7 research outputs found

    Performance Tuning of Dual-priority Delta Networks through Queuing Scheduling Disciplines

    Get PDF
    Differentiated Services (DiffServ) and other scheduling strategies are now widespread in the traditional, “best effort” Internet. These Internet Architectures offer Quality of Service (QoS) guarantees for important customers at the same time as supporting less critical applications of lower priority. Strict priority queuing (PQ), weighted round robin (WRR), and class-based weighted fair queuing (CBWFQ) are three common scheduling disciplines for differentiation of services in telecommunication networks. In this paper, a comparative performance study of the above PQ, WRR and CBWFQ queuing scheduling policies applied on a double-buffered, 6-stage Multistage Interconnection Network (MIN) that natively supports a 2-class priority mechanism is presented and analyzed using simulation experiments. We also consider a 10-stage MIN, to validate that the conclusions drawn from the 6-stage MIN apply to MINs of different sizes. The findings of this paper can be used by MIN designers to optimally configure their networks

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs

    Low Latency Audio Processing

    Get PDF
    PhDLatency in the live audio processing chain has become a concern for audio engineers and system designers because significant delays can be perceived and may affect synchronisation of signals, limit interactivity, degrade sound quality and cause acoustic feedback. In recent years, latency problems have become more severe since audio processing has become digitised, high-resolution ADCs and DACs are used, complex processing is performed, and data communication networks are used for audio signal transmission in conjunction with other traffic types. In many live audio applications, latency thresholds are bounded by human perceptions. The applications such as music ensembles and live monitoring require low delay and predictable latency. Current digital audio systems either have difficulties to achieve or have to trade-off latency with other important audio processing functionalities. This thesis investigated the fundamental causes of the latency in a modern digital audio processing system: group delay, buffering delay, and physical propagation delay and their associated system components. By studying the time-critical path of a general audio system, we focus on three main functional blocks that have the significant impact on overall latency; the high-resolution digital filters in sigma-delta based ADC/DAC, the operating system to process low latency audio streams, and the audio networking to transmit audio with flexibility and convergence. In this work, we formed new theory and methods to reduce latency and accurately predict latency for group delay. We proposed new scheduling algorithms for the operating system that is suitable for low latency audio processing. We designed a new system architecture and new protocols to produce deterministic networking components that can contribute the overall timing assurance and predictability of live audio processing. The results are validated by simulations and experimental tests. Also, this bottom-up approach is aligned with the methodology that could solve the timing problem of general cyber-physical systems that require the integration of communication, software and human interactions

    ATM virtual connection performance modeling

    Get PDF
    corecore