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Abstract

Latency in the live audio processing chain has become a concern for audio engineers and
system designers because significant delays can be perceived and may affect synchroni-
sation of signals, limit interactivity, degrade sound quality and cause acoustic feedback.
In recent years, latency problems have become more severe since audio processing has
become digitised, high-resolution ADCs and DACs are used, complex processing is
performed, and data communication networks are used for audio signal transmission in
conjunction with other traffic types. In many live audio applications, latency thresholds
are bounded by human perceptions. The applications such as music ensembles and live
monitoring require low delay and predictable latency. Current digital audio systems ei-
ther have difficulties to achieve or have to trade-off latency with other important audio
processing functionalities.

This thesis investigated the fundamental causes of the latency in a modern digital audio
processing system: group delay, buffering delay, and physical propagation delay and
their associated system components. By studying the time-critical path of a general
audio system, we focus on three main functional blocks that have the significant impact
on overall latency; the high-resolution digital filters in sigma-delta based ADC/DAC,
the operating system to process low latency audio streams, and the audio networking to
transmit audio with flexibility and convergence.

In this work, we formed new theory and methods to reduce latency and accurately pre-
dict latency for group delay. We proposed new scheduling algorithms for the operating
system that is suitable for low latency audio processing. We designed a new system
architecture and new protocols to produce deterministic networking components that
can contribute the overall timing assurance and predictability of live audio processing.
The results are validated by simulations and experimental tests. Also, this bottom-up
approach is aligned with the methodology that could solve the timing problem of gen-
eral cyber-physical systems that require the integration of communication, software and
human interactions.
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Chapter 1

Introduction

1.1 Motivation

On January 25, 1915, to celebrate AT&T’s first transcontinental telephone service, Alexan-
der Graham Bell made a phone call to his former assistant Dr Watson in San Francisco
from New York, repeating his famous statement: “Mr Watson, come here. I want you,”
Dr Watson replied, “It will take me five days to get there now!” [1, 2]. This is because
this telephone call was made from about 4134km away.

When the room temperature is at 20ºC, the sound speed1 is around 343.3 m/s [3], and
the delay from a sound source to a listener is about 2.91 milliseconds(ms) per meter.

Sound transducers, which convert audio signals into electric waves, drastically increase
the speed of dissemination of the signal to near the speed of light. The propagation speed
of electromagnetic signals within copper is about 0.66 to 0.88 of the speed of light.

Imagining a sound is loud enough to be heard, it takes approximately 4.5 hours to trans-
mit from San Francisco to New York, whereas with the telephone line, it takes at best
12ms on each way.

The audio and music industry is notoriously conservative when embracing new digital
technology that potentially disrupts the ‘vintage’ of nostalgic analogue sound. Despite

1Cs = 331.4(1 + 3.66 × 10−3 × θ)1/2 ≈ 331.4 + 0.6 × θ (m/s), where θ is temperature in Celsius.
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this, computer music and digital audio effects have become mainstream since Moorer
made the prediction in 2000 for future digital audio technology [4], as well as the au-
dio industry has shifted from the mainframe to do-it-yourself (DIY) culture with minia-
turised and democratised live applications [5].

Due to the rapid development of computer science and the Moore’s law in the semicon-
ductor industry, using a commodity computer with a Digital Audio Workstation (DAW)
has become common practice. High-Resolution, low power audio ADC/DAC devices
have become a necessity. Also, audio transmission is moving towards converged data
communication networks along with other types of traffic. These advancements and
conveniences sometimes bring more and unpredictable delay. The latency problem has
often been discussed in various audio/music communities, second only to the complaint
of ‘cold’ digital sound.

Human ears are sensitive to delays in many situations. For example, a standard telecom-
munication delay must be less than 250ms both ways to avoid deteriorating the conver-
sation significantly [6], whereas high-quality music ensemble over network shall have
end-to-end delay less than 25ms [7]. The human auditory system is also incredibly adap-
tive to the environment. Perhaps it is the unpredictable delay that makes people most
uncomfortable with. In music ensembles, excessive delay between two audio sources
makes musicians feel uneasy and hard to synchronise, and variations of delay makes
bands difficult to coordinate.

From the system engineering point of view, the typical audio processing chain includes
capturing, processing, transmission, routing and playback. The digital advancement
enhances all parts of audio processing chain in aspects of conversion quality, processing
capability, and cost-effectiveness of hardware and software. Meanwhile, the system
latency seems not to be improved at a similar pace. On the contrary, lots of ‘guesswork’
and ‘rule of thumb’ of delay estimations are used in a system design.
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1.2 Aim and Objectives

It is important to have accurate time delay parameters within a system design formula
that help to predict the known delay effects to the users and audiences. In this research,
we aim to answer the following research questions:

1. What are the sources of delay in the digital audio processing chain?

2. Can we accurately estimate the delay when designing a digital audio system?

3. Can we adopt deterministic approach in the system design to minimise the delay
in the digital audio system?

The challenge of this research is to establish the deterministic and quantitative frame-
work for evaluating the delay as a time parameter in system design from the bottom up.
Related research in this field is often statistical and empirical, treating time delay as an
uncontrollable parameters [8, 9, 10]. However, we aim to understand the root of this
problem and propose reasonable solutions by fulfilling the following objectives:

• Investigate and identify the sources of latency in the digital audio system chain.

– Investigate and test the delay of high-resolution ADC/DAC for audio con-
version.

– Test the delay of audio processing in Digital Audio Workstation (DAW) and
operating systems.

– Investigate the latency issues of audio networking.

• Develop accurate delay estimation methods for digital filters in ADC/DAC.

• Form a reduced group delay High-resolution Anti-aliasing Anti-image Filter (HAAF)
design.

• Propose a new OS scheduling framework that is capable of doing low latency
processing.

• Develop a deterministic audio networking architecture with supporting of conver-
gence.
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• Evaluate the performance of proposed methods and frameworks by using simula-
tion and experimental tests.

1.3 The Method of Research

1.3.1 The Systems Engineering Point of View

In the digital age, there is an increasing human expectation of the ‘smooth’ and ‘quick’
response from digital systems, especially when dealing with interactive audio and video
applications. In other words, being ‘real-time’ is not good enough. Users require a
satisfactory responsiveness of the system - a predictable low latency.

In engineering science, latency is a measure of time delay experienced in a system and
can be defined as the time delay between the input and output signals of a real-time
signal processing system. Different applications have different latency requirements for
real-time signal processing. Live audio processing can be considered as real-time audio
processing with latency constraints. In a timing-driven system design and validation
methodology for multi-input and multi-output scenario [11], the quantifiable constraints
can be

1. On the same input to or output from a task: a rate constraint.

2. Between two different inputs or outputs: an input correlation constraint and an
output correlation constraint.

3. From an input of a task to its output: a latency constraint or an arbitrary separa-
tion constraint, which is useful to define response time constraints.

The latency requirement in live audio processing is equivalent to the “response time
constraint” from the system design point of view.
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1.3.2 The Causes of Latency and Latency Taxonomy

The overall latency is caused by different components in the digital audio processing
chain, and there are different classifications of the causes of latency in literatures range
from 2002 to 2016 [12, 13, 14, 15, 16, 17, 18, 19]. However, in principle, they can be
categorised into the following three factors:

• (a) Physical propagation latency (speed of sound and speed of light): Gp.

• (b) Buffering digital samples caused latency: Gb.

• (c) The phase delay of digital filters (group delay): Gd.

The delay components described in the literature in relation to these three factors can be
depicted in the following Figure 1.1.

Figure 1.1: Different descriptions of the causes of latency in audio systems

Among these three factors, often (b) ‘buffering’ is the means to mitigate the problem of
non-deterministic characteristics of some parts of the system. For example, buffering
is used in computer sound subsystem as digital buffering audio input/output hard-
ware, in the network interface to carry out packetisation, serialisation, de-jitter, and
queuing tasks, in the bus system, and for the operating system scheduling algorithms.
In other cases, buffering is used to accumulate a block of samples for further operation
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such as frequency based processing (Latency of the application in out of frequency
domain). The delay of a digital filter (c) can be observed from ∆Σ ADC/DAC devices
because of their internal decimator and interpolator filters. Many DSP algorithms and
SRC processes use these types of digital filters.

Some latency components are the combination of these three factors, for example, DSP
algorithms that involve block based processing (b) and digital filters (c). Asynchronous
SRC (ASRC) uses FIFO (b) and multiple FIR filters (c). Network delay also includes
(a).

1.3.3 Reduce the Latency and Design Trade-Off

The overall latency can be reduced by minimising the latency of each component in the
audio processing chain. However, in practice, there is often considerations and trading-
off of design requirements over the whole system. For example, one can use ADC/DAC
architectures other than ∆Σ based. However, the high resolution cannot be achieved in
a cost effective way, and the analogue circuit and hardware cost can be very expensive
in doing so. Therefore the effort can be made to use reduced group delay decimation
and interpolation filter design for ∆Σ based ADC/DAC.

To reduce the buffer size, the system can be carefully designed to ensure that the real-
time audio processing path is dealt with a time-deterministic manner. That requires not
only fast enough computation, but also meeting the specific time deadline. This implies
avoiding the use of non-real-time operating systems in the time critical path.

In addition, the DSP algorithms need to be designed in mind with minimum buffer re-
quirements such as:

1. Use time domain sample based process, such as filter banks, rather than the frame
based approach, such as FFT based processes [20, 21, 22].

2. Use reduced filter delay design such as minimum phase design, or linear phase
filter that is optimised towards group delay.

In the large scale audio venue employing multiple audio channels, audio networking is
a essential component. Current audio network technologies, such as AES50, and Ether-
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sound, can achieve very low latency using time division multiplexing (TDM) methods,
but these solutions require the sample rate of multiple channels to be rectified into the
one sampling frequency or integer multiplication of that sampling frequency. Thus the
SRCs are needed, which introduces additional latency that may be larger than the net-
work latency itself.

1.3.4 Report Accurate Latency

There are misconceptions about zero delay design in the audio system. Bufferless pro-
cessing often is regarded as ‘zero delay’ without considering the group delay caused by
phase response. The delay of audio plugins and various DSP algorithms is either only
reported incorrectly (using only buffer delay) or regarded as ‘inherent delay’ that is not
accurately estimated.

The modern audio system is becoming complex with a large number of components and
the accumulated delay can be significant. ‘Live’ audio systems that require processing
audio input and output within certain time constraints because of human perception and
interaction, are indeed examples of a Cyber-Physical Systems (CPS). Here, the current
latency problem of the digital audio system is similar to that which exists in CPS, which
is lack of timing accuracy reporting from different levels of abstract layers [23]. For
example, the system can be described as a layered structure as in Figure 1.2.

Figure 1.2: Different layers of delay in digital audio system

Often the lower layers of the system such as network delay and operating system delay
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cannot be deterministic. They are often statistically measured as QoS values, examples
like “98% tasks can be scheduled within 200µs” or “20ms when the network is not
congested”. These ambiguities affect the upper layer system design in terms of timing
accuracy. The example of the latency of web audio is hard to manage due to it builds on
top of various intermediate software layers [24].

1.3.5 Group Delay and Buffering Delay

Group delay and buffering are two distinguishable delay factors. Group delay is signif-
icant if it is caused by high order digital filtering. It is intrinsic to digital filters’ time
domain performance. Buffering is used for many different reasons. However, it is fun-
damentally to mitigate the non-deterministic time events. It is often set up for the worst
case scenario. With propagation delay, they all contribute to the overall system latency.

To the best knowledge of the author, audio latency has not been clearly defined and
evaluated at the system components level, and there is lack of low level design methods
to optimise the system latency with consideration of various trade-offs of design options
for the systems. This research investigates these areas using the methodology described
in the following section.

1.3.6 Digital Audio System Signal Flow

We can model a typical digital audio system using the block diagram as in Figure 1.3.
Figure 1.3 describes the general case of a digital audio system that can support live audio
processing.

Figure 1.3 shows the typical components in a digital audio system with their logic and
physical connections. The multichannel audio sources can be recorded in live and input
from the block ‘P1’ or the off-line sound files in block ‘P2’. The ‘Routing Matrix’ acts
as the audio bus to route audio channels according to the user configurations. Some of
the audio sources are routed to the feature extraction and control block ‘B3’. The output
audio signals are transmitted to the different destinations.
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Figure 1.3: Digital audio system

For analysing latency along, the block diagram can be further refined using the signal
flow graph that has been developed by Mason in 1956 [25]. This can be modelled as
a ‘signal flow graph’ shown in Figure 1.4. The solid lines represent the audio signal
flows and the dashed lines represent the control message flows. To use the system for
low latency processing, a sub-route can be identified as the time critical path.

Figure 1.4: Signal flow graph model of audio processing system
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The system can be represented as a graph Gsys = (V, E), V are vertices, and E are
edges. In this example, we have V = {S1, S2, S3, ...S8}, E = {a, b, c, ...j}. The time of
system input and output that the user is interested in can be regarded as the critical path
of the system as Csys ⊆ Gsys = (Vc, Ec). where Vc and Ec represent the vertices and
edges of critical path subset. In this example Vc = {S1, S3, S6, S8}, E = {a, e, j}

Let Gbi, Gdi be the buffering and the group delay of node Si. Gpi is the propagation
delay between two connected points Si. We can define the interested delay of the digital
audio system as Equation (1.1) :

Dsys =
∑
i∈Vc

(Gbi + Gdi) +
∑
i∈Ec

Gpi (1.1)

For audio signal transmitting within a limited geographic area such as within computers
and peripherals, the Gp is in the range of picoseconds that can be ignored.

1.3.7 System Engineering Approach

The model in Figure 1.4 and Eq. (1.1) shows the system level latency and how it is
composited. In this work, we investigate three main subsystems in the digital audio pro-
cessing chain including ADC/DAC, operating system and audio networking. Both white
box and black box approaches are used to carry out the detailed tests of some components
latencies for part of the system with the properly designed methodologies. The results
and findings then lead to the analytical approaches to the sources of the problem. Using
the white box approach, we analyse and propose new mathematical models, optimisa-
tion methods, and a new system architecture, that overcome the problem of ambiguous
reports of system latency values between system layers and provide a deterministic time
domain performance.

Therefore, in this research we investigate the roots of audio processing latency using
a bottom-up and deterministic approach, to identify and simplify the common factors
that affect the overall latency, and to evaluate and estimate the latency quantitatively. In
short, the method of the research is to make Eq. (1.1) determinable and try to minimise
each term of it.
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1.4 The Scope of the Research

The methods adopted in this research do not try to address the system design question,
which is how to produce bespoke digital systems that satisfy the latency requirements.
However, this research investigates the latency problems in three of the most significant
parts of digital audio processing chain:

1. Latency caused by the ∆Σ based audio ADC DAC.

2. Latency caused by the General Purpose Operating System (GPOS) based audio
processing platform.

3. Latency in the converged network infrastructure for the professional audio trans-
mission.

Capturing (ADC) and playing back audio (DAC) are two most front-end interfaces be-
tween the analogue world and the digital world. We shall ask these questions: Is there
any delay when we capture and playback the audio signal in the high-resolution digital
era? What causes the delay? Can it be reduced?

The advantage of GPOS based system is to processing digital audio with tremendous
flexibility and convenience. There are versatile DSP algorithms and almost infinite com-
binations of them to process audio. We focus on the fundamental questions that cause the
processing delay in GPOS. Why do we need to wait for a number of audio samples to be
accumulated (buffered) before processing them? Does processing algorithms cause the
delay? Can all complexing processing tasks be scheduled properly so that the outcome
delays are predictable?

In the audio networking area, is it the right direction to use a common networking in-
frastructure to transmit audio? What are the problems with it? How can we improve
it so that the delay of audio transmission can be predictable and minimised? Can au-
dio transmission co-exist with other types of traffic? How to transmit the multichannel
audio streams each with different bandwidths and sampling rates?

These questions are reviewed and researched with consideration of human perception
of delay and interactions, which give us the guidance of the magnitude of each problem
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and the time constraints that we can work on. The outcomes of research are not limited
to these three aspects. They address the more fundamental causes of latency, and the
concepts and theory can be applied in broader perspectives of the signal processing chain.

1.5 The Organisation of the Thesis

Chapter 2 reviews the state of the art of current research concerning system latency in
audio processing including the perception of latency and the tolerable latency of human
interaction; the typical latency values in the digital audio processing chain; OS process-
ing delay; the group delay of high order filters; and networking delay. Other relevant
delay components such as the algorithm delay, the architecture delay are also discussed.

Chapter 3 presents the test of ∆Σ ADC/DAC delay and an evaluation of time domain
properties of different multistage multirate filters that cause the delay in ∆Σ ADC/DAC.
A theory of accurate prediction of delay and formalised delay as an objective function of
multistage design parameters. A simplified method to find the overall balanced design
that takes delay into account. An objective measurement of delay in minimum phase
system is also presented with a quantitative analysis.

Chapter 4 presents the updated latency measurements of the desktop OSes with DAWs.
Particularly, the latency issues under heavy CPU load caused by audio processing are
discussed when using commodity General Purpose Operating System (GPOS). A new
time deterministic OS scheduling framework specifically designed for low latency audio
processing is proposed. The simulation results in comparison with classic rate mono-
tonic scheduling are presented and discussed.

Chapter 5 proposed a new low latency audio network architecture and protocols that
can support different audio sampling rates in conjunction with other non-real-time data.
The proposed architecture provides the deterministic audio data delivery that can achieve
the stability that below audible jitter. The software simulation and hardware prototype
testing of it are also presented.
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1.6 Contributions

Chapter 1: A new latency taxonomy based on meta research and system analysis.

Chapter 3: A latency measurement of modern audio ∆Σ ADC/DAC and a comprehen-
sive evaluation of time domain performance of different types of multistage and multi-
rate filters for ∆Σ ADC/DAC.

Chapter 3: A simplified optimal design sets search method for multistage and multirate
filter design for ∆Σ ADC/DAC.

Chapter 3: Formalisation of group delay as an objective function of multistage filter
design parameters and proposed a new multi-objective optimisation method to design
filters for ∆Σ ADC/DAC including overall delay.

Chapter 3: A set of new objective measurements formulas for Minimum Phase (MP)
filters and the evaluation over High-resolution Anti-aliasing Anti-image Filter (HAAF).

Chapter 4: A comprehensive latency test using modern DAWs and OSes with consider-
ation of internal audio load and cross-adaptive effects.

Chapter 4: Time Deterministic Cyclic Scheduling (TDCS) - a new scheduling frame-
work for low latency audio processing with simulation results.

Chapter 5: Design new low latency deterministic network protocol - Flexilink.

Chapter 5: A comprehensive performance evaluation of Flexilink against other priority-
based network architectures with simulation and hardware test.

1.7 Associated Publications

Chapter 3, Section 3.1 was published as

• Y. Wang, “Latency Measurements of Audio Sigma Delta Analogue to Digital and
Digital to Analogue Converts,” in 131st AES Convention, New York, NY, USA,
2011. [26].
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The author of the thesis wrote and did the main research.

Chapter 3, Section 3.2 was published as

• Y. Wang and J. Reiss, “Time Domain Performance of Decimation Filter Architec-
tures for High Resolution Sigma Delta Analogue to Digital Conversion,” in Audio
Engineering Society Convention 132, 2012. [27].

The author of the thesis wrote and did the main research. The other author had an editing
and supervising role.

First part of Chapter 3, Section 3.3 was published as

• X. Zhu, Y. Wang, W. Hu, and J. D. Reiss,“Practical considerations on optimising
multistage decimation and interpolation processes,”in Digital Signal Processing
(DSP), 2016 IEEE International Conference on, 2016, pp. 370–374. [28].

The author of the thesis wrote the main paper, discovered the regularity of optimal
solution sets, and proposed the simplified search and balanced design algorithm. Xi-
angyu Zhu implemented factorisation algorithm as the core part of the simplified search
method, as well as other implementations and obtaining the testing results. Other authors
had an editing and supervising role.

Chapter 4, Section 4.1 was published as

• Y. Wang, R. Stables, and J. Reiss, “Audio Latency Measurement for Desktop Op-
erating Systems with Onboard Soundcards,” in Audio Engineering Society Con-
vention 128, 2010. [12].

The author of the thesis wrote and did the main research. Other authors had an editing
and supervising role.

Chapter 5, Section 5.1 was published as

• Y. Wang, J. Grant, and J. Foss,“Flexilink: A unified low latency network architec-
ture for multichannel live audio,”in 133th Audio Engineering Society Convention,
2012. [29].

The author of the thesis wrote the main paper. The design of new network protocol and
architecture were the results of the discussion with John Grant, who shared the experi-
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ences and ideas from his audio over ATM work and audio networking standardisation
work. Other authors had an editing and supervising role.

Chapter 5, Section 5.2 was published as

• Y. Song, Y. Wang, P. Bull, and J. D. Reiss, “Performance Evaluation of a New
Flexible Time Division Multiplexing Protocol on Mixed Traffic Types,”in Ad-
vanced Information Networking and Applications (AINA), 2017 IEEE 31st Inter-
national Conference on, 2017, pp. 23–30. [30].

The author of this thesis contributes the main idea of simulation, the design of simulation
model, and the main testing strategy. Yangyang Song did the implementation and the
test. Yangyang Song also written the first draft with author’s help in structure and final
modification. Other authors had an editing and supervising role.

1.8 Unpublished Results

Second part of Chapter 3, Section 3.3.

• The quantitative analysis of delay of high-resolution anti-aliasing and anti-image
filter.

Chapter 4, Section 4.2.

• Time Deterministic Cyclic Scheduling (TDCS) - A new scheduling framework for
real-time Multimedia OS.

Chapter 5, from architecture design to new hardware testing results.

• Towards true convergence, the architecture and performance evaluation of dy-
namic TDM system: Flexilink.

