the embedding of a binomial tree. A useful computation structure based on a semi-binomial tree for divide-and-conquer type of parallel algorithms was identified. It was shown that this structure can be implemented in optimal CCCubes without performance degradation compared with regular hypercubes. The result presented should provide a useful approach to design of scientific parallel computers

    Compact Oblivious Routing

    Get PDF
    Oblivious routing is an attractive paradigm for large distributed systems in which centralized control and frequent reconfigurations are infeasible or undesired (e.g., costly). Over the last almost 20 years, much progress has been made in devising oblivious routing schemes that guarantee close to optimal load and also algorithms for constructing such schemes efficiently have been designed. However, a common drawback of existing oblivious routing schemes is that they are not compact: they require large routing tables (of polynomial size), which does not scale. This paper presents the first oblivious routing scheme which guarantees close to optimal load and is compact at the same time - requiring routing tables of polylogarithmic size. Our algorithm maintains the polylogarithmic competitive ratio of existing algorithms, and is hence particularly well-suited for emerging large-scale networks

    Embedding multidimensional grids into optimal hypercubes

    Full text link
    Let GG and HH be graphs, with V(H)V(G)|V(H)|\geq |V(G)| , and f:V(G)V(H)f:V(G)\rightarrow V(H) a one to one map of their vertices. Let dilation(f)=max{distH(f(x),f(y)):xyE(G)}dilation(f) = max\{ dist_{H}(f(x),f(y)): xy\in E(G) \}, where distH(v,w)dist_{H}(v,w) is the distance between vertices vv and ww of HH. Now let B(G,H)B(G,H) = minf{dilation(f)}min_{f}\{ dilation(f) \}, over all such maps ff. The parameter B(G,H)B(G,H) is a generalization of the classic and well studied "bandwidth" of GG, defined as B(G,P(n))B(G,P(n)), where P(n)P(n) is the path on nn points and n=V(G)n = |V(G)|. Let [a1×a2××ak][a_{1}\times a_{2}\times \cdots \times a_{k} ] be the kk-dimensional grid graph with integer values 11 through aia_{i} in the ii'th coordinate. In this paper, we study B(G,H)B(G,H) in the case when G=[a1×a2××ak]G = [a_{1}\times a_{2}\times \cdots \times a_{k} ] and HH is the hypercube QnQ_{n} of dimension n=log2(V(G))n = \lceil log_{2}(|V(G)|) \rceil, the hypercube of smallest dimension having at least as many points as GG. Our main result is that B([a1×a2××ak],Qn)3k,B( [a_{1}\times a_{2}\times \cdots \times a_{k} ],Q_{n}) \le 3k, provided ai222a_{i} \geq 2^{22} for each 1ik1\le i\le k. For such GG, the bound 3k3k improves on the previous best upper bound 4k+O(1)4k+O(1). Our methods include an application of Knuth's result on two-way rounding and of the existence of spanning regular cyclic caterpillars in the hypercube.Comment: 47 pages, 8 figure

    Efficient routing schemes for multiple broadcasts in hypercubes

    Get PDF
    "February 1990/Revised June 1990."--Cover. Cover title.Includes bibliographical references (p. 36-37).Research supported by the NSF. ECS-8552419 Research supported by Bellcore, Inc. and Du Pont. Research supported by the ARO. DAAL03-86-K-0171 Research supported by a fellowship from the Vinton Hayes Fund.George D. Stamoulis and John N. Tsitsiklis

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified
    corecore