We aim to publish these results in the near future.
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1.9 Other Relevant Publications

There are other research work the author contributed. They helped to reinforce the find-
ings of this research, to understand the general problem in current audio processing soft-
ware and hardware architecture, and to inspire the proposed solutions:

• Y. Wang, X. Zhu, and Q. Fu, “A Low Latency Multichannel Audio Processing
Evaluation Platform,”presented at the Audio Engineering Society Convention
132, 2012. [31].

• N. Jillings and Y. Wang, “CUDA Accelerated Audio Digital Signal Processing
for Real-Time Algorithms,”in Audio Engineering Society Convention 137, 2014.
[32].

• N. Jillings, Y. Wang, J. D. Reiss, and R. Stables, “JSAP: A Plugin Standard for
the Web Audio API with Intelligent Functionality,”in Audio Engineering Society
Convention 141, 2016. [33].

• N. Jillings, Y. Wang, R. Stables, and J. D. Reiss,“Intelligent audio plugin frame-
work for the Web Audio API,”2017. [34].
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Chapter 2

Literature Survey

In this chapter, we discuss the perception of latency and the tolerable latency of hu-
man interaction. The typical latency values in the digital audio processing chain are
reviewed. We review the state of the art for different aspects of the system latency of
audio processing within the research scope, including system latency test, delay in ∆Σ
ADC/DAC, the group delay of digital filters, OS scheduling delay, and delay in audio
networking.

2.1 Perception of Latency

The human ear is very sensitive to time properties of audio signals. The auditory per-
ception of latency effects many live audio applications. In many cases, if the delay
between two sequential expected events is beyond a certain threshold, it causes negative
effects. In most cases, people prefer the lowest latency possible. Table 2.1 summarised
the typical latency thresholds for different applications [6, 35, 36, 37, 7, 38].

For musical ensembles, the performance can be naturally synchronised when the latency
is between 8ms to 25ms [37, 7], where the latency is equivalent to the time sound travels
in common distances of players. If the latency is greater than the upper threshold, the
performance can be seriously deteriorated due to the difficulty to synchronise. If the
latency is shorter than the lower limit, the performance could result in ‘racing’ effect. In
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Table 2.1: Perceptual Latency Thresholds

Application Threshold
(up limit)

Threshold
(lower limit)

Telecommunication 250ms Unknown
Interactive VR 50ms Zero
Action to Sound 10-30ms Zero
Music Ensemble 25ms 8ms
Live monitoring 10-30ms Zero
In-ear monitoring 3-10ms Zero

this case, each individual performer constantly feels falling behind and tries to accelerate
their tempo to catch up. In addition, the visual cue of seeing conductor and companions
plays an important role in synchronisation.

For audio monitoring, the tolerable latency varies according to different types of play-
ing. In general, the 2007 research by Lester et al. found the vocalist and brass player
prefer lowest latency (zero delay) in the in-ear monitoring situation, whereas for key-
board player, the performer is more tolerant for higher latency values [36]. For computer
instruments that the tolerable latency normally shall be less than 10ms [39, 38]. It may
vary depending on the different instruments [35].

For multichannel audio processing, the latency of each channel needs to be quantified
so the correct compensation can be made to maintain the stereo image: a few sample
differences between channels will cause colourisation of the mix [40].

2.2 Trends in Digital Audio Systems

A digital audio processing system used in professional audio can be depicted as the
diagram in Figure 2.1. It normally consists most or all of the following components.
Each of these components could contribute to the overall latency.

• analogue to digital conversion (ADC)
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• digital to analogue conversion(DAC)

• audio routing and mixer (Mixer)

• digital signal processing (DSP)

• audio networking

• interfaces for external software and hardware plugins (Plugin)

• digital sample rate conversion (SRC)

Figure 2.1: Digital audio system

In recent years, various digital technologies have been developed to enhance functional-
ities and features of each component of the system including high-resolution conversion,
multi-inputs and multi-outputs, downsampling and upsampling, plugin architecture, and
flexible routing/mixing capacity for a large number of channels. These trends can be
summarised below:

• It becomes ubiquitous, compact and power efficient as well as dealing with an
increased number of bits resolution. This enables portable and handhold devices
to process audio signals with high resolution.

• The processing becomes more intelligent than before. It is common to process a
large number of channels with intelligent functionalities such as automixing.

• It requires convenient and flexible distribution, transmission, and routing, often
in conjunction with other multimedia data and control signals, hence audio net-
working is used rather than the traditional snake cables.
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The oversampling ∆Σ ADC/DAC architecture is used to meet high-resolution (>20bits)
requirement with low hardware cost. Currently, it is the only type of audio ADC/DAC
that can be used in portable devices. The latency caused by it is due to the internal high
performance digital filters.

The Mixer and DSP components are either in a hardware console or computer-based
digital audio workstation (DAW) form. For a computer based system, it is difficult to
schedule time-deterministic tasks at the audio sample rate. Therefore various buffers are
used to mitigate this non-deterministic timing problem, which causes additional latency.
For live Pro-audio applications, a dedicated hardware console is commonly used so that
the low latency can be achieved and managed.

The audio specific network technology adopts protocols and architectures designed for
transmitting audio signals which can achieve low latency up to a few samples such as
AES50 [41]. However, the trend is to transmit audio over common network architec-
ture such as Ethernet [42, 43] or Internet Protocol (IP) based infrastructure [44]. Audio
processing can be part of a large multimedia system including audio, video and lighting.
Audio signals are transmitted with various resolution requirements at different stages
including mixing, broadcasting, and on-line streaming. Using a shared network infras-
tructure provides a better managed system and economical solution.

Multiple audio streams sources can be at different sampling rates. The sample rate con-
version (SRC) is needed to convert them into the same sampling frequency for further
processing, for example, to multiplex them at the same rate for transmitting over audio
networking. In addition, downsampling and oversampling are very common functions
for audio applications such as performing non-linear dynamic range compression at a
higher sampling frequency to avoid unwanted aliasing noise. The SRC can cause la-
tency when it needs to be done in a live situation.

Overall, these features sometimes cause negative effects on system latency. In some
situations, the latency requirements are neglected. In others, the delay is used as one
of the trade-off parameters of the system design, or is treated as an unpredictable value
with certain statistical properties [9, 10].
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2.3 Latency In Digital Audio System

Table 2.2 ([12, 26, 15, 45, 18, 19]) lists the typical latency values of each component in
the audio processing chain. The latencies caused by various components are almost on
a similar level of scale, except for using the Internet in uncontrolled conditions.

Table 2.2: Components latency in digital audio processing chain
 

Components Typical  
latency Remark 

ADC (ΔΣ based) 0.25-1ms Most ADC/DAC use cascaded linear phase 
filters causing the delay from fewer than 10 
samples to about 50 samples.  Higher sampling 
frequency and less stringent filter performance 
have the lower delay. DAC (ΔΣ based) 0.25-1ms 

Mixer/DSP 

DAW 5-10ms DAW uses the block-based processing requires a 
buffer of 64 - 2048 samples typically.  
Hardware-based console works with sample-
based DSP algorithms to reduce the latency 
down to a few samples. 

Console 0-2ms 

Networking 
Pro-Audio 0.04-5ms 

Complex factors affect the latency of networked 
audio. Controlled network tends to have a lower 
delay than open Internet. Commonly, the TDM 
based system has a smaller delay than the best-
effort based.  Uncompressed audio has a lower 
delay than the compressed codec. 

Internet Up to a few 
seconds 

SRC 0.5-10ms 
The sampling rate conversion scenario that 
requires a large number of up-sampling and 
down-sampling filters causes more latency. 

Audio 
Plugins 

Sample 
based 

Group delay + a 
few sample 
delay (e.g. 
0.08ms) For software audio plugin, latency depends on 

the buffer of the software that conceals the 
algorithms buffer requirement. Hardware inserts 
introduce additional ADC/DAC delay. 

Frame based 

Frame length * 
sampling 
frequency (e.g. 
1024 samples at 
48k Hz = 20ms) 

Processing Buffer ~ to 200ms 

The system buffer is used to cope with kernel 
level scheduling variability. A typical value is 
between 10 to 200ms.  Audio processing using 
pre-emptive real-time OS kernel features can 
have lower processing buffer delay. 

 

37



The term ‘audio plugin’ has different meanings according to the context. People com-
monly refer it to the reusable software digital audio processing algorithms with agreed
application programming interfaces (API). However, it may also refer to the standalone
analogue or digital hardware devices which can be plugged in to the audio processing
chain via hardware interfaces. Therefore the latency of these devices or software com-
ponents can vary depending on the application. An analogue ‘audio plugin’ sometimes
refers to a hardware ‘insert’. The latency of this type of plugin is similar to the latency
caused by ADC/DACs.

For software plugins, the algorithm architecture affects the latency. For time domain
sample based processing, the latency is affected by the minimum size of the buffer that
it can achieve, for example 4-8 samples buffer in some designs, plus the group delay of
the filters. If the algorithm uses frame based processing, the latency is normally larger.
For example, the frame length of 512 to 2048 samples is not uncommon for plugins
that do frame based processing, which is equivalent to 10ms to 40ms latency at 48 kHz
sampling frequency.

2.4 System Latency

2.4.1 Latency Constraints

The maximum allowed latency in audio processing system varies between different ap-
plications.

• One way streaming. In this situation, the delay from sound source to end user
can be hundreds of milliseconds to a few seconds such as most live broadcasting.
In audio streaming over a packet switched network, the one-way delay can be at
the magnitude of seconds, and still be regarded as ‘live’ [46]. The sound source
does not need the feedback from the recipients. However, the recipients expect
the uninterrupted audio signal once the event starts.

• Interaction and music ensemble. In conference calls, latency needs to be less
than 250ms [6] to ensure the quality of conversation. For music ensemble over
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networking or different studios that connected with audio system, the latency be-
tween performers should be equivalent to the time travel between them in a nature
concert environments such as 8ms to 25ms (3 to 9 meters away) [47] [37].

• Audio monitoring. In the situation of audio monitoring and in-ear monitoring,
musicians hear the audio from different paths. The direct path from sound source
to human ears, and the processed audio from monitor speaker or in-ear head-
phones. The time difference between these two sources could make musicians
uncomfortable depending on the type of performance. A comprehensive testing
results in 2007 can be found at [36].

• Binaural audio. The interaural time difference (ITD) plays an essential role in the
localisation of sound. In binaural audio processing, a few samples time difference
between two channels will cause differences in the stereo image.

• Multichannel mixing. When mixing multichannel audio signals that have time
differences, one sample difference will cause the comb filter effects. When record-
ing a sound source with multiple microphones, the signals need to be aligned with-
out delay before the mixing process. [40, 48, 49]

2.4.2 The System Latency Components

The typical values of components’ latency in the modern digital audio processing sys-
tem have been presented in Section 2.3 and detailed in Table 2.2. As discussed in Sec-
tion 1.4, we focus on the three main components in the audio processing chain: (1)
∆Σ ADC/DAC; (2) Operating System (OS); (3) audio networking. The latency of ∆Σ
ADC/DAC is caused by the group delay of high order filters that is represented as Gdi in
Eq. (1.1). The group delay of digital filter has wider implications than just in ADC/DAC.
We will review it in Section 2.5. The OS delay is closely linked to the scheduling per-
formance within a mixed criticality environments. It will be reviewed in Section 2.6.
The current challenges and solutions of audio networking are discussed in Section 2.7.
The delay caused by OS and networking delay appear as Gbi in Eq. (1.1).
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2.4.3 GPOS Audio Processing Delay Test

Over the past 30 years, the increasing power of the personal computer drives the recent
tendency towards using commodity computer based digital audio workstations (DAW)
in live performance or recording environments. There are obvious advantages of using
computers, which can be flexibly configurable with abundant software packages and
plug-ins to replace or emulate some cumbersome hardware devices. With “High Defi-
nition Audio” being standardised as the onboard soundcard’s hardware architecture for
personal computers, and with advances in audio APIs, it is interesting to find out the
latency of DAW based system.

Professional digital consoles normally have overall system latency no more than 2 ms.
There are concerns that surround the use of computer based DAWs for low latency work
(less than 10ms) due to unexpected jitters in sound when the CPU is heavy loaded [50].
The scale of the delay can beyond the perception thresholds (see Section 2.1 and Section
2.3). Therefore, professional audio interface cards provide hardware based monitor sub-
mixing or bypass routing for the purpose of offloading the CPU. It was indeed the audio
community’s initiative in 2000 that triggered the development of real-time Linux patch
for Linux Operating System Kernel [51].

In 1998, researchers presented the results and discussed the causes of audio process
latency of common operating systems [52]. It was suggested that the ideal latency time
could be 3ms, and revealed the difficulties involved in achieving this. In 2001, research
[53] indicated that the proper architecture of audio API stacks should keep the latency
in the audio processing path constant without being affected by heavy CPU load tasks.
The most promising low latency audio layers at that time were Linux ALSA (Advanced
Linux Sound Architecture) and Mac OS X CoreAudio. At that time the tasks used in
order to cause CPU load were not from audio dependent applications.

Audio driver architectures have evolved over the years, along with live audio appli-
cations and hardware platforms. The adaptive audio effects [54] and intelligent audio
production [55] which use feature extraction to create control signals for the process-
ing of sound have often been proven to have high computational cost, leading to heavy
CPU loads. Most latency test of DAWs did not consider the latency of system under the

40



heavy CPU load from the audio processing itself [52, 53, 13]. With the appropriate side-
chain design, multi-threading support from audio host platform and the concurrency of
the software architecture, the hypothesis can be made that the intelligent subsystem and
multiple audio processing paths should not affect the real time audio processing path
even when the CPU load is coming from the audio application itself. The research that
tested this was carried out by the author in [12]. The detailed testing plan and results are
presented in Section 4. It revealed the problem of buffer underrun and unexpected error
might link to the scheduling mechanism of GPOS that is used to carry out low latency
audio processing. The related literature of OS scheduling is reviewed in Section 2.6.

2.4.4 Algorithm Latency

As described by J.A.Moorer in 2000 [4], we are in the ‘supernatural’ recording era. Au-
dio and music can be extensively crafted in real-time or at the post processing stage.
Digital audio effects [56] are the powerful tools being widely used in live audio produc-
tion. Many digital audio effects applications have inherent latency due to the architecture
of the algorithms. Audio engineers have concerns when using these audio effects with
unknown latency. For plugin developers, it is important to estimate the accurate latency
in order to report to the host applications. In general, there are three main sources of
latency introduced by digital audio effects:

1. Block based Processing
The time segment block or Fast Fourier Transform (FFT) block based process-
ing can be problematic for low latency implementations. When the time fre-
quency processing or the computational efficiency is needed, time segmentation
and Short-Time Fourier transform (STFT) are the common approaches employed.
Researchers in this area use sub-band (filter bank) approaches or mixed time/frequency
domain methods to reduce latency.

For example, high quality synchronised overlap-add method (SOLA) based pitch
shifting uses typical 2046-8192 samples block, at 44.1kHz, corresponding to about
46 to 186ms. [20] has proposed a pitch shifting algorithm based on using a large
number of time-domain filter banks to reduce the latency to under 10ms with ac-
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ceptable quality.

Digital convolution reverberation based on impulse responses is a widely used ef-
fect. The impulse response can be as long as a few seconds, so the implementation
using FIR convolution is not computationally practical for real-time applications.
However, the FFT based algorithm introduces noticeable latency. In 1995, Gard-
ner [22] proposed an efficient convolution method without input/output delay.
Since then, this method has been continually improved by researchers and the al-
gorithms based on this have been wildly used in audio production as well as in
virtual game audio effects.

2. Phase Delay in DSP Algorithm
The phase delay can be obtained from the phase response of linear time invariant

(LTI) system. It is defined as P (ω) ≜ −Θ(ω)
ω

. The latency of the signal is closely
linked to group delay which can be defined as the derivative of phase response

D(ω) ≜ −dΘ(ω)
dω

[57]. When the phase response Θ(ω) is a linear function of
frequency, the group delay becomes a constant. Therefore for a linear phase Finite
Impulse Response (FIR) filter, it is agreed that the latency d introduced by the
FIR filter can be expressed as d = (N − 1)/2, where N is the filter length of
the coefficients. The common minimum phase FIR or Infinite Impulse Response
(IIR) filter used in audio processing normally has smaller group delay but with
non-linear phases. Most researchers have concentrated on reducing group delay
of FIR filter design where the latency problem is more prominent [58, 17, 59, 60].
Group delay of digital filters is also the major cause of delay in high performance
∆Σ ADC/DAC, which will be reviewed in detail in Section 2.5.

3. Architecture Delay
Architecture delay is the latency introduced by the implementation structure of
algorithms. A typical example is the side-chain based dynamic range compressor
with a look ahead buffer. In real-time processing the audio stream needs to be
delayed by the same amount as the look ahead buffer [56]. In more advanced
Adaptive Digital Audio Effects (ADAFX) [54], if using a side-chain mode, then
synchronisation between the feature extraction and the audio processing stream
can cause delay. Multichannel based cross-adaptive audio effects can be used in
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automatic mixing [61, 55]. For most real-time automatic mixing tasks the control
decision is made on side chain after convergence. The current implementations
[62, 63, 64, 65] do not need to synchronise the feature extractions with the audio
processing at the fine granularity level.

One obvious approach to deal with the synchronisation problem in ADAFX is
to develop real-time feature extraction with low latency. Some audio feature ex-
tractions can be implemented in real-time [66, 67]. Most of them use STFT based
techniques to estimate frequency information, in which cases, the latency problem
is similar to the block based processing. A possible solution is to use a probabilis-
tic model to predict future feature events based on historical empirical data [68].

In summary, DSP algorithm delay can be determined and reported if the accurate buffer-
ing and group delay information can be obtained. To design the low latency version of
the algorithms that perform the equivalent audio processing effects and functions is be-
yond the scope of this research.

2.5 Delay of Digital Filters for High Resolution Audio
Conversions

2.5.1 Delay of ∆Σ ADC/DAC

For digital filters used in high-resolution audio conversions such as the decimation or
interpolation filters in professional ∆Σ ADC/DAC and SRCs, the performance of the
filters needs to satisfy specific resolution and signal to noise ratio (SNR) requirements,
for example greater than 24 bits bit resolution and higher than 120dB SNR. These re-
quirements usually result in high order filters that have significant group delay.

Currently, the most popular audio range ADC/DAC architecture is the multi-bit ∆Σ
ADC/DAC based converter [69, 70]. Most commercial audio converters use multi-
bits rather than the 1bit type as the 1bit type is hard to dither properly [71, 72]. The
oversampling structure of ∆Σ modulator based converter needs to use interpolation and
decimation filters to convert from or into PCM stream [73]. These filters are commonly
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implemented using cascaded linear phase FIR filters. Although using other filters is also
possible [74]. In [14], Feerick gave a typical latency of 660µs at 48kHz sample rate.

∆Σ ADC/DAC and SRCs for live sound also require low computational complexity as
they are commonly implemented in compact hardware form. Therefore the associated
filters are usually designed to be multistage. Each stage within the multistage system
utilises a half-band or N-band linear phase filter when possible, in order to reduce the
computational and implementation cost further. However, these structures often worsen
the overall latency. The quantitative result of how these structures affect the overall
latency is not available. To analytically quantify this effect is one of our objectives in
this work.

Although digital SRC works entirely in the digital domain, it has similar digital filter
structures as ADC/DAC [75]. It commonly involves oversampling and downsampling
processes in multiple stages. For example, to convert sampling rate from 44.1k HZ
to 48k HZ, the processing can be up-sampling to 7.056 MHz then downsampling to
48k Hz, or convert 44.1k Hz sampling rate at the ratio of 10:7, 8:7, and 2:3 to get 48k
Hz. The alternative method is using farrow structure based fractional delay filters [76].
Asynchronous Sample Rate Converter (ASRC) using a FIFO buffer, multiple FIR filters,
and interpolation to convert arbitrary sampling frequencies that derived from a different
clock source [77, 78, 79]. [14] gives a typical 1-3ms latency of each conversion.

To understand the delay effects of the different filter structures, especially the cascaded
FIR filters used in various audio signal conversion, it is worth to review the fundamental
theory of digital filters including FIR, IIR, linear phase, minimum phase, multistage and
multirate filters.

2.5.2 Group Delay Formula

The transfer function of a digital filter can be described as a function of z−1:

H(z) = Gz−n0

∏N
i=1 (1 − ziz

−1)∏M
i=1 (1 − piz−1)

(2.1)

In Eq. (2.1), G is the overall gain. The denominator and numerator are the polynomial
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of z−1 in forms of factorisation. zi and pi are the zeros and poles of the filter. The order
of the filter is max(M, N). n0 is the pure delay.

The temporal behaviour of a signal passing through digital filters can be described ana-
lytically by the phase response of the system. The “group delay” is commonly used to
quantify the “average” time lag between input and output signals. Officially the group
delay is defined as “the derivative of radian phase with respect to radian frequency.”
[57]

τg = −dΘ (ω)
dω

(2.2)

Let z = ejw, and we express the poles and zeros in polar form: zi = rie
jθi , pi = ρie

jφi

. We can have the group delay expressed as the function of polar form of zeroes and
poles:

τg(ω) = n0 +
N∑

i=1

r2
i − ricos(ω − θi)

1 − 2ricos(ω − θi) + r2
i

−
M∑

i=1

ρ2
i − ρicos(ω − φi)

1 − 2ρicos(ω − φi) + ρ2
i

(2.3)

2.5.3 Delay of Non-Recursive Linear Phase (LP) Digital Filters

For a non-recursive (FIR) filter with order N , Eq. (2.1) can be written as Eq. (2.4):

H(z) =
N∏

i=1
(z − zi) = zN + h1z

N−1 + h2z
N−2 + ... + hN (2.4)

or its difference equation form as:

y[n] = b0x[n] + b1x[n − 1] + b2x[n − 2] + ... + bNx[n − N ] (2.5)

Where y [n] represents output samples and x [n] represents input samples. The coeffi-
cients bn can be also treated as the “impulse response” of the FIR filter. The intuitive
way to implement FIR filter is to convolve the input signal with the “impulse response”.
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Figure 2.2 shows a typical Linear Phase (LP) FIR filter coefficients with 42 order (so
the number of coefficients is 43). The coefficients of the LP FIR filter normally follow
a symmetric or antisymmetric pattern.

Figure 2.2: Typical linear phase FIR coefficients

[80, 81] prove that a necessary condition for having a linear phase filter is to have non-
recursive, transversal structure (mirror image polynomial or negative mirror image poly-
nomial) i.e. satisfying h(n) = ±h(N − n), the group delay is constant as N/2. Most
Windowed-Sinc based FIR filter design methods should yield linear phase due to the
symmetric property of the polynomial coefficients.

Eq. (2.4) can also be written in a factorised form as in Eq. (2.6), where zi is the roots of
the polynomial Eq. (2.4). In many cases, the closed form of roots of coefficients h(n) do
not exist for the order of the polynomial is greater than 5 (Abel’s impossibility theorem).
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H (z) =
N∏

i=1
(z − zi) (2.6)

The roots of H(z) in Figure 2.2 can be plot in complex domain as follows:

Figure 2.3: Roots of H(z) of LP FIR filter

As Eq. (2.2) shows the group delay τg is a function of phase response Θ(ω), which is
defined as the phase or angle of frequency response:

Θ (ω) ≜ ∠
(
H
(
ejω
))

(2.7)

Also the magnitude response of this filter is expressed as the absolute value of the transfer
function and the function of ω:

G(ω) = |H(ejω)| =
∣∣∣∣∣

N∏
i=1

(z − zi)
∣∣∣∣∣ (2.8)

The following diagram shows the magnitude response and group delay in the same fig-
ure. The group delay is constant, which is 21 samples in this case.
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Figure 2.4: Magnitude and Group Delay response of a 42nd order Linear Phase Filter

It is easy to show that a polynomial with symmetric coefficients will have group delay
independent of ω.

In summary, the delay caused by a LP filter is proportional to the order of the filter.
The filter used in high resolution audio conversion typically has a very high attenua-
tion (>120dB) and narrow transition band, which results in very high order (over thou-
sands long), thus not only high latency but also practically very expensive to implement.
Therefore the multi-stage filter design is normally employed to reduce the number of or-
der by a factor of ten. However, although the order can been reduced, the overall delay of
the multistage filter is greater than equivalent single stage filter due to the stages are dis-
tributed towards the lower end of the sampling frequency [27]. This effect is discussed
in details in Chapter 3.
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2.5.4 Filter Order Estimation Methods

Not only the filter order affect the delay behaviour of both LP and Minimum Phase
(MP) types of filters, but also is the key parameter of multistage multirate filter design
technique. It is worth to review the various filter order estimation methods.

According to J. F. Kaiser (1974) [82], the order of the filter design can be estimated by
the following:

N ∼=
−20 log10(

√
δpδs) − 13

14.6(fs − fp)/2
+ 1 (2.9)

Where:

• δp is the tolerance in the magnitude response in the passband.

• δs is the tolerance in the magnitude response in the stopband.

• fs is the normalized passband edge frequency.

• fp is the normalized stopband edge frequency.

According to Crochiere (1973) and Rabiner (1975) [83, 84], the order of the filter can
be estimated by the following equation:

N ∼=
D∞(δp, δs)

∆F
− f(δp, δs)∆f + 1 (2.10)

Where ∆F is the normalised transition band, and D∞ can be calculated by the following
empirical function according to:

D∞(δp, δs) = [5.309 × 10−3(log10δp)2 + 7.114 × 10−2(log10δp) − 0.4761]log10δs

−[2.66 × 10−3(log10δp)2 + 0.5941(log10δp) + 0.4278]
(2.11)

And
f(δp, δs) = 0.51244log10(δp/δs) + 11.01217 (2.12)
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For typical high resolution oversampled audio conversion filter design according to [85],
the reciprocal of the transition band is over 300. Therefore the single stage filter will
result in an order more than 1500. The order estimation methods can produce the value
that is close to the result of optimal design methods. The classic optimal multistage
design is based on the order estimation functions on Eq. (2.10) to Eq. (2.12). The
optimal order and estimated order almost linearly increase as the transition band reduces.
However, it is worth noting that the order estimation is an approximation and there will
be differences when the filters are designed and realised.

2.5.5 The Multirate Multistage Filter System

In some audio applications, the filters require very high stopband attenuation, very small
passband ripple and a narrow transition bandwidth. For example, in case of the high per-
formance anti-aliasing or anti-image FIR filters, the transition band can be less than 0.01
(normalised frequency). These types of digital filters can be found in ∆Σ ADC/DAC
that are used for anti-aliasing and anti-image purpose as well as extracting the PCM data
from lower resolution (e.g 1 bit DSD) and oversampled bit streams. For high-resolution
audio applications, the typical filter specifications are below [86, 87, 74]:

1. Small passband ripple <0.0001

2. High attenuation at stopband >100 dB

3. Small transition band less than 1/300 due to the oversampling

To achieve this design specification with a single stage FIR filter, for example, a typical
64x oversampling rate design for 48 kHz the fs is 3.072 MHz, and the transition band-
width is 4.8k Hz, the order N can be over 2300, which is not only high in group delay
but also unrealistic for hardware implementations.

The multistage digital filter design technique can be used to reduce the filter order. Op-
timal design techniques have been developed since the 1970s up to today [84, 88, 89, 90,
91]. In a multistage design, the overall design specification can be satisfied by cascading
a number of multirate filters.

Although the classic multistage filter design method reduces the overall order of the
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filter, it often worsens the overall group delay. For a single stage linear phase filter,
the group delay is equivalent to the half of the filter order. The order reduction of a
multistage filter design does not reduce the group delay. This is because the multistage
filter needs to work at different sampling frequencies for each stage. Hence the reduced
order at lower sampling frequency has higher delay weight which overwrites the effects
of the delay saved by the reduction of the order.

The filter order estimation method plays the central role in designing an optimal mul-
tistage filter. The classical ‘optimal’ methods refer to the computational and area costs
of the filter realisation. The optimum design based on order estimation is firstly pro-
posed by Crochiere [84, 88]. Coffey [89, 90] also shows the optimisation design can
be reduced to a one-dimensional roots finding problem for both computational and area
cost.

For example, a “k” stage decimation filter can be depicted as in Figure 2.5:

Figure 2.5: Multistage filter structure

Where Di, (i = 1, 2, 3...k) is the decimation factor of stage ‘i’, Gi represents the group
delay of each stage. Therefore

fri =
fr(i−1)

Di

; where (i = 1, 2, ...k) (2.13)

D =
k∏

i=1
Di (2.14)

Figure 2.6 is a typical example of 3-stage (k=3), 64 times (64x) decimation filter which
alters the input sampling frequency from 3.072MHz to 48k Hz.
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Figure 2.6: Example of 64x multistage decimation filter

Crochiere’s method is to find the optimal design of such structure. The optimisation is
in terms of computational cost as total number of Multiples and Adds (MADS). In his
work, the Rt is defined as the total cost, and Ri is defined as the cost of the stage i.
Therefore:

Rt =
k∑

i=1
Ri (2.15)

Ri =
Nifr(i−1)

Di

(2.16)

Where Ni is the order of stage i. This order is evaluated using order estimation functions
in relation to design specifications as in Eq. (2.10) to Eq. (2.12). Therefore the final
objective function can be found in Eq. (2.17) and Eq. (2.18), where ∆f = (f s −fp)/fs .

Rt
∼= D∞

(
δp

k
, δs

)
fr0S (2.17)

S = 2
(∆f

∏k−1
j=1 Dj)

+
k−1∑
i=1

Di

(∏i
j=1 Dj)(1 −

(
2−∆f

2D

)∏i
j=1 Dj)

(2.18)

This final objective function Eq. (2.17) can be solved by a computer-aided optimisation
routine when k is greater than 2. Coffey also proved Eq. (2.17) and Eq. (2.18) can
be simplified as a root finding problem. Both Crochiere and Coffey show the optimal
design can be achieved by the number of stage as 3 or 4. The total order of multistage
filter is reduced by the factor of ten in comparing with the single stage design for the
same design specifications.
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Other important computationally efficient techniques include “the cascaded integrator-
comb (CIC) filter structure” [92], and “half-band or N-band filters” [93, 94, 95], which
can be used in some special cases of multistage design. The polyphase filter structures
[96] have been widely adopted as effective implementations in multirate signal process-
ing, including decimation and interpolation. However it is not so clear that how these
cost efficient methods affect the overall latency.

2.5.6 Delay of Linear Phase Multistage System

Figure 2.5 shows the structure of the ‘k’ stage multistage filter with input signal x[n],
output signal y[n]. The sampling frequency of input signal is fr0 and the sampling fre-
quency of output signal is frk. ‘D’ is the sample rate alteration factor such as decimation
or interpolation factor. ‘G’ is the delay of each stage. The overall latency can be simply
regarded as the summation of latency of each stage as shown in Eq. (2.19).

G (ω) =
k∑

i=1
Gi(ω) (2.19)

Due to the design duality of decimation and interpolation processes [84], we can treat
this sample rate alteration factor as either integer decimation or interpolation to analyse
the overall latency.

The multistage filter structure has negative effects on the overall latency in comparison
with single stage filter satisfying same magnitude response performance. The compre-
hensive evaluation is done by author in 2012 [27].

However, this effect is not shown quantitatively in the literature. Notably the number
of stages and the alteration factor of each stage are adjustable. The hypothesis can be
made that in the multistage linear filter system, the overall delay can be expressed as the
function of design parameters and it can be optimised towards. One of the important ob-
jectives of this work is to prove this hypothesis using analytical approach. Furthermore,
to understand the trade-off between delay and other filter performance measures.

53



2.5.7 The Minimum Phase System

Minimum Phase (MP) digital filters are the typical cases of minimum phase system.
In control theory and digital signal processing theory, a system is MP if all poles and
zeroes of the system are inside the unit circle. MP system has minimum phase lag and
minimum energy delay properties. In addition, given a specific magnitude response
with MP, the original system is uniquely defined. The MP filters can be used for low
latency applications [97, 98] including audio converter application [99]. However, there
is still lack of qualitative or quantitative analysis of the delay of linear and minimum
phase behaviour of multistage filters with various design variables including the filter
specifications and multi-stage design parameters, such as number of stage and associated
decimation factors.

2.5.7.1 Minimum Phase Filter Group Delay Distortion and Hearing Threshold

Another key issue of MP filter is the non-linearity of group delay, for example the filter
responses in Figure 2.10. This non-linearity contributes to group delay distortion. It
would be nice to know the threshold of audibility of group delay with respect to fre-
quency, but this remains an area where not a great deal seems to have been done. No
extensive data is available and so far, the best table is from Blauert and Laws [100] and
Bloom and Preis [101], that are summarised in Table 2.3.

Table 2.3: Group Delay Audibility Thresholds

Frequency Threshold

500Hz 3.2 ms
1kHz 2 ms
2kHz 1 ms
4kHz 1.5 ms
8kHz 2 ms

Figure 2.10 shows the group delay plots of a MP filter and a LP filter both with 42 order.
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The group delay distortion caused by a MP filter within the audio band is mainly affected
by the selection of corner frequency and filter order. The corner frequencies are part of
the design specifications, whereas the order of FIR filter is closely linked to the user
design specifications. The filter order plays an important role in affecting both linear
phase FIR filter delay and the delay distortion of minimum phase FIR filter.

2.5.7.2 The Minimum Phase FIR System

Both IIR and FIR filters can be minimum phase. In this work we concentrate on the
minimum phase FIR system due to the following reasons.

1. The IIR filter and its analogue counterparts have been widely used in audio ap-
plications already, for example, shaping the frequency response in an EQ. Most
of these applications do not need high order filters so latency is not a significant
problem.

2. High order FIR filters with significant latency are commonly used for data conver-
sion and sample rate conversion applications which require separation of different
frequency components, because they can achieve a very sharp roll-off and close
to brick wall magnitude response.

3. The FIR system can be effectively used in hardware implementation without so-
phisticated overflow control, round off error estimations, and zero input limited
cycle problems. The pure feed forward structure of FIR filter can be utilised for
simplifying the 1-bit ∆Σ modulated signal filtering task very efficiently.

4. The minimum phase FIR filter properties and design techniques are challenge in
theory. The work in this area can be found from 1970s to present [102, 58, 103,
104, 105, 60]. Although there is abundant literature regarding general and special
digital filter design techniques, there is a lack of a system framework to enable
qualitative and quantitative time domain driven approach for MP multistage FIR
system for high-resolution audio signal processing. To achieve the framework
either analytically or numerically, there are many unsolved research questions
which makes the domain itself attractive for researchers.
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2.5.7.3 Delay of Minimum Phase Digital Filters

A minimum phase system is the system that all its zeroes are within the unit circle.
Among all causal filters hi(n) having identical magnitude spectra, the minimum-phase
filter hmp (n) has the fastest decay in the sense that the signal energy is maximally con-
centrate toward time zero [57], the proof can be found in [86] :

k∑
n=0

|hmp (n)|2 ≥
k∑

n=0
|hi (n)|2 , k = 0, 1, 2, ... (2.20)

The linear phase (LP) filter can be converted into minimum-phase (MP) filter while
maintaining the same magnitude response by flipping the zeroes from outside unit circle
into inside unit circle. To have the same magnitude response, the zeroes of filter polyno-
mial are exchangeable with their reciprocal pair. For example, if the original polynomial
has zero at rkejθk outside the unit circle then, if we replace it with 1

rk
ejθk , the magnitude

response should be the same as the original one. The reciprocal pair is shown in Figure
2.7.

Figure 2.7: Zero and reciprocal zero
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A new set of filter coefficients ĥi can be found to match a given magnitude response,
but with a minimum phase design. This can be achieved using the following approach:

Let

H(z) =

∏
j

(z − rjin)

 ∏
j

(z − rjout)

∏
j

(z − rjo)


= Hmin(z)Hmax(z)Ho(z)

(2.21)

Where Hmin (z) are the zeroes within unit circle, Hmax (z) are the zeroes outside unit
circle, and Ho (z) are the zeroes on the unit circle. Determine Hmax(z) and reflects its
zeroes into the unit circle. Because of the conjecture and reciprocal property of lin-
ear phase polynomial roots, the new transfer function Ĥ(z) = Hmin(z)2Ho(z) can be
determined.

If we reflect the roots outside unit circle into inside unit circle as described above for the
42 order filter we used in previous example as in Figure 2.2, we will have the root map
as in Figure 2.8.

Figure 2.8: MP Filter designed by reflecting zeroes outside unit circle

By doing that, we create a filter with exact same magnitude response as the original.
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However, in this case, it is a minimum-phase filter. The time domain behaviour of this
filter should be more compact compared with LP FIR filter.

The kernel of the new filter Ĥ(z) = Hmin(z)2Ho(z), is plotted in Figure 2.9. It can also
be regarded as the impulse response of the minimum phase filter. Figure 2.9 demon-
strates this impulse response has high energy pulses close to time zero.

Figure 2.9: Transformed Minimum Phase FIR coefficients

The generalised group delay of the MP filter as a function of frequency is expressed as
following:

τg(ω) =
N∑

i=1

r2
i − ricos(ω − θi)

1 − 2ricos(ω − θi) + r2
i

(2.22)

From Eq. (2.22), we can see that the group delay can be expressed as the polynomial of
cosine function of angular frequencies θi and the vector of roots ri.
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Figure 2.10: Group delay of LP and MP filters

Figure 2.10 shows the group delay vs. frequency curve of linear phase and minimum
phase lowpass filters. It clearly shows that the minimum phase design has significantly
lower delay with passband for this lowpass filter.

If a minimum phase lowpass FIR filter is designed with stipulated filter performance,
Can we describe the group delay behaviour function of this filter in mathematical “closed
form” as a function of design specifications such as:

Gi (ω) = f2(ωsi, ωpi, δpi, δsi, ω) (2.23)

Also it would be convenient for the expression of Eq. (2.23) to be concise and intuitive
for helping further multistage analysis.

There are challenges of achieving that. The group delay cannot be expressed concisely
when the transfer functionH(z) is in the direct form as in Eq.(2.4). It could be expressed
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if the filter is in polar form as in Eq. (2.22). However, most popular FIR filter design
methods are based on optimisation which involves some sort of iterative process, so the
filter transfer functions cannot be expressed directly by the design specifications. There
are direct FIR filter design methods such as ‘Kaiser window’, ‘Frequency sampling’,
and ‘Maximally Flat FIR design’ methods. However the results cannot help express
group delay as a closed form of function of design parameters.

The closed forms, if they exist, are fairly complicated to express. The high order co-
efficients cannot translate to locations of zeroes in the Z-plane without the numerical
approach. The classical root finding and spectrum lifting procedures are based on LP
prototypes so the direct form of LP design methods can also further develop to the MP
filter design methods. However they share same factorisation problem. There are other
methods such as Cepstrum and root moment based approaches [106, 104]. To the best
knowledge of the authors, none of them provides the direct form between design pa-
rameters and zeroes locations of filters. For the filter with higher order (greater than 5)
which normally is the case for audio sample rate conversion applications, the numeric
method of finding roots is needed unless the coefficients in some special form. This
makes closed form group delay expression difficult to find.

Therefore, in this research, we try to quantify the MP filter properties based on design
specifications and the experiments results. The detailed work is in section 3.4.1.
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2.6 Operating System Scheduling Latency

In this section, we review the delay caused by the GPOS for audio processing. For real-
time audio processing, the incoming samples are commonly buffered and processed in
a block based manner. It is to reduce the processing and the scheduling overhead in
order to prevent the buffer underrun or overrun, which can cause glitches and distortion
of audio [50]. Using a high buffer setting is a safe option for processing audio to avoid
unexpected glitch and noise. In the most recent audio latency test work by the author
in [12], which is detailed in Section 4.1, it shows that one has to use a trial and error
method to identify the minimum buffer that each system can endure.

The reason for using buffer is to accommodate the non-deterministic processing and to
reduce the computation requirements of GPOS based DAWs. The scheduling algorithm
of a modern operating system can be modified to support better soft real-time application
tasks via priority based pre-emptions. In our test in 2010 [12], the Linux OS with a real-
time feature enabled in the kernel configuration performs better than other counterparts.

In [107], William Clark from RedHat performed comprehensive testing on the system
scheduling latency of different scheduling policies for the Linux kernel. The results are
summarised in Table 2.4 to Table 2.6. The three tables represent three different Linux
kernel configurations. Table 2.4 shows the results of vanilla kernel without the pre-
emption patch. Table 2.5 and Table 2.6 show the results of the Linux kernel with two
different versions of low latency pre-emption patches. Over millions repetitive testing
tasks are driven by Real Time Clock at 2kHz frequency, the left column of each table
shows the percentage of tasks that finish within the time of the values in the right column.
The unit of the time is millisecond.
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Table 2.4: Case 1 vanilla
2.4.17 kernel

Percentage Delay (ms)

92.84442 0.1
97.08432 0.2
99.73050 0.5
99.84382 0.7
99.94038 1
99.97922 5
99.98096 10
99.98590 50
99.98828 100
100 232.7

Table 2.5: Case 3
low-latency 2.4.17 kernel

Percentage Delay (ms)

96.66250 0.1
99.21158 0.2
99.99592 0.5
99.99984 0.7
99.99992 1
100 1.4

Table 2.6: Case 2 preempt
2.4.17 kernel

Percentage Delay (ms)

97.95326 0.1
99.55722 0.2
99.97026 0.5
99.98960 0.7
99.99650 1
99.99954 5
99.99982 10
100 45.3

[107] also tested the scheduler delay of combined low latency patch with pre-emption
patch which showed similar testing results with slight improvement. Overall, this test
showed real-time patched Linux system can achieve 100% scheduler latency lower than
1.3ms statistically at the time.

However, the scheduling delay happens in a non-deterministic manner. It revealed the
difficulty of setting up a deterministic buffer for GPOS, even with soft real-time features
enable. In addition, the variation of delay is larger than the common audio sampling
period. It shows the difficulties to use GPOS to carry out sample based processing.

2.6.1 GPOS vs RTOS for Audio Processing

There is a trend to use DAW to perform live music on stage, or as the mixer for a front
of house (FOH) system, or as the mixer for in-ear monitoring, because of the versatile
functionalities, flexible configurations, and expandability of DAWs. On the other hand,
the audio processing becomes increasingly multifunctional and complex. It incorpo-
rates with the advancement of computation, DSP and networking technologies such as
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high resolution multichannel audio processing, feature extraction, machine learning and
intelligent audio production [55].

Using a DAW in a live or interactive environment is constrained by the responsive-
ness of the input and output audio signals. Systems are restrained by interactions of the
computational components with the physical processes and are commonly referred to as
Cyber-physical system (CPS) [23]. An example of CPS is autonomous vehicle where
the system needs to response to multiple sensor signal input at low latency. The real-time
and low latency issue of an audio system shares similar fundamentals as CPS.

DAWs are the software systems running on a General Purpose Operating System (GPOS).
Though it is widely accepted that comparing with real-time system, GPOS does not have
time constraint or time criticality. There is a trend of using GPOS within a mixed crit-
icality system. GPOS has already been widely used in various pseudo-real-time, and
soft real-time applications, such as multimedia live streaming. An OS has to deal with
a different level of time criticality is called Mixed-Criticality (MC) system [108, 109,
110]. It is worth noting the concept of MC implies some trade-off between isolation and
integration on resource sharing, whereas systems that solely focus on isolation of tasks
are regarded as multiple-criticality systems [110]. It is commonly acknowledged that
for a MC CPS, one of the key challenges is to report accurate timing parameters from
the bottom up [23].

Real-time systems are the systems that not only perform computation with logic cor-
rectness but also timing correctness [111] [112]. There are classic real-time schedulers
such as Cyclic Scheduling, Rate-Monotonic Scheduling (RMS) and Earliest Deadline
First (EDF). However, there is a trend to have real-time extensions to GPOS such as
real-time Linux, due to the wide adoption of using open source GPOS in the indus-
trial area. Most modern telecommunication platform and professional live console have
embedded Linux with real-time extension in them to ensure the real-time performance
[113]. Also, most commodity GPOS such as Linux, Windows or MacOS all have some
hierarchical scheduling scheme that enables real-time tasks being executed with mini-
mum jitter and latency. The latest Windows OS has six different priority classes. Mac
OS has four different priority bands. Linux by default uses Completely Fair Scheduler
(CFS), but it can be configured to use real-time scheduling policy such as First in First
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Out (FIFO), Round Robin (RR) and Earliest Deadline First (EDF) with the number of
different priority levels of 99.

However, these modifications may not work for the hard real-time system due to the non-
deterministic attributes of the file system and device drivers such Virtual File System
(VFS) framework. That’s why traditional Real Time Operating System (RTOS) avoid
using a file system. To be able to support hard RT in GPOS, one has to rewrite all the
file system interfaces and device drivers, such as the proposed work from CMU’s RT
Mach and RT file system [114].

There are fundamental differences between RTOS and GPOS from the design point of
view: RTOS is optimised on the worst case, whereas GPOS is optimised on an average
case. RTOS targets predictable scheduling whereas GPOS targets efficient scheduling.
RTOS has simple executive whereas GPOS provides wide range of services. RTOS tries
to minimise the latency whereas GPOS tries to maximise the throughput. The earlier
work of hard RT Linux proposed by Yodaiken et al. was done by replacing all ‘cli’, ‘sti’
and ‘iret’ 1 to the soft interrupt macros and using hardware triggered interrupts to execute
hard RT tasks [115]. However, these hard real-time tasks have no access to Linux kernel
services at the time. A similar but more sophisticated approach is to run dual kernels
such as Xenomai system with RTOS kernel along with a general Linux kernel. The
carefully mapped audio tasks can run on such a system with the low latency [116, 117].

Other effort [118] tried to emulate RTOS within GPOS to provide soft RT performance.
[118] predicts the GPOS will be more popular for the soft real-time tasks such as telecom-
munication and finance transactions. This research direction is interesting since it is
reappearing in the contemporary cloud and virtualisation studies.

2.6.2 Multimedia Support on GPOS with Real-Time Features

There were attempts to implement RTOS scheduling algorithm such as RMS or its mod-
ifications statistical RMS [119] in GPOS to support multimedia applications. RMS is
extended into SRMS (statistical RMS) to accommodate for various execution time with
average QoS. SRMS has been implemented in KURT Linux [120]. The RT Linux work

1‘cli’, ‘sti’ and ‘iret’ are the instruction opcode or interrupt related register in Intel x86 architecture
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was initially driven by requirements from the live audio community. In 2005, the pri-
mary target of RT Linux was to support high-performance multimedia and telecommu-
nication applications [51]. [51] also revealed an anecdote regarding an open letter from
the audio community to the Linux kernel community that is called “a joint letter on
low latency and Linux” in 2000. This open letter influenced the Linux RT pre-emptive
patches developed since 2001.

Since 2008, Linux based Android OS has gained popularity not only in the smartphone
area but also in the embedded world such as set set-top boxes and media players. There
are development and commercial initiatives to make Android OS support RT applica-
tions including on-demand or interactive media applications [121].

2.6.2.1 Live Audio Processing using OS

Modern audio processing include some computational intensive tasks such as config-
urable feature extractions, machine learning and advance multichannel digital signal
processing (DSP). GPOS based DAW can provide these functionalities on multiple chan-
nels with different source sampling rates and flexible routing as shown in Figure 1.3.
This sometimes results in occasional bursting CPU utilisation that is close to full, which
causes the unpredictable drop outs or delay of real-time task processing [107] and audio
signals [12].

Using GPOS with software RT extensions reduces the audio processing latency. How-
ever, we suspect that using pre-emptive priority scheduling based OS to carry real-time
tasks with optimisation can achieve the performance at most of the time, although rarely
but it still can fail occasionally, see results from Table 2.4 to Table 2.6.

It shows for low buffer settings such as a few audio samples (under 1ms), the system
might only successfully schedule the tasks within time under certain percentage sta-
tistically. In addition, the traditional heuristic and ad hoc design approaches have the
same predictability problem as described in [112] in 2011. The trail and error approach
needs to be adopted to find out the minimum latency. This poses the challenge of us-
ing traditional scheduling especially when the time and jitter constraints have to be met,
whereas the use case requires mixed criticality with sporadic burstiness of tasks. For
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audio processing, this often results in loss of audio samples occasionally. The human
ear is especially sensitive to the time correctness, even one sample missing will cause
audible effects.

2.6.3 Typical Real-time Scheduling Algorithms

Cyclic executive scheduling is one of the earliest schemes that is realised in the real-time
operating system between 1970s and 1980s [122] especially for hard RT tasks. When the
system is complex, it is regarded as inflexible and difficult to maintain. The rate mono-
tonic scheduling (RMS) and the earliest deadline first (EDF) methods were proposed to
overcome these difficulties to assign priority dynamically based on the characteristics
of the tasks. In the case of RMS, the task with shortest period is assigned with highest
priority [123, 124, 125, 126].

RMS enabled the significant engineering advancement in many areas such as in space
exploration. On the other hand, the modern forms of cyclic executive based approaches
can be found in safety-critical systems as temporal segmentation mechanism such as
“ARINC Specification 653” that sets standards for avionics RTOS [127] and “World-
FIP” that defines the Factory Instrumentation Protocol later becomes part of IEC 61158
standard [128]. The cyclic executive approach is often part of hierarchical scheduling
model to ensure the temporal segmentation [129, 109].

2.6.3.1 Characteristics of Modern Real-Time Audio Systems

The modern live and interactive audio system is an example of the cyber-physical system
(CPS) that integrates different inputs and outputs functions with physical interactions. It
has a variety of tasks that require different criticality. To find the best scheduling schemes
for this situation, firstly we look into the characteristics of the live audio systems.

Traditionally, there are two categories of real-time systems: hard real-time system and
soft real-time system. In hard real-time system, the missing deadline of tasks are re-
garded as failure, whereas the soft real-time system can have some level of tolerances of
missing deadlines. Some textbook regards multimedia system as hard real-time system,
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due to the strict jitter requirements or human perception of glitch caused by missing task
deadline.

We think the live audio system is neither hard real-time nor soft real-time. It lays some-
what in between. In a professional audio environment, we would not want to miss any
audio/video frames that may cause the negative perceptual effects. However, the jitter
of processing single audio or video frame can be tolerated within acceptable user per-
ceptions, using a de-jitter buffer to compensate it at the cost of delay. In summary, the
characteristics of such system are below:

• It mainly deals with multiple periodic tasks at different update rate with pseudo-
isochronous tasks pattern.

• It is acceptable to miss the deadline for some tasks, but will affect the quality of
experiences. Ideally those tasks that missed the deadline shall not be discarded
but still be scheduled at a later point.

• It can provide the trade-off between delay and jitter, using buffering to mitigate
the jitter of the samples.

The traditional cyclic scheduling based approach is difficult to grow and maintain when
the number of tasks increases and the periods of tasks are not harmonically related. How-
ever, the properties of the multimedia system indicate there are compromises that can
be made that is to adjust the tasks deadlines within the perceptual tolerance to simplify
the system realisation and increase the efficiency of the scheduler.

In this work, we propose a new OS scheduling framework that is called Time Determin-
istic Cyclic Scheduling (TDCS), which is specifically tailored for the real-time audio
system with trading off mechanism of latency and predictable QoE requirements that
aims to achieve the predictability of specific type of tasks using systematic design ap-
proach. The performance evaluation based on simulation between TDCS and RMS is
also given to show the pros and cons.
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2.7 Latency in Audio Networking

From the earliest “audio” (long haul telephone call) network in 19th century invented
by Bell Telephone Company to the current Audio over IP network in the digital era, the
delay of the digital network seems to be worse than the analogue era. There are concerns
of losing responsiveness of audio transmission quality when EU decides to retire ISDN
technology and move all the broadcasting to IP network [130, 131]. The convergence
of network seem to be inevitable. The first VoIP started in 1995 and gained popularity
from 2004. Similarly, the first Audio over Network was experimented in 1995. Later
CobraNet was invented in 1996. In 2013, the new standard AES67 was published for
low latency high-quality audio over IP networks [132, 133, 44] aiming for professional
audio industry.

Still, professional audio with low latency requirements tends to use an isolated network
to avoid the uncertainty and jitter that could happen in a statistically multiplexed packet
switched based network such as IP and Ethernet based network. The major problem
of using the current packet-switched network to support audio and video is the non-
deterministic timing performance. The current network can deliver audio data with low
latency in good condition, but it might suffer the loss of packets and jitter when the
network is congested.

The International Organisation of Standardisation of Open System Interconnection (ISO-
OSI) model has divided the network system into seven abstract layers, from lowest phys-
ical layer to highest application layer. At the moment, the latency of transmitting audio
over a packet-switched network is caused by various factors such as coder delay, trans-
mission delay, packetisation delay, queuing delay, and de-jitter buffering etc. Most of
them are associated with the way how statistical multiplexing works at the different OSI
layers.

2.7.1 Network Support Real-Time Applications

It is essential to work from the bottom layer up to ensure the time accuracy for the top
application layer. The low latency and real-time features were not the modern networks
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are designed for. There are various initiatives and modifications at different network
layers that try to address the timing issues. In general, they can be categorised into three
main approaches [134, 135, 136].

• (1) Direct modification of layer 2.

• (2) New or modification based on existing layer2.

• (3) Solutions that work on top of Layer 3 - IP layer.

These approaches are summarise in the below figure:

Figure 2.11: Different approaches of real-time network protocols

(1) Direct modification of layer 2

This process focuses on modifying the Ethernet MAC layer to realise the isochronous
RT requirements. In theory, this approach could get a much better RT performance
without the limitations of best effort based Ethernet IP, in spite that they may increase
the complexity when customising the lower layers or even using dedicated firmware.
For instance, the SERCOS, EtherCAT, TTEtherent, PROFINET-IRT and recent Time-
Sensitive Networking (TSN) Protocol suite are based on this mechanism[134, 137].

The TSN protocol suite originates from the work of the Audio Video Bridging (AVB)
task group. In 2011, several IEEE standard groups including AVB formed TSN task
group in order to achieve the QoS requirements for low latency streaming in Ethernet
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networks [138]. TSN Standards included the IEEE 802.1AS time synchronization pro-
tocol, the IEEE 802.1Qav forwarding and queuing protocol, and the IEEE 802.1 Qat
signalling protocol.

These systems are capable of isochronous transmission which would satisfy most cur-
rent time-critical applications. Nonetheless, the first two protocols both are based on
the master-slave principle with its limitations [139, 136]. TTEtherent adopts a TDM
based time cycle which does not utilise the full bandwidth, while TSN implements a
priority based control scheme with multiple types of services, which does not prevent
the queueing problem among different flows with the same priority.

(2) New or modification based on existing layer2

This approach is based on software configuration. Realisations like Time-Critical Con-
trol network (TCnet), and PROFINET CBA (Component-Based Automation) fall into
this category [134, 140, 141]. These solutions can obtain hard RT requirements with
a cycle time of 1-10 ms. However, some professional multimedia applications would
require a low jitter within the range of nanoseconds [142].

(3) Solutions on top of TCP/UDP/IP

Examples of RT multimedia systems are Real-time Transport Protocol (RTP) [143],
Real-Time Control Protocol (RTCP), and Integrated Services (IntServ) and Differenti-
ated Services (DiffServ) based solutions. The RTP suite can achieve soft RT behaviour
with a delay of millisecond level [144], which can be used in scenarios such as sim-
ple multicast audio conference, audio and video conference, mixers and translators, and
layered encodings [143]. Many current network music types of research focus on im-
proved latency management and prediction at millisecond scale, which may affect the
music ensembles over the network [8, 9, 10].

Typically, IntServ and DiffServ are deployed as fine-grained and coarse-grained systems,
respectively. The former uses the per-flow reservation with the Resource Reservation
Protocol (RSVP), while the latter is based on traffic classification and marking. Per-flow
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reservation requires procedures like call set up, maintain and termination, and thus many
status information need to be stored in the routers through a path, which makes pure
IntServ complex and not scalable [145]. In contrast, DiffServ needs no setup time and
offers scalability. However, no end-to-end (E2E) guarantees are provided in DiffServ
due to the lack of bandwidth reservation.

In 2016, the IETF working group Deterministic Networking (DetNet) was formed [146].
The main focus of the group is to introduce a model for forwarding real-time traffic
(traffic with timing constraints in general also referred to as deterministic traffic) beyond
LAN boundaries. The proposed model will enable fully scheduled operation controlled
by a central controller to guarantee the timing constraints for deterministic traffic without
compromising the ability of the network to carry traditional best-effort traffic. However,
the high level network deterministic relies on the timing support from lower layers.

2.7.2 Audio Networking

The networking of live audio for professional applications typically uses layer 2 based
solutions such as AES50 [41] and MADI that utilise fixed time slots similar to Time
Division Multiplexing (TDM). However, these solutions are not effective for best ef-
fort traffic where data traffic utilises available bandwidth and is consequently subject to
variations in QoS. There are audio networking methods such as AES47 which is based
on asynchronous transfer mode (ATM), but ATM equipment is rarely available. Audio
can also be sent over Internet Protocol (IP) in wide area network (WAN), but the size of
the packet headers and the difficulty of keeping latency within acceptable limits make it
unsuitable for some low latency applications.

For low latency live audio, TDM based protocols such as AES50 can provide excellent
performance. The proprietary AES50 router can achieve the latency as low as a few
samples with a fixed number of channels reserved for other traffic. Converged networks
based on IP, scalable from LAN to WAN are required to support the vast (and growing)
interactive audio/video media traffic on the Internet. In high-resolution and low latency
audio applications, many audio specific networking technologies modify the existing
layer-2 or layer-3 protocols to utilise the current network infrastructure such as Ethernet
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and IP. Since 2003, there are a number various network protocol suites and techniques
proposed from different organisations such as Livewire, Wheatnet-IP, Dante, N/ACIP,
Q-LAN, RAVENNA and AVB. Some of them are proprietary solutions. Most of them
have two important elements: transport protocol and clock synchronisation mechanism.
The most recent effort is to standardise these similar technologies under the umbrella of
AES67 to make them talk to each other [44].

However connectionless packet architectures are inevitably problematic for determin-
istic data, especially when low latency is required. Furthermore, it is difficult to find
a networking architecture, which supports both time-critical audio data and best ef-
fort data (such as file transfer and emails). Current QoS, traffic engineering and over-
provisioning solutions cannot solve the entire problem: they complicate the system and
increase power requirements and cost. To effectively use AES67 based audio over IP
for professional settings, there are a number of caveats. Both UDP and RTP are sup-
ported as transport layer protocols in AES67, but for sharing the platform with other
types of traffic, some QoS mechanisms are needed such as using DiffServ. The AES67
synchronisation is based on IEEE1588/PTP, but the accuracy of the clock depends on
the underlying network timing quality [147, 148]. To have a TSN based timing man-
agement scheme to support AES67 is also proposed. In practice, though using existing
converged IP over Ethernet technology, often the audio network is still configured in an
isolated physical domain.

The main question is how to have a network technology that supports both time deter-
ministic data and best effort data efficiently form bottom up. In this work, we propose a
new low latency network architecture that supports both time-deterministic and best ef-
fort traffic towards full bandwidth utilisation with high-performance routing/switching.
For live audio, this network architecture allows low latency as well as the flexibility to
support multiplexing multiple channels with different sampling rates and word lengths.

2.8 Summary

In this chapter, we reviewed the previous work in relation to system latency in real-time
audio processing, especially focusing on the three aspects in the audio processing chain
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that cause significant problems. Each of these aspects have some unanswered questions
that need to be addressed.

For delay in ∆Σ ADC/DAC delay, the significant delay is caused by the group delay
of multistage multirate High-resolution Anti-aliasing Anti-image Filter (HAAF) imple-
mented in most ∆Σ ADC/DAC devices. There is a lack of accurate delay reporting
mechanisms and standards. There were no evaluations of how different filter archi-
tectures in ∆Σ ADC/DAC perform in the time domain. For the most commonly used
cascaded Linear Phase FIR multistage filters, we suspect that the overall delay can be
expressed as a function of design parameters and can be optimised along with com-
putational cost. Finally, for minimum phase filter, there is a lack of proper objective
measurements.

For delay caused by using the operating system to process audio, the delay is caused by
using buffering to accommodate unpredictable jitter and to reduce the CPU load. High
CPU utilisation often worsens the de-jitter buffer underrun situation. There is a lack
of updated latency test using desktop operating systems. We reviewed how RTOS deal
with the time-critical tasks and the solutions of extending GPOS with RTOS features.
We suspect the existing scheduling algorithms may not be able to produce deterministic
tasks outputs under high CPU utilisation for low latency audio processing.

For delay caused by using the data network to transmit audio signal, apart from the
propagation delay in network, to ensure the low latency and stable timing performance of
the system, the current approach is to configure network in a physical isolation manner.
Although, the audio network is moving towards using existing data network architec-
tures and protocols. The key problem seems to avoid unexpected queuing and jitter
caused by other competing traffic on the same network. There is a lack of an elegant
way to support both multiple channels of time deterministic low latency audio signal as
well as other types of traffic.

In the next few chapters, we will show how to address these identified gaps, verify the
hypothesis and provide possible solutions.
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Chapter 3

Delay of Multistage Filter System in
Audio Conversion

In this chapter, we present the work for understanding and reducing the delay in ∆Σ
ADC/DAC. It is organised as the following.

• Section 3.1, we present the latency measurements of various typical audio ADC/DAC
that can be found in the digital audio system [26]. This work was conducted and
published in 2011.

• Section 3.2, we evaluated different filter architectures that can be used in ∆Σ
ADC/DAC on their time domain performance with reference to other important
measures such as computational cost and Signal to Noise Ratio (SNR) [27]. This
work was conducted and published in 2012.

• Section 3.3, we focus on the delay and cost of multistage linear phase FIR filter
that is the most popular filter architecture used in ∆Σ ADC/DAC. A new balanced
design is proposed to yield the final design that takes overall delay into account.
Part of this section was based on the research work conducted and published in a
2016 paper [28].

• Section 3.4, we develop a set of objective time domain measurements for mini-
mum phase filters that have non-linear delay behaviour.
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Though the latency measurements of ∆Σ ADC/DAC work was conducted in 2011, the
updated latency survey based on 15 popular ∆Σ ADC/DAC chips datasheets was also
presented in the more recent publication of [28] in 2016 that showed similar latency
scale. The time domain performance of multistage filter design and evaluation for ∆Σ
ADC/DAC work in section 3.2 was conducted in a 2012 paper [27], based on this work,
the new optimal design research was published in a 2018 paper [149], that showed the
earlier work in 2012 is still relevant today and open the new research territory.
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3.1 Delay of ∆Σ Audio ADC/DAC Converters

3.1.1 Motivations of the Work

Previous research has reported measurements of the latency of the whole audio process-
ing chain based on a “blackbox” approach as reviewed in Chapter 2, Section 2.4, espe-
cially on computer based DAW systems where the latency is more severe. However,
this approach does not provide great help for latency management and compensation. It
would be better to have accurate latency measurement of each stage of the whole audio
processing chain.

In computer based Digital Audio Workstation (DAW) systems the major latency (typi-
cally around 5 to 10ms) is caused by the buffer size [12], so the ADC/DAC converter
latency is sometimes neglected or a rule of thumb of 1ms to 2ms is assumed. Latency
of professional digital consoles is normally under 2ms. Recording engineers are still
concerned with latency caused by routing audio channel from digital console through
various external analogue devices. In this case, the latency is mainly caused by addi-
tional ADC/DACs.

To the best knowledge of authors, no research has shown accurate latency measurement
of hardware ∆Σ ADC/DAC. This section presents the results of latency measurement of
typical compact analogue to digital and digital to analogue converters (ADC/DACs) in
isolation from computer system processing overheads by using a high-speed data acqui-
sition device. The report discusses the testing methods and pitfalls. It confirms that the
latency is almost exclusively accounted for by the expected group delay of the digital
decimation filters and interpolation filters used in the Sigma-Delta converter.

3.1.2 Latency Test for Hardware Audio Codecs

Modern audio converters are commonly available in compact form by using one chipset
to integrate both multichannel ADC and DAC, which is known as a hardware codec.
That can be found in computer motherboards and USB soundcards. They normally op-
erate at relatively high frequency in order to multiplex multiple audio channels.
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The most commonly used compact architecture for audio range converter is based on
multi-bit sigma-delta modulators (SDMs). Accurate latency values for these converters
are not normally available and cannot be easily measured, although it is well known that
this latency is mainly due to the group delay of the SDM’s internal digital decimation
and interpolation filters. The group delay of the digital filter is expressed in a variety of
formats in manufacturer’s datasheets, quite often as a function of the number of samples
divided by the sampling frequency.

3.1.2.1 Testing Platforms and Devices

The tested audio converters are listed in Table 3.1. They are all single chipset that inte-
grate multiple ADC and DAC channels with available group delay data from datasheet.
The protocols supported by these devices are typically used in most embedded audio
systems and computer based system.

Table 3.1: List of Testing Systems

Code Model System Protocol
(a) TLV320-AIC23B TMS320VC5510 DSK McBSP
(b) AD1836A ADSP-21161N EZ-KIT Lite TDM/I²S
(c) AD1981B PC AC’97
(d) AD1882 PC HD Audio

The Multichannel Buffered Serial Ports (McBSP) supported by codec (a) is software
configurable protocol that supports various I²S frame formats. Overall, all tested devices
use standard serial transfer digital audio interfaces with multichannel support by Time
Division Multiplexing (TDM) technique.

The purpose of the test is to evaluate the latency caused by the ADC and DAC of com-
puter based DAWs. The most popular on-board audio subsystem are based on Audio
Codec’97 (AC’97) standard or the Intel HD Audio standard, which are evaluated by de-
vices (c) and (d). Devices (a) and (b) have similar architectures and supporting protocols
that can be found in external audio interface cards or other compact professional audio
systems.
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3.1.2.2 The Testing Method

The previous latency tests rely on comparing the offset between input and output signals
of the system. However this method cannot be used for codec latency testing. Normally,
codecs provide an internal analogue loopback circuit to support a “listen to input” fea-
ture for low latency applications such as audio monitoring. To the best knowledge of
the authors, codecs seldom implement digital loopback. Therefore, we cannot treat the
codec as blackbox and obtain the latency value of ADC and DAC by directly measuring
the time domain signal offset from analogue inputs and outputs. The measurement has
to be carried out by comparing analogue stimuli and their digital binary patterns.

The test is performed by directly probing the two test points of the analogue input pin
and digital data output pin for the ADC module, or the analogue output pin and digital
data input pin for the DAC module, using a high speed data acquisition tool. The testing
method is depicted in Figure 3.1.

Figure 3.1: Codec latency measurement method

The multichannel features are supported by multiplexing samples in a digital serial data
link. So the clock rate of the bit stream is normally much higher than the sampling
frequency in order to support this feature. The range of codecs we tested have bit stream
clock rate varying from 12MHz to 48MHz. Because we need to observe the change of
binary pattern, a high time resolution is needed to interpret the binary data. Therefore, the
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National Instrument high speed data acquisition module NI PXI-5114 is used to support
up to 250M samples pre second.

The digital data is represented internally with two’s complement. It is relatively easy
to test DAC latency, because the digital data can be clearly defined by software such as
discrete impulse signal (a series “0”s which has only one “1” inserted). Hence the clear
binary pattern change can be captured, with observable “sinc function” like impulse
output in the corresponding analogue pin.

It is more of a problem to measure ADC latency, the test signal needs to be considered so
that the binary pattern change can be clearly identified. The noise interferences around
the reference point zero can easily make binary pattern flips between all zeros and all
ones. Therefore, we select the step input, which steps from the most negative to most
positive voltage according to the codecs’ electrical characteristics.

3.1.2.3 The Limitation of the Test

The selection of the measuring point affects the accuracy of the measured values. The
analogue measure point is selected as 90% of the final step value to indicate the “change”
of the signal.

Most codecs input and output the digital stream in frame mode, and multiplex the mul-
tichannel samples inside a single frame. Therefore the selection of a binary pattern to
reflect the analogue signal change might affect the accuracy around ± the frame time.
For example if the frame rate is 48k Hz, then reading error might be ±20.8µs.

Some protocols such as Intel HD audio uses fixed frame speed at 48K data bus to delivery
different sampling frequencies. It will cause the uneven timing point of samples when
measuring the digital end [150].

3.1.3 Testing Results and Discussions

The latency of a codec is mainly caused by the group delay of internal digital decimation
and interpolation filters. However, sometimes manufactures do not provide details or
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completed information. Table 3.2 shows the available group delay information of tested
codecs. They do not have the same format and sometimes they are hard to follow due
to lack of details.

Table 3.2: Group delay of codec obtained from datasheet

Codec
Group Delay

Notes
ADC DAC

(a) (12, 20, 3, 6) / Fs (11, 18, 5, 5) / Fs Filter type (0, 1, 2, 3)
(b) 990.20µs 446.35µs At sampling frequency 44.1kHz
(c) 16 / Fs 16 / Fs
(d) 20 / Fs 20 / Fs Typical value

The codec (a) provides the group delay information in number of samples according to
different internal filter types. The filter type can be determined by codec register setting
for different operation modes and sampling frequencies. In this case, codec (a) provides
the most completed information among the codecs we tested.

The codec (b) provides the typical group delay in microseconds at sampling frequency
of 44.1k Hz for both digital decimation filter in ADC and interpolation filter in DAC.
However we don’t know whether the filter varies when different sampling frequencies
is used.

The codec (c) provides overall delay as a function of sampling frequency with fixed 16
samples. From the measured results shown later, we assume that the 16 samples is for
both decimation filter and interpolation filter. The codec (d) provides similar information
as codec (c), with the typical delay of 20 samples. Apart from the same problem as codec
(c), it also shows that the maximum delay can be -100 samples, which is hard to interpret.

Therefore the theoretical latency caused by group delay at typical sampling frequency
48k Hz, which can be summarised in Table 3.3.

Table 3.4 shows the measured latency values in microseconds. The measured latency
values are correlated with reported group delay values. However the measured latency
in some cases is longer than the group delay. The measured latency can be around 7
samples more than datasheet group delay.
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Table 3.3: Manufacture group delay data and equivalent latency at 48k Hz sampling
frequency

Codec
Group Delay (samples) Equivalent Delay (µs)
ADC DAC ADC DAC

(a) 12 11 250 229
(b) 44 20 917 417
(c) 16 16 333 333
(d) 20 20 417 417

We keep the decimal point of estimated samples due to the group delay caused by multi-
stage decimation or interpolation filter. It can be normalised at the final sampling fre-
quency with a fractional number of samples.

Table 3.4: Measured latency in microseconds at 48k Hz

Codec
Latency (µs) Equivalent Delay (samples)
ADC ADC DAC DAC

(a) 308 275 14.8 13.2
(b) 1001 550 48 26.4
(c) 335 364 16.1 17.5
(d) 516 553 24.8 26.5

Table 3.5 shows the measured latency at different sampling frequency for the Intel HD
codec (d).

It is worth to note that the 44.1kHz data stream of the Intel HD audio protocol is delivered
at 48kHz frame rate by only delivering 147 samples per 160 sample slots. Therefore the
latency measurement of the digital data end has inherent deviations.

The test results show that the current hardware audio codec in both analogue to digital
and digital to analogue direction will cause the latency range from around half mil-
lisecond to 1.5 milliseconds. The current datasheet information of group delay is either
lacking of details or hard to use for estimation of sample accurate latency values. It is
suggested that the latency information of an ADC/DAC needs to be available in standard
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Table 3.5: Latency in microseconds at different sampling
frequency and equivalent samples for HD Audio Codec

Fs (kHz)
Measured
Latency (ms)

Equivalent
Delay (samples)

ADC DAC ADC DAC
32 748 853 23.9 27.3
44.1 562 620 24.8 27.3
48 516 553 24.8 26.5
96 283 288 27.2 27.7

and accurate format.

Some protocols designed for multiplexing channels make data bus delivery timing dif-
ferent from sampling frequency. This architecture might cause the problem for sample
accurate live audio systems with minimum sample buffers.

Most decimation interpolation filters are implemented using multistage linear FIR struc-
tures. This delay could be reduced by adopting a different digital filter structure, such
as a minimum phase filter with trade off of non-linearity [151].

It would be beneficial to have the facility to report the latency of a hardware audio codec
to the up-layer software stack. For example, the simplest facility can be the digital loop-
back between ADC and DAC, which bypasses the up-layer audio driver and operating
system. It would be interesting to see whether the advanced Built-In Self Test (BIST)
architecture can be designed to automatically report latency of converters [152].

However, the hardware testing and manufacture datasheets cannot reveal the internal
structure of the decimation and interpolation filters of ∆Σ ADC/DAC. These high-
resolution anti-aliasing and anti-image filters (HAAF) can be realised in different forms
and that have different latency effects. Next section we will look into the time domain
performance of these filter types from the theoretical and white box approach.
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3.2 Time Domain Performance of Decimation Filter Ar-
chitectures for High Resolution ∆Σ ADC/DAC

In the last section, we presented the accurate latency measurements of typical compact
analogue to digital and digital to analogue converters with ΔΣ architecture. It showed
that the latency is almost exclusively accounted for by the expected group delay of the
digital decimation filters and interpolation filters used in the Sigma-Delta converter.
Various filter design methods can be used to realise these filters. However, to the best
knowledge of the authors, most research in this area focuses on computational cost and
energy efficiency. No research has shown the time domain performance of these filters
in a comprehensive way.

In this section, we present the results of a comparison of different decimation architec-
tures for high-resolution sigma delta analogue to digital conversion in terms of pass-
band, transition band performance, simulated signal to noise ratio, and computational
cost. In particular, we focus on the comparison of time domain group delay response of
different filter architectures including classic multistage FIR, cascaded integrator-comb
(CIC) with FIR compensation filters, particularly multistage polyphase IIR filter, cas-
caded halfband minimum phase FIR filter, and multistage minimum phase FIR filter
designs.

3.2.1 Introduction of the Work

In a sigma delta analogue to digital conversion (ΔΣ ADC) based high-resolution audio
system, decimation filters are used for obtaining PCM data from density modulated 1-
bit or multi-bit signals [153]. Most modern digital audio systems include some sort
of oversampling and downsampling processes in either software format or integrated
circuits.

Common practice in the audio industry is to use cascaded half-band linear phase FIR
filters for interpolation or decimation processes. Recently, there has been increasing
interest in adopting different filter architectures [74] to eliminate pre-ringing (mainly
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for DAC) and high group delay (for both ADC/DAC) caused by the linear phase design.

The advances in digital hardware fabrication now allow fairly sophisticated structures
to be used. The 64 times oversampling ratio audio band decimator can be easily imple-
mented in silicon with a three stage FIR filter [87]. There are also commercial audio
codec products that enable users to directly process modulator outputs or to customise
the internal digital filters.

In ΔΣ ADC/DAC for high-resolution audio systems, the significantly large number of
taps and the multistage architecture introduce high group delay that may not be desirable
for some live or low latency applications.

In Section3.1, we showed the latencies of ΔΣ ADC/DAC, which are mainly contributed
by the group delay of internal digital filters and can be as high as 1.5 milliseconds. Many
live audio applications or electronic musical instruments and software synthesizers re-
quire overall latency less than a few milliseconds. In these situations, the phase response
can be diffused by the live environments, and hence becomes less important. And the
high group delay caused by linear FIR filters can be undesirable. Therefore, it would be
interesting to see how different types of filters perform in comparison with classic linear
FIR filter within multiple constraints such as cost, signal to noise ratio (SNR), and filter
characteristics.

Next, we evaluate time domain performances of different decimation filter architectures
with typical HAAF design specifications for the ΔΣ ADC as in [87]. The tradeoffs of
filter characteristics are discussed as well.

3.2.2 Basic Concept of Decimation Filter

The principle of the decimation process is similar to sample rate conversion, for which
one must comply with the Nyquist theorem in order to avoid aliasing. Decimation can be
treated as two cascaded function blocks: the downsampling process and the anti-aliasing
filtering process. To downsample an input signal x(n) with positive integer factor M , the
output signal can be represented as y(m) = x(Mn). If there is any frequency component
greater than fs/(2M) in the original signal, where the original sampling frequency is fs,
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the downsampling process will result in aliasing. In order to avoid the aliasing problem,
a low-pass filtering process H(z) is needed in decimation [75].

The purpose of the decimation filter in ΔΣ ADC is threefold:

1. To avoid the aliasing in the decimation process.

2. Help relax the analogue anti-aliasing filter design requirements.

3. To remove quantization noise caused by the ΔΣ modulator and to obtain the ef-
fective number of bits (ENOB) in PCM format.

Almost any type of lowpass filter design techniques can be used for to decimation filter
design [99] [84] [88]. However because the ΔΣ ADC has its own characteristics and
specific application requirements, the filter design work has always been the tradeoff of
various design and implementation constraints.

The straightforward design can be linear phase single stage FIR lowpass filter. The order
of FIR filter N can be estimated by the Equation (3.1) as summarised in [153] [84]:

N ≈ ((log10 δs)[a1(log10 δp)2 + a2(log10 δp) + a3]

+a4(log10 δp)2 + a5(log10 δp) + a6)fs/∆f
(3.1)

Where δp is passband ripple, δs is stopband ripple in linear, a1 = 0.005309, a2 =
0.07114, a3 = −0.4761, a4 = −0.00266, a5 = −0.5941, and a6 = −0.4278. The
∆f is the transition bandwidth and fs is the sampling frequency at oversampled rate.

When the oversampling ratio is large and the desired transition bandwidth of decimation
filter is narrow, the order N can be very large, i.e., up to several thousand [153] [88].
So although a single stage FIR filter can be realised, it is sometimes impractical due
to this extremely high order. A more effective approach is to use cascaded multistage
design [84], which provides an efficient general solution for decimation, interpolation
and narrow band filter design. [84] also indicates the duality of the decimation and
interpolation processes, so the same filter structure can apply to both.

For decimation filters in ∆Σ ADC, significant effort has been made to use simpli-
fied filter structures and implementation methods [92, 154, 73, 155] of multistage de-
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sign. Among these methods, two important approaches are the cascaded integrator-
comb (CIC) filter structure [92], and using halfband or N-band filters [93, 95, 96]. The
polyphase filter structures [93] have also been widely adopted as effective implementa-
tion in multirate signal processing, including decimation and interpolation.

3.2.3 Group Delay of the Decimation Filter in ∆Σ ADC/DAC

Recall the literature review section, the group delay of a digital filter is defined as the
first derivative of phase response as in Equation (3.2),

Dm(ω) = −dϕ(ω)/dω (3.2)

where ϕ is the total phase shift in radians, and ω is the angular frequency in radians per
unit time. When the phase is linear then the group delay is constant. For non-linear
filters, the group delay is a function of frequency. The decimation filter is essentially
a digital anti-aliasing filter. Therefore the filter is typically designed and normalized at
input sampling rate. The group delay at the output sampling rate can be calculated as in
Equation (3.3), where M is the decimation factor.

D(ω) = DM(ω)
M

(3.3)

For linear phase FIR filters, the group delay is around half the filter orderN. Hence higher
order results in higher group delay. The multistage design significantly reduces the filter
order in total. However due to the fact that the stages operate at decreasing sampling
frequency, the overall group delay normally is worse than the single stage filter by the
same filter design method.

∆Σ ADC is commonly used in high resolution audio because it can achieve more than
20bit ENOB (Effective Number of Bits) [70]. The higher oversampling ratio of the ∆Σ
modulator also helps improve the SNR as well as signal-to-noise-and-distortion ratio
(SINAD). Therefore, a more restricted decimation filter specification is needed in this
case in terms of good stopband attenuation, small passband ripples and narrow transition
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band in order to obtain the PCM signal with equivalent ENOB. A linear phase digital
filter to meet such requirements normally has high order and a multistage design. But
in both cases, it worsens the group delay response.

The group delay of the digital decimation filter is the largest contributor to the latency
of ∆Σ ADC [26] [14]. Minimum phase FIR and IIR filters can be used in delay critical
applications when phase linearity is not required. To the best knowledge of the authors,
there is little literature available to provide detailed qualitative or quantitative reviews
of how different decimation filter architectures impact time domain performance in high
resolution audio ∆Σ ADC.

3.2.4 Evaluation Methodology

When the linear phase in the passband is not restricted, the decimation filter can be any
type of lowpass filter. The design space is so wide that there is no systematic approach
to optimal design choice [153]. Therefore we have to properly consider the different
filter architectures for evaluation with justified rationale.

3.2.4.1 Selection of Testing Filters

We evaluated the time domain performance of the following main filter architectures
with the typical filter design specifications in Table 3.6, based on a commercial ADC
product, as specified in [87]. The traditional and modern linear phase filter as well as
the nonlinear phase, low group delay filters were evaluated. All the filters evaluated
should satisfy the 90 dB stopband attenuation specification. The group delays of filters
are calculated and compared. The group delay response figures are also provided to
assess the effects of group delay distortion of nonlinear filters.

3.2.4.2 Linear Phase Single Stage FIR and Multistage FIR Filters

The linear phase single stage FIR filter and the multistage FIR filter are well-understood
decimation approaches [88, 84]. They can be designed by Windowed-Sinc or optimal
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Table 3.6: Filter Design Specifications

Parameters Desired values
Decimation Factor 64x
Output Sampling Rate 48 kHz
Input Sampling Rate 3.072 MHz
Stopband Attenuation > 90 dB
Passband Ripple < 0.006 dB
Passband edge 21.6 kHz
Stopband edge 26.4 kHz

design methods, and they provide a good reference design in comparison with other
architectures. The optimal design should give the minimum order of the filter. Hence it
could help reduce group delay. In multistage filter design, the number of stages can be
optimized as well.

In this case, the following filters are investigated:

1. A single stage FIR filter designed by windowed-sinc method with Kaiser Win-
dow (Kaiserwin).This design normally provides very good performance among
different window functions.

2. A popular optimal equiripple FIR filter in single stage for decimation.

3. A 3-stage FIR filter designed by the optimisation method.

3.2.4.3 Cascaded CIC Filter With Linear Phase FIR Compensation

The CIC filter [92] is a very cost effective filter structure without multipliers. It is widely
used in decimation. CIC filters are inherently linear phase, hence with constant group
delay. Due to its simple and regular representation, the design of the CIC filter has
less control of fine tuned parameters such as passband ripple and transition bandwidth.
Therefore compensation filters are always adopted to improve the passband and other
performances.
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3.2.4.4 Six-Stage Half-Band FIR Filters With Linear Phase

The halfband filter is another effective architecture [93, 95] used in decimation. 64 times
decimation can be realized by 6 cascaded halfband filters with each performing decima-
tion by a factor of 2. This design [73, 93, 94] should have the theoretical minimum taps
within the FIR decimators catalogue. However the additional stages may complicate
the control structure and have negative impact on group delay. Therefore, this filter is
designed for evaluating the group delay.

3.2.4.5 Multi-Stage Polyphase IIR Filters

Compared with FIR filters, the same magnitude response can generally be achieved by
IIR filters with less coefficients. The IIR filter also typically has less group delay but
with phase distortion.

The FIR filter is commonly used in multirate signal processing due to the effective filter
structure realizations, such as the polyphase network [96], and the linearity requirements
in most applications. But when nonlinear phase is allowed, the research [156, 157, 158]
shows that recursive filters can also be designed and realised in a very cost effective
way, especially halfband design with allpass polyphase decomposition.

In addition, the phase of a recursive filter can be equalized to approximate a linear phase
filter. Thus, it would be interesting to find out how linear phase IIR filter performance
in the time domain compares with linear phase FIR filters as well.

In this case we designed two types of IIR filters:

• the 6 cascaded halfband IIR filter with elliptic response.

• the 6 cascaded halfband IIR filter with quasi-linear phase response.

3.2.4.6 Multistage Minimum Phase FIR Filters

Minimum phase FIR filters with all zeros within the unit circle should have theoretical
minimum group delay, and hence the fastest signal response. In this case, we designed
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two minimum phase multistage FIR filters based on two typical effective linear phase
designs:

• 3 stage minimum phase FIR filter.

• 6 stage minimum phase halfband filter.

A summary of evaluated filters is given in Table 3.7 1.

Table 3.7: List of evaluated filters

Filter Type Filter code
Kaiserwin FIR Kaiser
Equiripple FIR Eqrip
3-Stage Equiripple FIR 3-stage
3-Stage FIR minimum Phase 3-min
CIC without compensator CIC
CIC with compensator CICom
Six-stage halfband FIR 6hb
Six-stage halfband minimum phase FIR 6hbmin
Six stage elliptic IIR filter 6IIR
Six stage Quasi linear IIR filter 6IIRlin

3.2.5 The Filter Performances Matrix

Although the filters are designed to meet the specifications in Table 3.6, the actual de-
signed filters may result in slightly different performances in terms of magnitude re-
sponses. Therefore some comparisons of magnitude response are also presented to see
the correlation between the frequency domain and time domain performances.

The theoretical implementation cost is given in terms of the number of multipliers, the
number of adders. The number of multiplications and additions per input sample for

1The source code of filter design listed in the Table 3.7 can be downloaded from https://github.
com/wyonghao/MultiStageDesign/tree/master/FilterDesign
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these filters will also be compared. The theoretical SNRs will be evaluated by using a
Matlab Simulink model of the ∆Σ ADC with full amplitude sinusoid signals as inputs.

3.2.6 Filter Design and Group Delay Impact Results and Discus-
sions

In this section the evaluation results of different types of filters are presented. Firstly,
the designs of different types of filters are discussed. The correlation between various
aspects filter design and its group delay properties are explored. Then the summary of
group delay of all evaluated filters is presented and discussed.

3.2.6.1 Linear Phase Single Stage and Multistage FIR Filters

Design Considerations

Two FIR filter design methods are used for design of single stage FIR filters. According
to Equation (3.1) and the specification (Table 3.6), the filter order is estimated up to
2314. The single stage filter can be designed by the Kaiser Window (Kaiserwin) method
with very good passband and stopband performance. The Kaiser Window design meets
the design specifications but with overestimated filter order N. However, the optimal
equiripple algorithms sometimes underestimates the order, which is close to but does
not meet the specifications.

The multistage linear phase FIR filter design uses three stages by the equiripple method.
The decimation factors are /8, /2, and /4 respectively. The three stage design correlates
with the decimation architecture in AD1877, as described in [87]. The second stage has
decimation factor of 2, which is also a halfband filter. The stage 2 filter coefficients have
zeros in every second order except that of the central point. The number of stages is also
regarded as optimum by the automatic design algorithm from Matlab.
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Results and Discussions

Table 3.8 shows a comparison of the single stage Kaiserwin design, the equiripple de-
sign, and the three stage equiripple design in terms of filter order and magnitude re-
sponses. Figure 3.2 shows the passband ripple at -0.01 dB to 0.01 dB of three different
designs. All of these three filter designs have constant and relatively high group delays,
which are in the range 500µs to 600µs delay at 48kHz sampling frequency (for detailed
group delay values see Table 3.9). The Kaiserwin filter has better passband performance
than the other two but with highest filter order N. Hence it also has highest group delay.
The 3 stage equiripple filter has fewer orders in total but it has higher group delay than
the same equiripple filter with single stage. This shows that the multistage structure
normally worsens the group delay response.

Table 3.8: Compare single stage FIR filters with multi stage FIR filters

Filter Order Passband
Ripple

Stopband
attenuation

Kaiser 3658 0.0005 dB 91.34 dB
Eqrip 3023 0.0045 dB 89.95 dB
3-stage 39-14-193 0.0043 dB 90.34 dB

The 3-stage linear phase FIR is a typical implementation with the specified design cri-
teria. Hence it is used as reference design to be compared with other filter architectures.

3.2.6.2 Cascaded CIC Filter With Linear Phase FIR Compensation

Design Considerations

There are various compensation methods to improve CIC frequency responses since
the initial CIC concept from Hogenauer in 1981. We are interested in time domain
performance on a typical CIC filter with an FIR compensation. Therefore a CIC filter
and a linear phase FIR compensator are designed.
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Figure 3.2: Magnitude passband of 3-stage FIR,
equiripple FIR and Kaiserwin FIR filters

Figure 3.3 shows the magnitude response of the CIC without compensator. It clearly
shows the passband performance does not meet the specification in comparison with
reference design.

We designed the FIR compensator to flatten the passband ripple within the design spec-
ification, as shown in Figure 3.4. But in this case the transition band is still not compen-
sated well in this case.

Results and Discussions

CIC filters are inherently linear phase, hence with constant group delay. This CIC filter
without compensation has 19 sections with constant group delay of 598.5 samples (Table
3.9) but with unsatisfactory passband performance. To flatten the passband within spec-
ification, a fairly expensive linear phase FIR filter design method is required. Therefore
overall it illustrates high group delay. Our compensator design results in group delay of
4022.5 samples (Table 3.9). Reducing the sections will decrease group delay but with
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Figure 3.3: CIC without compensator in comparison with reference filter

Figure 3.4: CIC Filter with compensator in comparison with reference design

worse passband and transition band performance.

There are advanced CIC filter design and compensation methods. In general they are low
pass filter design techniques and thus they may not be very helpful in terms of reduction

94



of group delays.

3.2.6.3 Six Stage Linear Phase Halfband FIR Filter

Design Considerations

Halfband is a class of N-band filters where the number of bands N is 2. It is an effective
filter structure and design method for decimation. Halfband is most effective in N-
band filter class in terms of filter coefficients. So the 64 times decimation filter can be
designed by cascading six halfband filters.

In [73], the author designed a 64 times decimation filter with both cascaded CIC and FIR
filters and 6 stage halfband FIR filters. We designed a similar 6 stage halfband filters to
meet the specification defined in Table 3.6 to compare its time domain performance.

Results and Discussions

The 6 stage halfband FIR filter performs well in terms of magnitude response (see Figure
3.5). It has lower implementation cost (Table 3.10) than other FIR filter design methods,
but it worsens the group delay as compared with the reference design and other linear
phase FIR filter design methods (Table 3.9).

3.2.6.4 Multi-stage Polyphase IIR Filters

Design Considerations

It is commonly believed that the IIR has less group delay but with non-linear phase
response. The IIR filter can have an effective realisation structure, which is suitable in
decimation and multirate signal processing as well [159], especially by halfband design
with allpass polyphase decomposition.

Since the technique is available to design linear phase (quasi-linear) IIR to take advan-
tage of the efficiency of IIR filter while maintaining the linear phase. Therefore it would
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Figure 3.5: Passband performance of 6 stage halfband FIR
filter in comparison with reference design

be interesting to see if the quasi-linear phase could help reduce group delay as well. In
this case we designed two types of six stage IIR filters.

1. The 6 stage quasi-linear IIR filter with quasi-linear phase on each stage.

2. The 6 stage elliptic IIR filter with elliptic frequency response on each stage.

Results and Discussions

The IIR filters perform very well in passband and satisfy the stopband and transition band
requirements. Also the design results in a very efficient theoretical implementation cost
as shown in Table 3.10. Figure 3.6 illustrates the passband performance of IIR filters in
comparison with the reference design.

Figure 3.7 shows that the quasi-linear IIR filter has almost constant group delay around
1514 samples at passband. It has slightly lower group delay than the reference design
but still in similar scale.
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Figure 3.6: Passband performance of 6-stage elliptic IIR and
6-stage quasi-linear IIR decimator in

comparison with reference design

The elliptic halfband IIR filter has very low group delay which is far better than the linear
phase filters. However it has group delay distortion due to the nonlinearity of filter phase
response. As shown in Figure 3.7, the group delay is 176.6 samples at frequency zero
and 410.5 at frequency 20 kHz.

3.2.6.5 Multistage Minimum Phase FIR Filters

Design Considerations

Theoretically, the minimum phase FIR filter has the fastest signal response as compared
to equivalent nonminimum phase approaches. It would be interesting to see how mini-
mum phase FIR filter performs in the decimation filter design. Based on two effective
linear phase filter architectures: “6 stage halfband FIR filter” and “3 Stage FIR”, we
designed the minimum phase version of these two architectures. We replaced each stage
with a minimum phase FIR filter with the same magnitude responses by using a poly-
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Figure 3.7: Group delay of 6 stage quasilinear IIR and 6
stage elliptic IIR in comparison with reference design

nomial roots finding design algorithm. The minimum order of each stage might not be
optimal (actually the optimal minimum phase FIR filter design algorithm has a conver-
gence problem when the filter order is large). However, the algorithm we used has good
numerical robustness and produces almost identical magnitude response as the linear
phase version even for high order filters.

Figure 3.8 shows the comparison of impulse response (IR) of one stage of linear phase
FIR filer and the impulse response of a minimum phase FIR filter which can produce
exact magnitude response. The linear IR will be replaced by minimum phase IR in our
design.

For the minimum phase 6 stage halfband design, each stage is a minimum phase halfband
filter, which decimates the sampling frequency by 2. However in this case the “halfband”
is in terms of the frequency response properties. The minimum phase halfband filters
do not have the efficient coefficients property as linear phase halfband filters.
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Figure 3.8: Impulse responses of minimum phase FIR and
linear phase FIR filters

Results and Discussions

Both 3 stage minimum phase FIR filter and 6 stage minimum phase halfband FIR filter
perform very well in time domain in comparison with the reference design, as shown
in Figure 3.9. The group delay of the minimum phase 6 stage halfband FIR filter has
similar shape as 3-stage minimum phase FIR filter with slightly higher delay (see detail
in Table 3.9).

For 6 stage minimum phase halfband FIR filter, the group delay is 164.4 samples at fre-
quency zero and 387 samples at frequency 20 kHz. For 3 stage minimum phase FIR
filter, the group delay is 155 samples delay at frequency zero and 380 samples at fre-
quency 20 kHz. Although group delay distortion happens in the 3 stage minimum phase
FIR filter, within the audio band, this is equivalent to only 3.5 samples difference at the
output sampling rate.
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3.2.7 Summary of Group Delay of All Evaluated Filters

Table 3.9 shows the group delays of all the filters we evaluated with the equivalent
delay time at output sampling rate. The 3 stage minimum phase FIR decimator, 6-stage
minimum phase halfband FIR decimator, and 6 stage multistage IIR decimator perform
very well in terms of low group delay. There are some group delay distortions within the
passband, as shown in Figure 3.10. There is a trend to high group delay near the Nyquist
frequency. However it is only 3 to 4 samples difference in relation to output sampling
rate.

Among these three low group delay decimators, the 3-stage minimum phase FIR filter
has lowest group delay. The 6-stage halfband IIR filter has lowest theoretical implemen-
tation cost (Table 3.10) and the best passband performance (Figure 3.6). However there
are complications for practical implementation since more stages normally requires a
larger stage control structure.

Figure 3.9: Group delay of 6 stage halfband FIR with
minimum phase and 3 stage minimum phase FIR
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Table 3.9: Group delay of different evaluated filters

Group delay for linear phase filters
Filter Group delay

(samples)
Delay at 48
kHz(µs)

Kaiser 1829 595
Eqrip 1511.5 492
3-stage 1619.5 527
CIC 598.5 195
CICom 4022.5 1309
6hb 1961 638
6IIRlin 1514 493

Group Delay for nonlinear phase filters
Filter Group delay

(samples)
Delay at 48
kHz (µs)

3-min 155 - 380 50 - 123
6hbmin 164.4 - 387 53 - 126
6IIR 176.6 - 410.5 57 - 134

3.2.8 Compare Cost and Signal to Noise Ratio

Table 3.10 shows the theoretical implementation cost of ten filters evaluated. In the
table the “NM” indicates “Number of Multipliers”, “NA” indicates “Number of Adders”,
“M/I” indicates “Multiplications per Input Sample”, and “A/I” indicates “Additions per
Input Sample”.

In order to verify whether the different decimation filter architectures affect the over-
all SNR of the ADC system, we converted the designed decimation filters into Matlab
Simulink model blocks. The decimation block processes the simulated 1-bit first or-
der ∆Σ modulator output, and outputs PCM data. The input signals are full amplitude
sinusoid waveform with different frequencies, and the output data is calculated by FFT-
based SNR estimation [152]. Table 3.11 shows the SNRs at three frequencies at typical
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Figure 3.10: Group delay of 6-stage halfband FIR, 3 stage
minimum phase FIR, and 6 stage halfband IIR filters

Table 3.10: Implementation cost of different filters

Filter NM NA M/I A/I
Kaiser 3659 3658 57.1719 57.1562
Eqrip 3024 3023 47.25 47.2344
3-stage 243 240 8.5938 8.3906
3-min 249 246 8.9688 8.7656
CIC 1 38 1 19.2969
CICom 109 145 2.6875 20.9688
6hb 96 90 6.9531 5.9688
6hbmin 174 168 10.9531 9.9688
6IIR 19 38 1.6719 3.3438
6IIRlin 33 66 1.9062 3.8125

low, mid and high audio band. It shows that there are no significant differences between
different types of decimation filters.

Figure 3.11 shows the Matlab Simulink model of a decimation subsystem which consists
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of 6 cascaded minimum phase halfband filters. Figure 3.12 shows the step response
of three minimum phase decimators (the second to fourth display) in comparison with
linear FIR decimator (at the top display). The one grid of X axis is simulated time of 0.5
millisecond. It shows linear decimator has around 0.5ms latency, whereas the minimum
phase ones are shorter.

Table 3.11: Simulated SNR values

Simulated SNR for selected filters
Filter Frequency of Input signals

500 Hz 3000 Hz 12000 Hz
Eqrip -120.5733 -107.411 -107.177
3-min -120.6725 -107.3478 -107.1542
6hbmin -120.8044 -107.3686 -107.1479
6IIR -120.8078 -107.3693 -107.1469

Figure 3.11: Simulink model for a subsystem of cascaded
6 stage halfband minimum phase filters

3.2.9 Conclusion of the Section

In this section, we evaluated time domain performance of different decimation filter ar-
chitectures that can be used in high resolution ∆Σ ADC. Ten filters were designed based
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Figure 3.12: Simulated step responses of Linear phase FIR,
3-stage minimum phase, 6-stage halfband FIR, and

6-stage halfband IIR filters

on the typical anti-aliasing 64 times decimation filter design specifications. The group
delay properties of both linear phase and non-linear phase multistage filters were inves-
tigated in consideration with other frequency performances such as passband, stopband
and transition band.
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The analysis showed that the multistage minimum phase FIR filter and multistage polyphase
IIR filter are promising for low group delay audio applications. The group delay in-
creases near the Nyquist frequency, but this might not be a problem for some live audio
applications. The theoretical implementation costs were listed. However, these results
were just for typical reference designs. There are vast amount of methods and techniques
being developed in optimisation of filter design and realisation, such as the optimal min-
imum phase FIR filter design method [160, 103]. For halfband FIR filter design, mini-
mum phase filter design without altering the linear impulse response [59, 161] could be
interesting to consider. It would be interesting for authors to further research some of
these specific areas.

Simulated SNR for typical architectures were evaluated as well. But in real hardware
implementations, the effects of quantization of coefficients needs to be further investi-
gated. There are also other practical factors such as hardware and software architectures,
which might influence the tradeoff and selection of decimation filters.

This section also revealed that the different multistage design parameters do affect the
overall delay such as the number of stages N , the different sample rate alteration factor
Di as described from Eq. (2.13) to (2.18). Traditionally most of these parameters are
selected in order to optimise the computational and area cost. Next section we will use
analytical approach and developed simplified models to show the relationships between
multistage filter design parameters, cost and overall delay.
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3.3 Simplified Model of Analysis Design Parameters of
Optimal Multistage Multirate Filters

In this section, we analyse the classical approaches of design optimal multistage and
multirate filter for ∆Σ ADC/DAC. Based on their performance properties, we propose
simplified models of searching optimal distribution of Di in the design space that yields
optimal design. There are two parts of the work:

1. Simplified integer-based design tables for sampling rate alteration up to more than
5000 with balanced design selection algorithm in terms of computational and area
cost.

2. Mathematical model of latency as a function of filter design parameters and their
optimal design properties for group delay.

3.3.1 Description of the Background Theory

Multistage filter design is a complex multidimensional optimisation problem. The for-
mulae for optimal design generally yield non-integer real numbers for the sample-rate-
changing factors of multiple stages. Approaches yielding useful integer results have
high computational cost and do not consider important multistage filter design proper-
ties. We develop a simplified algorithm for directly searching the optimal integer results.
Considering the most useful practical design parameters, optimal results can be approx-
imated with a limited number of sets for any designs satisfying certain constraints, with
negligible costs. This vastly simplifies the complexity of the problem.

[84, 88] presented the theory and quantification of cost optimisation of multistage struc-
tures. [89, 90] found that optimal solutions can be derived analytically by taking the
partial differential equation (PDE) of the cost function, hence reducing it to a one di-
mensional problem without needing complex numerical search algorithms. However
optimal solutions are often groups of non-integer real numbers that cannot be imple-
mented in practical systems. Manual adjustment of results is needed, one still needs to
retreat to numerical methods to solve the equations, and for each design, the roots of the
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equation must be put back into a cost function to find the optimal solution set. Alterna-
tively, one can yield the integer solution directly. [162] represents this problem in the
integer domain using set theory, and then performs integer factorization. [163] showed
that the problem can be solved using exhaustive search or a genetic algorithm.

We show that properties of solutions allow simplification of the search algorithm. Based
on distribution of the solution sets, we propose a new search algorithm and use it to gen-
erate optimal solution lookup tables for practical designs. A balanced trade-off strategy
is developed to find a best solution set for both computational and memory area cost.
Conclusions are given in the toward the end of the section.

Recall in Chapter 2, Section 2.5, we showed the computational cost can be calculated
by Rt as in Eq. (3.4)

Rt
∼= D∞

(
δp

k
, δs

)
fr0S (3.4)

where S is expressed as in Eq. (3.5)

S = 2
(∆f

∏k−1
j=1 Dj)

+
k−1∑
i=1

Di

(∏i
j=1 Dj)(1 −

(
2−∆f

2D

)∏i
j=1 Dj)

(3.5)

We can further have the total memory storage cost NT of such a filter

NT = D∞

(
δp

K
, δs

)
GT (3.6)

Where G is a proportionality constant that relates to the implementation of filter coeffi-
cients and T is given by

T = 2
∆f

D∫K−1
j=1 Dj

+
∫ K−1

i=1

Di

1 − α
∫ i

j=1 Dj

(3.7)

where α= 2−∆f
2D

.

To minimise RT is to minimise S in Eq. (3.5) and to minimise NT is to minimise T in
Eq. (3.7). S and T are only dependent on the Di and ∆f .
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[89] and [90] took a PDE approach to cost functions Eq. (3.5) and Eq. (3.7), treating Di

as continues real value. For example, finding D1 in a 3-stage design can be formulated
as a roots finding problem:

∂T

∂D1
= − 2D

∆fD2
1D2

+ 1
(1 − αD1)2 + α

√
2D

∆f

1
D1

D2 = 0 (3.8)

Often solving Eq. (3.8) requires numeric methods and results in complex and irrational
roots.

[162] and [163] directly search integer sets of {Di} that are factors of D, using exhaus-
tive search or a genetic algorithm to produce integer valued optimal results, but did not
taking the properties of the real valued solution into account.

We observe the distributions of both real valued and integer valued optimal solution sets.
We find both of these follow certain regular patterns. This enables us to vastly simplify
the optimisation problem and the size of the problem. The findings are discussed in the
following section.

3.3.2 Knowledge-Based Search and Lookup Tables

Observing from the experiments’ results of both real-valued and integer valued optimal
solutions, there are three important properties of the distributions of optimal solutions
for both optimal computational cost and memory storage cost:

(a) {Di} is always in descending order for multistage decimation and in ascending order
for multistage interpolation.

The larger value of Di means the larger decimation or interpolation factors stage i. In
order to minimise the narrow transition band effects on high sampling frequency (over-
sampled), it is understandable to have larger Di close to the higher sampling frequency
end.

The experiments show that the average real valued solution of smallest value of Di

for 3-stage design is around 2.65 (D3) and for 4-stage design is around 1.52 (D4) for
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decimation process. These number is close to integer number 2 that is the minimum
sampling rate changing factor, and is close to the lowest sampling frequency stage.

(b)∆f is related to the width of transition band. The variation of∆f changes the order
of the filter but not the sampling rate changing factor of each stage.

This is because for same overall value D, the distribution of Di still follows the trend
of property (a) regardless of filter order. According to [89, 90], ∆f has only a small
effect on the results. Also because the results are not integer, rounding is needed and
often, the difference due to using different ∆f is smaller than the difference caused by
the rounding process.

(c) Because of (a), we need to test the optimal set by cost functions only for highly com-
posite number (non-prime) D that can be factorised more than number of stages K.

Thus, search for integer valued solutions can be informed by (a), and because of (b) and
(c), the problem size is considerably small than it appeared to be.

Figure.3.13 shows 3D plots of the 3 stage real-valued optimal solution distribution for
optimising RT (Figure.3.13.a) and NT (Figure.3.13.b). The real valued optimal result
sets {D1, D2, D3} are formed from three independent disjoint surfaces with different
D < 5000 and 0 < ∆f < 0.5. The values of lowest surface is close to the minimum
value of interpolation and decimation factor 2. The optimal integer valued solutions
follow a similar trend. Figure 3.14 demonstrates this for D = 2n.

Figure 3.13: Real-valued solution sets distribution
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Figure 3.14: Integer solution sets distribution for D = 2n

The simplified search algorithm is described in Table 3.12 :

Table 3.12: Pseudocode of optimal integer valued solution search algorithm

For D ∈ N1 and represented as a prime factorization:
D = pd1

1 ∗ pd2
2 ∗ pd3

3 ... ∗ pdr
r

where pi is a prime number and di the corresponding
exponent,
1) Check whether D can be factorized into M unique
sets of k (stage) factors

M =



D1.1, D2.1, ... Dk.1

D1.2, D2.2, ... Dk.2
...

D1.m, D2.m, ... Dk.m


2) Sort M so that {Di.1 > Di.2 > ... > Di.k}
3) Substitute sets into Eq. (3.5) or Eq. (3.7) and find
the set with the minimum solution.

The algorithm simplifies the search since we only care about unique sets (e.g., {8, 4, 2}
is equivalent to {4, 8, 2}), and we sort candidate sets as descending ordered sequences.
Only when the number of D’s factors is larger than the required number of stages, the
step 2) sorting required. For example, for D < 5000, 3 stage decomposition, only 1692
(33.8%) numbers can be factorised in different unique sets of 3 factors that need to be
put back into the cost function. For typical design value ∆f = 0.18 and D < 5000 and
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2, 3, 4 stage design, our method provides 85.4% average reduction when compared with
exhaustive search in terms of the number of cost function tests, and 65% computing time
reduction. Computing time was averaged over 100 iterations using a standard Intel Core
i7 based PC.

In addition, the variation of ∆f does not cause much change in the optimal integer
values. For the same example of D < 5000 and 3 stage case, within the 1692 cases that
have possible multiple solutions, in 994 (59%) cases for computational cost optimisation
and 1167 (69%) cases for memory cost optimisation, the optimal solution sets change
only once or twice over the (0 to 0.5) ∆f region.

Table 3.13 summarises 15 popular ADC/DAC chipsets used in audio devices from on-
board sound cards to professional mixers. The supported sampling frequencies Fs range
from 44.1 kHz, 48 kHz, 96 kHz with different supported filter type configurations such
as low latency, sharp or slow roll off, etc. ∆f is within 0.08-0.44 with most common
designs between 0.15 and 0.4.

We use a bisection method to find the ∆f points where optimal solutions change. For
common 2, 3, 4 stage filter design, two groups of lookup tables for computational and
area costs can be generated from the algorithm. They are small since optimal solutions
are smooth over usable design specification ranges.

Figure 3.15 shows changing of optimal solution sets {Di} against D and f. The Z axis
value is calculated from Eq. (3.9), where ω is a weighting factor, and σ (Di, K) is the
standard deviation of optimal set {Di}. It provides information regarding both

∫
Di

and the distribution value of Di within a solution set. Since the elements of set {Di}
are descending or ascending, σ (Di, K) indicates the slope of the value changing across
stages. The same value of Z indicates same set of Di being chosen.

Z= ω D+σ (Di, K) (3.9)

Figure 3.15 shows that optimal integer solution sets can be the same values for a large
range of design specification ∆f . Similar figures can be produced for both optimal
area cost and computational cost sets. Thus, we can create lookup tables to store these
optimal solutions with the critical values of ∆f that cause changes in optimal solution
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Table 3.13: Summary of values of common oversampling-based audio ADC/DAC
design specifications

Type Max fp Min f s Min ∆f

AD1871 0.45 Fs 0.55 Fs 0.17
AD7768 0.43 Fs 0.50 Fs 0.14
AD1974 0.44 Fs 0.56 Fs 0.21
ADAU1966A 0.36-0.45 Fs 0.55-0.64 Fs 0.18-0.44
PCM1807 0.45 Fs 0.58 Fs 0.22
PCM4220 0.42-0.45 Fs 0.55-0.58 Fs 0.18-0.28
PCM1794A 0.46-0.49 Fs 0.55-0.73 Fs 0.11-0.37
PCM5242 0.40-0.47 Fs 0.55 Fs 0.15-0.18
CS5364/66/68 0.45-0.47 Fs 0.58-0.68 Fs 0.19-0.34
CS5381 0.45-0.47 Fs 0.58-0.68 Fs 0.19-0.34
CS4398 0.499 Fs 0.55-0.58 Fs 0.09-0.14
WM8740 0.27-0.45 Fs 0.46-0.49 Fs 0.08-0.41
WM8741 0.4 Fs 0.5 Fs 0.2
ALC885 0.45 Fs 0.60 Fs 0.25
CS4207 0.45-0.499 Fs 0.55-0.60 Fs 0.09-0.25

sets. The structure of a database of such tables is depicted in Figure 3.16. Using our
algorithm to generate K= 2, 3, 4 stage design tables for both memory and computational
cost, with 1<D<5000 and 0 < ∆f < 0.5, there are 15,783 total optimal computational
cost sets and 17,622 total optimal memory usage sets in the three tables.
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Figure 3.15: Changing of optimal value against ∆f for some highly composite number
D

Figure 3.16: Depiction of optimal solution sets lookup tables of computational cost or
memory storage cost
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3.3.3 Tradeoff Strategy forMinimisation of Both Area and Compu-
tational Cost

In practise, only one solution can be used in a system. A trade-off strategy based on error
effects was developed to find a best solution set for both computational and memory area
cost within the lookup tables.

Table 3.14: Cost balance search algorithm

when Di m ̸= Di c

if Cm−Cc

Cc
> Mc−Mm

Mm
choose Di c

else choose Di m

Where:

• Di c is the integer valued solution set for optimal computational cost.

• Di mis the integer valued solution set for optimal memory usage cost.

• Cc is computational cost with optimal computational cost set.

• Cm is computational cost with optimal memory usage set.

• Mc is memory usage with optimal computational cost set.

• Mm is memory usage with optimal memory usage set.

To evaluate the error effects of this trade-off strategy, we evaluated the average error
of computational cost: Sdiff=(

∫N
i=1

Ci−Cci

Cci
)/N , and the average error of memory cost:

Tdiff= (
∫N

i=1
Mi−Mmi

Mmi
)/N , where N is total number of design cases tested; Ci and Mi are

the actual computational cost and memory usage when the trade-off sets being used; Cci

and Mmi are the computational cost and memory usage when the corresponding optimal
sets being used.

For 3 stage design with 0<∆f<0.5 and 0<D<5000, the average error is 0.26% for Sdiff

and 8.88% for Tdiff .
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Figure 3.17: Flow chart of overall database query algorithm

Figure 3.17 shows the flowchart for finding semi-optimal solutions for both constraints.
It is worth mentioning that this method can be altered with extra weighting factor to
consider actual implementation effects. The design parameter ∆f , D and different plat-
form realisation techniques might have influence of actual selection decisions. Further
work needs to be done to decide the form of weighting factor. A numeric approach has
been adopted to simplify the design space for optimal cost and area design. Next we use
analytical approach to find the optimal design in terms of overall delay.

3.3.4 Model of Delay of Multi-Stage Linear Phase Filter

First we show the analytical approach of how multistage decimation filter design af-
fects the overall latency. In previous sections we uses computational cost as objective
function, since the computational cost of filter is directly linked to filter order hence the
design specifications. For linear phase FIR filter, the group delay is also directly linked
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to filter order, therefore it should be possible to have the analytical expression of overall
delay as a function of design specifications for linear phase filter.

3.3.5 Formulae of Total Delay of Linear Phase FIR Based Multi-
stage Design

The delay of single stage linear phase FIR filter with symmetric (either odd or even)
coefficients structure is equivalent to the number of samples of the half of filter order:
“N/2”. The order N can be estimated by the filter design specifications such as passband
frequency fp, stopband fs, passband ripple δp, stopband ripple δs . For multistage design,
each stage can be a single linear phase FIR lowpass filter with overall filter performances
specified as below:

1. Overall passband frequency fp, and stopband frequency fs.

2. Overall passband ripple δp and stopband ripple δs.

The delay Ti of stage “i” is defined as:

Ti = Ni

2fr(i−1)
(3.10)

where Ni is the number of order at stage “i”.

The total delay can be defined as:

TD =
k∑

i=1
Ti (3.11)

The Ni can be approximately estimated as the following formula, if D is greater than 10
and relatively narrow band filter according to [84]

Ni = D∞(δp/k, δs)
∆F

=
D∞(δp/k, δs)Lifr(i−1)

fri − fs − fp

(3.12)

Therefore the Ti can be approximately defined as following formula:
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Ti = D∞(δp/k, δs)
2(fri − fs − fp)

(3.13)

Substitute Eq.(3.13) into Eq.(3.11), we have the formula of total delay of multi-stage
decimator Td

Td = 1
2

D∞(δp/k, δs)
k∑

i=1
( fro∏i

j=1 Di

− fs − fp)−1 (3.14)

The Dk is only independent up to Dk−1 the Eq.(3.14) can be further refine to equation
Eq. (3.15) below.

Td = 1
2

D∞(δp/k, δs)P

P = (fs − fp)−1 +
k−1∑
i=1

(2D
fs∏i

j=1 Di

− fs − fp)−1
(3.15)

Now we have the final objective function of total delay in Eq.(3.15) in a closed form.
Next we will show some important properties of this formula analytically.

3.3.6 Properties of Delay Formula for Multistage Linear Phase Fil-
ter Design

In this section, we show the two important properties of delay formula Eq.(3.15)

(a) The overall delay increases as the number of stages increases.

Although the total number of order of filter reduces around 10x folds when using optimal
multistage design, the overall delay increases. It is due the later stages have lower input
sampling frequencies. Therefore, the delay caused by longer sampling period at later
stage overwrites the gains from reduced filter length.

This can be proved below. The formula Eq.(3.15) can be rewritten into the summation
of two parts A and B. Surely the number of stage k is positive integer number.
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Td = A + B (3.16)

Where A is defined as:

A = 1
2

D∞(δp/k, δs)(fs − fp)−1 (3.17)

And B is defined as:

B = 1
2

D∞(δp/k, δs)
k−1∑
i=1

(2D
fs∏i

j=1 Di

− fs − fp)−1 (3.18)

When k=1, we only have part A as the single stage delay:

Td = A = 1
2

D∞(δp, δs)(fs − fp)−1 = 1
2

D∞(δp, δs)
1

∆Ffro

(3.19)

Which is equivalent to the half of number of order when N >> 1, and it does not depend
on overall decimation factor D.

When k > 1; refer to the “TABLE I” in reference [84] (Crochiere 1975), for given δp

and δs, the D∞ (δp/k, δs) increases when k increasing. Therefore A is increasing. Part
B is the running sum of (2D fs∏i

j=1 Di
− fs − fp)−1, the maximum value of

∏i
j=1 Di is

D, therefore we can proof this running sum is always greater than 0, so does the value
of part B. The overall Td is increasing. Therefore, when the k > 1, the delay increases
when the k increases.

The second property of delay formula Eq.(3.15) is:

(b) Given fixed stage “k”, the overall delay tends to be smaller when distributing
larger decimation factor D towards the later stage.

We regard the decimation factor D is a composite number which can be factorised into
the number k of Di. The single stage delay in formula Eq.(3.13) can be further written
as:

Ti=
A

fri−B
(3.20)
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Where both A, and B > 0. The delay is inversely proportional to the input sampling
frequency. The sketch is below:

Figure 3.18: Delay vs Input Frequency

Therefore, given the number of stage k is fixed, for each stage, it would be have max-
imum frito have minimum Ti. The maximum value of fri is fr0. The Dishould be “1”
for that stage. The minimum delay should be the form of [1, 1, 1..., fr0/frk], which is
equivalent to single stage filter.

For the multistage structure where k >1 and D > 1, both k and D will be whole number.
Let’s take the partial derivative of equation Eq.(3.20) with respect to fri:

∂Ti

∂fri

= −A

(fri − B)2 (3.21)

The sketch is below:
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Figure 3.19: Partial derivative of single stage delay vs. input frequency

For (fri > fs + fp), the partial derivative is regarded as gradient: ∇Ti . If we regard
the multistage decimation process as adding number of frequencies together to reach
the highest input frequency fr0 from frk. This basically shows when a small stage of
frequency increasing df is needed, to have lower increment of Ti, the df should be put
toward lower end of fr0. For example, in theory when k > 1 and D >1, the form of
decimation to have smaller total delay will be [2, 2, 2...remains].

Next we show the simulation and practical results match these two properties.
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3.3.7 Simulation Results

3.3.7.1 Delay Effects of Number of Stages

Table 3.15 shows a typical 64 x 48 kHz decimation audio linear phase filter with different
number of stages design to achieve same magnitude response performance. We can
see the delay increases when the stage increases. However with multi-stage design the
number of adds reduces significantly from single stage to multistage.

Table 3.15: Delay effects of number of stage - linear phase

Filter type Group Delay at fr0 Number of Adders
Optimal design 1 stage 1511.5 3023
Optimal design 3 stage 1619.5 240
Half-band design 6 stage 1961 90

Table 3.16 shows a typical 64x decimation audio minimum-phase filter with different
number of stages design to achieve same magnitude response performance.

Table 3.16: Delay effects of number of stage - minimum-phase

Filter type Group Delay at
fr0 from
20 – 20kHz

Number of Adders

Minimum phase FIR 3 stage 155 – 380 246
Minimum phase FIR 6 stage 164.4 – 387 168
Minimum phase IIR 6 stage 176.6 – 410.5 38

Observations

1. The results generally match the first property of the formula. It shows the increases
of number of stages has negative effects of latency.

2. The computational cost reduction from single stage to multistage is significant
which may surpass the benefits of reduced delay gained by single stage.
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3. For multistage designs, it generally shows the fewer stages has advantages of
lower delay.

4. There is significant delay reduction by using multistage minimum phase design
which provide both superior computational cost and overall delay. However the
delay is uneven for at the different frequencies.

3.3.7.2 Delay Effects of Distribution of Decimation Factors Within the Stages

The simulation is run at the design specifications with passband ripple δp = 0.01; stop-
band attenuation δs = −80dB, and decimation factor D >> 10, and N is estimated
number of order, so the approximation in the formulae in previous sections can be valid.

Table 3.17: Simulation result D=32, k =1 and k=2

No. of Stage k=1 Number of stages k=2; (D1 × D2 = 32)
D=32 N/A (2, 16) (4, 8) (8, 4) (16, 2)
N (Order) 1565 837 433 254 234
Delay (No. of sample at fro) 782 834.5 840.5 855 897

Table 3.18: Simulation result K= 3, D=32

Number of stages k=3; (D1 × D2 × D3 = 32)
(2, 2, 8) (2, 4, 4) (2, 8, 2) (4, 2, 4) (4,4,2) (8,2,2)
866.5 885.5 931.5 889 937 947

Table 3.19: Simulation result D=64 K=2

Number of stages k=2; (D1 x D2=64)
(2, 32 ) (4, 16) (8,8) (16,4) (32,2)
1666.5 1672 1683 1709.5 1793.5
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Table 3.20: Simulation result D=64 K=3

Number of stages k=3; (D1 x D2 x D3=64)
(2, 2,16) (2,4, 8) (2,8,4) (2,16,2) (4,2,8) (4,8,2) (8,2,4) (8,4,2) (16,2,2)
1723.5 1736.5 1768.5 1860.5 1736.5 1866.5 1779.5 1875.5 1894.5

If we look at Table 3.20, the second row indicates how the decimation factor Di is dis-
tributed. We will see the delay of D1 = 2, D2 = 4, D3 = 8 is 1768.5 which is lower
than the delay of D1 = 8, D2 = 4, and D3 = 2 which is 1875.5. However it is not
significant difference. Therefore if the distribution of decimation factor Di is selected
by the optimal design choice, there is no significant effects on overall delay as minimum
phase does.

Observations

1. This result generally agrees with the second property of delay formulae, which
shows the distribution of larger decimation factor at later stage will result in shorter
delay.

2. Comparing with optimal design by Crochiere [84, 88] and our simplified method
in the early part of this section, the distribution of Di for optimal computational
cost normally have larger Di at earlier stage, which is the contradictory require-
ments for set Di as to optimal delay.

Next, we present the new global balanced design that takes total group delay into account
with user-controllable weighting factor by utilising the theory developed here.

3.3.8 Global Balance Design Di for Both Cost and Delay for 3-stage
Design

The set Di that produces a multistage filter with optimal computational or area cost usu-
ally has sampling frequency alteration rate ‘2’ at the last stage of the filter, whereas the
set Di that produces a multistage filter with optimal delay shall have factor ‘2’ at the
beginning of the stage. In addition, where there is a factor of ‘2’ decimation or interpo-

123



lation, a more economic half-band filter can be employed to reduce the cost further. We
could develop an algorithm to shift the position of the number within the set Di to find
out the global balanced solution with comparing the delta of the cost and the delay. In
addition, a user defined weighting factor can be used to gear the design to produce the
results that more computational cost optimal or delay optimal.

This idea has been implemented in 3-stage cases. According to the previous research,
3-stage design normally yields optimal solutions among the different number of stages.
To develop this algorithm, an average saving factor of using halfband filter in multistage
filter design for High-resolution Anti-aliasing Anti-image Filter (HAAF) is obtained by
experiment results. We use number k1 = 0.9830 as the cost-saving factor and number
k2 = 1.0033 as the delay saving factor. Let Di be the output set from the algorithm
mentioned in Section 3.3.3 that produces the balanced cost of optimal design. Let β

represents the user weighting factor of minimising group delay design. We have the
following algorithm that outputs the set Dgi as the global balanced solution set for both
cost and group delay, based on a condition function in Eq. (3.22).

(2 − k1(
T2

T1
+ S2

S1
)) × 0.5 − (P1 − P2 × k2) × β

P1
> 0 (3.22)

In Eq. (3.22), T represents the value of filter storage or area cost as in Eq. (3.7). S

represents the value of filter computational cost as in Eq. (3.5). P represents the value
of filter group delay as in Eq. (3.15).
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Table 3.21: Global balanced solution set search algorithm

1. Obtain β from user input as well as the
filter design specifications.
2. Obtain the balanced solution set Di us-
ing previous algorithm as in Table 3.14.
3. Where there is ‘2’ in the set, shift the
position of this factor in the solution set
and make new set.
4. Compare the two solution sets using
condition equation in Eq. (3.22).
5. If the condition is met, select set 1, oth-
erwise select set 2.

Testing Results

We run this algorithm for D up to 2000 for possible 3-stage filter design. The results
are shown in Table 3.22 list the first 10 values in the database. Each column represents
the optimal solution set for different cases. From the left to the right, there are optimal
solution sets for ‘Minimum computational cost’, ‘Minimum area cost’, ‘Balanced Cost’
for both computational and area cost, ‘Minimum Group Delay’, and ‘Global’ solution
that considering all the factors. The rightmost column are the solution sets generated by
the algorithm in Table 3.21.
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Table 3.22: Global balanced results

D Computation Area Balance Groupdelay Global
64 (8, 4, 2) (8, 4, 2) (8, 4, 2) (2, 2, 16) (8, 2, 4)
66 (11, 3, 2) (11, 3, 2) (11, 3, 2) (2, 3, 11) (11, 2, 3)
70 (7, 5, 2) (7, 5, 2) (7, 5, 2) (2, 5, 7) (7, 2, 5)
72 (9, 4, 2) (9, 4, 2) (9, 4, 2) (2, 2, 18) (9, 2, 4)
78 (13, 3, 2) (13, 3, 2) (13, 3, 2) (2, 3, 13) (13, 2, 3)
80 (10, 4, 2) (8, 5, 2) (10, 4, 2) (2, 2, 20) (10, 2, 4)
88 (11, 4, 2) (11, 4, 2) (11, 4, 2) (2, 2, 22) (11, 2, 4)
90 (15, 3, 2) (9, 5, 2) (9, 5, 2) (2, 3, 15) (9, 2, 5)
96 (12, 4, 2) (8, 6, 2) (12, 4, 2) (2, 2, 24) (12, 2, 4)
104 (13, 4, 2) (13, 4, 2) (13, 4, 2) (2, 2, 26) (13, 2, 4)

In this case, we set the user weighting factor that treats the percentage of change of
computational cost and delay as the indicator. For the first 10 decompose Di in Table
3.22, the results of ‘Global’ solution search algorithm outputs have average 7% increase
in computational cost and 6.5% reduction in the overall delay. This validates the al-
gorithm. However, the choice of the weighting factor is really an engineering decision
based on the application context.

3.3.9 Summary of Contributions

In this section, firstly we analysed the integer solution sets of classic multistage linear
filter design problem. Based on their properties, we proposed a search algorithm within
a simplified search space that produces a balanced solution set for both minimising com-
putational and area cost.

Secondly, we have analytically shown the delay effects of multistage filter design of
linear phase filters by defining the overall object function of delay as a function of design
specifications. This work is inspired by the classic work of Crochiere [84, 88] and Coffey
[89, 90] which defined the object function as computational cost. The analysis of the
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optimal delay solution sets shows they follow the different distribution pattern and the
solution sets for the optimal cost.

Finally, based on the delay objective function, we proposed an algorithm that takes the
delay into account for the overall design incorporate with halfband techniques to produce
‘Global balanced design’. The test results show that the outputs solutions achieve an
overall cost-effective design with considerably reduced group delay. In the next section,
we will look into the objective evaluation of minimum phase FIR filters that can be used
in the multistage design.

3.4 Performance Evaluation of Minimum Phase Multi-
stage Filter

3.4.1 Defining Delay Measurements of MP Filters

Minimum phase filters do not have constant “delay”. It would be nice to have quantita-
tive measures of group delay of the non-linear filters. Next, we define a various delay
measurement methods. These methods can be considered to gauge the delay of MP
filters.

1. Group delay at certain frequency points

This is the most obvious measure. We are interested in the group delay of specific points
of interests so that the overall group delay distortion and the flatness of group delay can
be gauged. For example, the lowpass MP filter has group delay behaving monotonically
over the passband. It would be interesting to see the group delay at the edges of the
audio band such as at 20Hz and 20kHz.

2. Central Time (Time domain)

“Central Time” or “Centre of Gravity” of a time event of a non-linear phase system
is defined in various literatures in both continuous form and discrete form [164, 165,
166]. A normalised first-order temporal moment about time “t = 0” is referred to as
the Central Time: T , and is defined as Eq. (3.23). This value can be thought of as “the

127



centroid of the area under the amplitude-squared time history and is directly analogous
to the first statistical moment or mean value.”

T =

(∫+∞
−∞ t × g(t)2dt

)
E

(3.23)

The discrete form of this equation:

Tg =
∑N

n=0 n A2
n∑N

n=0 A2
n

(3.24)

“Central time” is defined at time domain for the entire impulse response stream. Al-
though it represents the time property of the whole system, it is difficult to evaluate this
measurement in the limited frequency band, which in many cases is desired for audio
applications.

3. Delay Centroid (Frequency Domain)

For audio applications, we are only interested in the audio band (band of interest) delay
behaviour. Therefore, like frequency centroid, we can define the delay centroid:

τc =
∑N

i=1 τi

N
(3.25)

Where N is the length of frequency bin of interested band and τi is the group delay at
that frequency bin.

3.4.2 The Effects of Corner Frequencies

Observing the group delay behaviour of different lowpass filters. The delay curves al-
most monotonically increase towards the corner frequencies or cutoff frequencies. For
the filters with the same order, the group delay value is almost the same at the designed
corner frequencies. For filters designed at same corner frequencies but with different
orders, the group delay various very little in the frequency band much lower than the
cutoff frequencies. These effects are described in below two experiments.
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To get smoother (semi-linear) group delay within the passband, the simplest way is just
to push the passband corner frequency higher. Figure 3.20 shows when the cut-off fre-
quency varies from 21k Hz to 25k Hz, the group delay at 20k Hz drops from 10.36 to
3.9. The orders are all 133.

Figure 3.20: Different passband corner frequencies with same transition bandwidth

The values are summarised in the following Table 3.23, we can see the group delay is
roughly same at the cut-off point. Providing the shape of the curve, the cut-off point
raises significantly comparing the overall section.
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Table 3.23: Group delay at Same order with different cutoff

Cut off Fre-
quency (kHz)

Group delay
(number of
samples)

Group delay at
20 kHz

21 17.93 10.36
22 17.69 7.34
23 17.87 5.71
24 17.66 4.63
25 17.52 3.94

In summary, the group delay is considerably low for MP filter within the passband.
The delay curve vs frequency behaves monotonically in general towards the cut-off fre-
quency.

3.4.3 Group Delay Behaviour of MP Filters With Different Order

The filter order is a very important measure of filter performance. The group delay of a
linear phase FIR filter is proportional to the order of the filter. The optimal single stage
or multistage filter design aims to minimise the order of the filter. Therefore it will be
interesting to investigate how group delay varies against the changes of filter order for
the minimum phase case.
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Figure 3.21: Group delay of MP filter at different Order

Group delay behaves monotonically in general over the passband of MP filter, as in
Figure 3.21 although for higher order MP filter, there is noticeable ripple at passband.

It is worth to note that the group delay values do not vary much at lower band far away
from the cut off frequency. Figure 3.21 shows the group delay values vary only below
ONE sample almost at the entire lower quarter of Nyquist frequency band, even when
the filter orders are very different.

3.4.4 Quantitative Group Delay Measurements of MP Filters With
Different Order

In Figure 3.22 and Figure 3.23, we compared the different quantitative delay measure-
ments of MP filter (curve 2 3 4 5) with a group delay of linear phase filter (curve 1) in
a logarithmic scale and linear scale respectively. Figure 3.23 allows us to look closely
into the different delay estimation results with the linear phase value being omitted.
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We can see that the delay of the minimum-phase filter in all different quantitative mea-
surements are much less than the linear phase design. For the whole audio band 0-18k
Hz and with different delay estimation methods, the various measurements of MP filter
are very close.

In this experiment, the lowpass filter is designed and converted to a MP filter by the
zero reflection method. Then we compare the magnitude response to see if the root
mean square error is greater than 0.00001(1e-05) over 4096 points. We got the order up
to around 725.

Figure 3.22: Different Delay measurements methods vs filter order N
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Figure 3.23: MP filter delay estimation

Figure 3.23 shows the closed look of linear scale of comparison of different quantitative
delay measurements, “passband centroid” is measured at 0-18k Hz with cut off frequency
20k Hz. The slightly sudden drop of the 18k Hz curve is a numeric error caused by the
minimum-phase filter design algorithm.

In Figure 3.23, the most interesting curve is the “passband centroid” curve, which is
drawn by diamond symbol. We can see even the order is very high (up to 700 order),
this delay measurement is almost kept same value as low order filter. We can most
conclude that with proper selection of corner frequency, the MP filter delay is almost
independent of orders.
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3.4.5 Summary of MP Filter Evaluations

3.4.5.1 Can We Hear the MP Filter Group Delay Distortion?

Comparing with Table 2.3, if we design a MP filter around 100 order with cut off fre-
quency greater than 21 kHz, the group delay distortion within the audio band only has
10 samples (200 us at 48k HZ sampling frequency) difference between 0Hz to 20k Hz,
which should not cause the audible effects.

Also if we take delay centroid within the audio band as measurements in this particular
design, the delay centroid value varies from 0.3 samples to 1.8 samples with the filter
order range from 10 to 750. This can be almost regarded as constant, which we could
use for estimation in multistage filter design.

3.4.5.2 Two Major Design Factors Affecting MP Group Delay Behaviour

In this section, we investigated the delay behaviour of minimum phase non-recursive
filter in detail, especially for high-performance lowpass filters which are used in audio
rate conversion as anti-aliasing and anti-image filters.

Basically, we evaluated the general properties of Equation: Gi (ω) = f2(ωsi, ωpi, δpi, δsi, ω)
intuitively. We have the following important findings which would help develop the fur-
ther approach to express the it in analytical form.

1. The four filter design parameters could be simplified into two main design factors
which affect the group delay of MP FIR filter mainly. These are a) the corner
frequency; b) the order of the filter. The passband ripple, stopband attenuation,
and transition bandwidth can be translated into the filter order by order estimation
technique.

2. The MP lowpass FIR filter’s group delay increases monotonically with frequency.
However, it varies little within the frequency band that is far away from the tran-
sition band. Therefore, the group delay distortion has a major effect at the high
frequency components. Due to 1), this effect is mainly affected by filter order and
value of the corner frequency.

134



In addition, various delay measurements methods were considered. The “central time”
in the time domain and the “delay centroid” in the frequency domain are proposed for
quantifying the group delay within the band of interest.

3.4.5.3 Formulation for Multistage Evaluation

These work provide the useful fundamental toolset for quantifying the group delay in
multistage design when minimum phase technique is employed. We know the group
delay of multistage filter is the summation of single stage: G (ω) = ∑k

i=1 Gi(ω). The
overall non-linearity of delay behaviour of a MP multistage system should also be af-
fected by the above two design factors (corner frequency and filter order) of each stage.

In the multistage situation, the corner frequency of each stage can be the same value as
the overall corner frequency specification. The filter order of each stage is affected by
the transition band at that stage, which is the main design factor of the multistage filter
in relation to the number of stages and the distribution of frequency alteration factors.
Therefore, if we can qualify and quantify the group delay curve in relation to these two
design factor, then we can have an analytical approach to the overall group delay curve
of the multistage system.

3.5 Conclusion

In this chapter, we had an detailed investigation of the delay in ∆Σ ADC/DAC, which is
mainly caused by the linear phase multistage filter that used for high-performance anti-
aliasing or anti-image filtering purpose. We started the hardware ADC/DAC latency test.
Then we reported comprehensive time-domain performance evaluations for different
multistage filter systems in this application domain. A new objective formula of overall
delay of the linear phase multistage filter is developed. Based on this formula, a new
global balanced design algorithm is proposed to take account of both hardware cost and
group delay. Finally, the objective time measurement methods and formulas of non-
linear phase filter especially the minimum phase FIR filter are presented and evaluated.
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Multistage filter design is a complex design problem. There are various design tech-
niques such as halfband, and mixed types of filter can be used in a multistage system.
The filter performance of each stage will have chain effects on the design requirements of
other stages hence to the overall system. We believe the design can be further optimised
for all different measurements using mathematical methods or computer algorithms. Our
initial work of using annealing algorithm to further optimising the overall design already
showed promising results.

In practice, the rule of thumb of manufacturing ∆Σ ADC/DAC for professional audio
grade usually adopt two to three stages cascaded linear phase FIR design using halfband
filter where is possible. The different sampling frequencies involved in these systems
are the common ones for the digital audio domain, such as 44.1 kHz, 48 kHz, 96 kHz,
and 192 kHz and their integer multiplications. Therefore there are limited design spaces
Di to select. The rule of thumb approach produces enough savings on the cost and with
adequate performance, though it might not be the optimal balanced design.

Nevertheless, the formulas produced in this research Eq. (3.14) (3.15) (3.22) provided a
mathematical accuracy to describe these proprieties on any design spaces and that how
much the cost can be reduced and how much precisely the delay is worse off.

Our work filled the theoretical gap that the delay and cost trade-off can be determined
and calculated before the implementation. In some particular situations where the sub-
sample delay accuracy is needed, our formula could help to design the system with delay
factor included. At least, when future applications are emerging, that might involve
arbitrary sampling frequencies and oversampling ratios, our theory provides a ready
knowledge base for such applications.

There is limited literature on perception effects of group delay distortion and what differ-
ences of minimum phase and linear phase on the perception of audio signal, especially
when these filters work just above the audible band as anti-aliasing and anti-image pur-
pose. It would be interesting to derive an appropriate listening test methodology to find
out these effects for the different types of music.
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Chapter 4

Delay of DAW on GPOS and New Time
Deterministic OS Scheduling
Framework

In this chapter, we present the work for understanding and reducing the delay in audio
processing using DAWs and General Purpose Operating System (GPOS). It is organised
as the follows.

• In Section 4.1, we present the updated latency measurements using the desktop
operating systems to process audio signals, under heavy CPU audio processing
loads, a large number of channels and possible cross-adaptive configurations [12].

• In Section 4.2, we present the new OS scheduling framework called “Time Deter-
ministic Cyclic Scheduling” (TDCS) with simulation results. TDCS is specifically
designed for low latency real-time multimedia processing that can be integrated
into modern GPOS potentially.

Though the latency test work in Section 4.1 was conducted and published in 2010. A
research group conducted similar measurements on the latest hardware, operating sys-
tems, and DAW software and the results were published in 2018 [167] with help from
the author. The methodology in research [167] is same as author’s work. The results of
[167] indicate the relevance of the latency problem presented in this work is still up to
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date. The new OS scheduling framework presented in the Section 4.2 is submitted for
publication in 2017 and currently under the review.

4.1 LatencyTest of Audio ProcessingUsingModernDAWs
and GPOS

Using commodity computers in conjunction with live music digital audio workstations
has become increasingly more popular in recent years. The latency of these DAW audio
processing chains for some application such as live audio monitoring has always been
perceived as a problem when DSP audio effects are needed. With “High Definition
Audio”being standardised as the onboard soundcard hardware architecture for personal
computers, and with advances in audio APIs, the low latency and multi-channel capa-
bility has made its way into home studios. In the following, we discuss the results of
latency measurements of current popular operating systems and hosts applications with
different audio APIs and audio processing loads.

4.1.1 Background

The latency of the DAWs has always been perceived as a problem for some real-time au-
dio applications. The constraint of maximum allowed latency in audio processing varies
between different applications. In audio streaming over a packet switched network, the
one-way delay can be at the magnitude of seconds, and still be regarded as real-time
[46]. In live performance and record monitoring environments, the maximum tolerable
delay is around 10ms to 30ms depending on the different environments of performers
and instruments [47][37]. For some performers, such as saxophone players, the thresh-
old is even lower. Recent comprehensive testing results can be found at [36]. In the
digital audio chain for live music, the DSP and software monitoring platform seems to
be the main cause of latency [15].

Professional digital consoles normally have overall system latency no more than 2 ms.
There are concerns that surround the use of computer-based DAWs for low latency work
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(less than 10ms) due to unexpected buffer underrun noise1 in sound when the CPU
is heavy loaded [50]. Therefore, professional audio interface cards provide hardware-
based monitor sub-mixing or bypass routing for the purpose of offloading the CPU.

In 1998, researchers presented the results and discussed the causes of audio process
latency of common operating systems [52]. It was suggested that the ideal latency time
could be 3ms, and revealed the difficulties involved in achieving this. In 2001, research
[53] indicated that the proper architecture of audio API stacks should keep the latency
in the audio processing path constant without being affected by heavy CPU load tasks.
The most promising low latency audio layers at that time were Linux ALSA (Advanced
Linux Sound Architecture) and Mac OS X CoreAudio. Some recent research in 2014 and
2016 [18, 19] found some fundamental sound architecture and communication protocols
used in computers still have latency problem in the similar scale.

Audio driver architecture has evolved over the years, along with live audio applications
and hardware platforms. The adaptive audio effects [54] which use feature extraction to
create control signals for the processing of sound have often been proven to have high
computational cost, leading to heavy CPU loads. However, with the appropriate side-
chain design, multi-threading support from audio host platform and the concurrency of
the software architecture, the hypothesis can be made that the intelligent subsystem and
multiple audio processing paths should not affect the real time audio processing path
even when the CPU load is coming from the audio application itself.

4.1.2 Testing Method

The sound source can be constructed mathematically in the form of either a single pulse
or pulse train. When playing back the sound source, it is split into two channels. One
channel is sent directly to recording devices, bypassing the operating system and the
second is routed through the test system and recorded as a second channel using the
same recording device. The recording device can be a digital recorder or a computer
with professional sound interface. By analysing the final recording, the latency of audio

1It is worth noting that some online articles wrongly refer to the buffer underrun noise as jitter noise
that usually appears in the frequency domain due to the uneven paces between audio samples.
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processing path can be determined as shown in Figure 4.1.

Figure 4.1: Latency measurement from recorded signals

The single pulse was used to access the minimum latency we could possibly achieve,
whereas the pulse train was used for testing the glitches, variable latency and loss of
information.

The capability of adjusting software buffers needs to be considered in order to make
them comparable for different test cases.

4.1.2.1 Test Plan

Overall, there are many combinations of host DAWs, operating systems, driver APIs,
soundcards and hardware. Therefore a carefully designed test plan is needed that con-
tains a set of test cases in order to verify specific aspects of system latency by fixing and
altering variables in the test domain.

In addition to this, the work presented in the study contains some special conditions for
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the purpose of cross-reference. These included latencies of commonly used professional
digital consoles and DSP development hardware.

The focus of our testing is the commodity personal computer. Therefore the results are
taken mainly from the onboard soundcard of the machine. For the purpose of comparison
however, external soundcards were also included in our testing procedures.

In general, four different testing groups were set:

• Test case 1 - Vanilla test, the purpose of this test is to obtain general latency results
for different operating system and host combinations with exhaustive available
software hosts. We tested common software such as Audacity, Logic Pro, Ableton
Live, and Ardour.

• Test case 2 - Stress test, based on the results from the“Vanilla test”, we selectively
tested the latency of our chosen hosts with a heavily loaded CPU.

• Test case 3 - Adaptive effect test, to test if the audio processing latency is affected
when the CPU load comes from the audio application itself, especially when the
host handles multichannel audio and the adaptive audio effects are actively being
used.

• Test case 4 - Cross-reference test. The purpose of this test is to get latency mea-
surements from various systems other than common operating systems with on-
board soundcards in order to avoid bias when evaluating the results of the above
three tests. The tests include digital consoles, external soundcard, and the audio
development hardware.

4.1.2.2 Variables

The variables of all the test cases were comprised with hardware, operating systems,
and host applications. Ideally, the same hardware platform installed with multiple op-
erating systems were used wherever possible. Different hardware platforms were tested
as cross-reference for separating the hardware performance influences from that of the
operating system.
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4.1.2.3 Hardware Platforms

The Intel-based Apple computers were used as the main test platforms as they are able
to support all three popular operating systems with additional configurations. A com-
mon PC laptop with similar hardware specification was also tested in order to verify the
validity of test results taken from the Apple computers when the operating systems other
than Mac OS X installed.

The main component of an on-board sound system is the hardware audio codec. Both
ALC885 and CS4206A codec chips are in compliance with Intel HD audio, which sup-
port multiple inputs and outputs channels with sampling frequency up to 192k Hz [150]
[168]. Table 4.1 lists the details of computer platforms, in which the CPUs are Intel Core
2 Duo with different CPU clock speed.

Table 4.1: Hardware platform of the test systems

Made
CPU Speed
(GHz)

Memory
(GB)

Sound card
Codec

iMac 2.66 2 ALC885
Mac Book Pro 2.4 2 ALC885
Mac Book Pro 2.8 4 CS4206A

For cross-reference testing, the tested devices and hardware listed in the Table 4.2.

Table 4.2: Cross-reference testing devices

Type Made
Digital Console Yamaha 01v
Digital Console Yamaha O2R 96
Digital Console Yamaha DM2000
SHARC Board ADSP-21161N EZ-KIT
USB soundcard M-Box 2 Mini
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Table 4.3: List of test operating systems

Operation System Short Name
Apple Mac OS X 10.5.8 OSX (Leopard)
Apple Mac OS X 10.6.2 OSX (Snow Leopard)
Microsoft Windows XP WinXP
Microsoft Windows 7 Win7

Ubuntu Linux 9.10 Linux

4.1.2.4 Operating Systems

Table 4.3 lists the operating systems tested. The Windows and Linux operating systems
tested are all 32-bit versions. All operating systems updated with latest patches.

The Linux Operating system Ubuntu 9.10 has“Ubuntu Studio Audio Package”installed
which contains the real-time preemption kernel patch for the 2.6.31 kernel.

One of the most important components within operating systems is the audio Applica-
tion Programming Interfaces (APIs). They play the important roles in relation to audio
processing latency to provide the middle layers between the low level sound system and
the high level software applications. The default APIs of our tested operating systems
are listed in the Table 4.4.

Table 4.4: List of audio APIs

API Platform Short name
Microsoft DirectSound
& DirectSound Capture

Windows XP,
Windows 7

DirectSound

Microsoft Multimedia
Extensions

Windows XP,
Windows 7

MME

Apple CoreAudio Mac OS X CoreAudio
Advanced Linux Sound
Architecture

Linux ALSA

There are additional APIs which are used by some audio applications but not included
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by default by operating system, such as Steinberg Audio Stream Input Output (ASIO),
PortAudio [169], and JACK API [170]. Each of them serves different application pur-
pose.

4.1.2.5 Audio Application Hosts

In order to test the audio processing latency of operating systems, software is needed to
capture the audio signal and playback it.

Rather than using a simple “play through”code, in most test cases, the completed
DAW hosts were tested, because the goal of test case 3 is to test whether audio latency
is affected by multichannel audio processing and intelligent audio effects. The host
software provides the facilities to be able to carry out this test. Table 4.5 lists the hosts
we used in the testing.

Table 4.5: List of test Audio Hosts

Hosts code Host name Notes
1 Apple Logic Pro 8.0
2.a Ableton Live 8.1.1 with Max/Msp
2.b Ableton Live 8.0.1
3.a Audacity 1.2.5 Stable version
3.b Audacity 1.3.11 Beta version
4 Ardour 2.8.7 Version 2.8.2
5 CAPlayThrough Play through code

4.1.2.6 The Limitations of Test Plan

The latency measurements were tested based on the popular operating systems installed
in common Apple computers in combination with onboard soundcards. The range of
different computer hardware is limited, however, given that the commodity computer
architecture is fairly standard, the computers we tested are common platform for DAWs.
The results should be interesting in some aspects.
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The second limitation is the limited number of external soundcards we tested. The results
however should still be valid for showing the performance of operating systems performs
with onboard soundcards and default APIs.

The third limitation is that there are very few audio application which supports all differ-
ent operating systems. Perhaps the portability of audio applications and the optimisation
of using native API and operating system features are the two conflicting efforts for soft-
ware development. Therefore the cross-platform application such as Audacity uses the
middle layer API “portaudio”to unify the audio programming interfaces for different
operating system platforms.

The matrix of host applications and supported operating systems are listed in the Table
4.6.

Table 4.6: Matrix of Hosts and Operating systems

Host Windows Linux Mac OS X
1 No No Yes
2.a Yes No Yes
2.b Yes No Yes
3.a Yes Yes Yes
3.b Yes Yes Yes
4 No Yes Yes

4.1.3 Test Results

4.1.3.1 Vanilla Test

In this test, we try to obtain the general picture of latency over our various audio hosts and
operating systems with the built-in onboard sound systems and default settings. Table
4.7 shows the latencies measured using Audacity in different platform:
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Table 4.7: Latency of Audacity host with sampling frequency 44100 Hz

Host OS APIs Latency (ms)
3.a MacOSX CoreAudio 19
3.a WindowsXP MME 257
3.a Windows7 MME 244
3.b MacOSX CoreAudio 30

3.b WindowsXP
MME 398
DirectSound 152

3.b Windows7
MME 399
DirectSound 201

We tested two versions of Audacity, the stable version 1.2.5, which uses“portaudio v18”
and the beta version 1.3.11, which uses “portaudio v19”. The “portaudio”library
provides cross-platform audio API interfaces with encapsulation of platform dependent
APIs such as CoreAudio, ALSA, DirectSound, or ASIO.

In Audacity 1.2.5, no buffer settings are available for end user, whereas in Audacity
1.3.11, the recording audio buffer is set to zero. No special drivers were installed for
Windows platforms.

In Ubuntu Linux 9.10, the current software playback function of Audacity has some
problems with newly adopted PulseAudio sound server system. It is considered that
further testing using other Linux distribution is needed.

Vanilla test identified some low latency hosts for further test groups. The Table 4.8
shows the latency measurements of these hosts. The buffer settings are either the lowest
that hosts applications support or the lowest at which monitored incoming sound can be
recorded.

146



Table 4.8: Low latency hosts with sampling frequency 44100 Hz

Host OS API Buffer2 Latency(ms)
1 OSX CoreAudio 32*2 5
2.a OSX CoreAudio 14*2 4.2
2.b WinXP DirectX 512 73
2.b Win7 DirectX 512 81
4 Linux ALSA 64*2 3.3
4 OSX CoreAudio 32*2 6.2

Table 4.9 shows the lowest possible latency in different operating system we can possibly
get by using highest sampling frequency at 96k Hz supported by onboard soundcards.

Table 4.9: Lowest latencies from the Villain test

Host OS API Buffer Latency(ms)
2.b WinXP DirectX 512 73
4 Linux ALSA 64*2 1.68
4 OSX CoreAudio 32*2 3.54

In addition, the Vanilla Test found the latency measurements taken from Mac OS X
10.5.8 Leopard are almost identical to Mac OS X 10.6.2 Snow Leopard. And there are
similar results for Windows system whether installed on an Apple computer or on a PC
laptop with similar hardware specification.

4.1.3.2 Stress Test

The audio processing latency caused by CPU stress is tested rather than by the I/O stress.
With advanced DSP techniques being widely used in real-time audio processing, the
computational cost is more likely to be CPU stressed tasks.

The sound source, consisting of a series of pulses at constant intervals is used as test
signal. It is observed that even without CPU stress, when the latency is less than 5 ms,
the audio signal suffers from distortion and glitches and loss of information.
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The following table shows the latency with and without CPU load. System monitoring
software is used to ensure the CPU load outside audio application is 100%. In addition,
the host software normally has a built-in CPU meter to indicate the CPU load of audio
processing only [171]. This means that even when the system monitor indicates 100%
CPU load, the audio application CPU load may still be very low. It is observed, however,
that if the audio processing CPU load increases, it is reflected on the outside system
monitor meter.

Table 4.10: Audio latency with different CPU loads

Host OS (API) Without
Load

With
Outside load

With
Audio load

2.b WinXP
(DirectX)

73ms
(buffer 512 )

81ms
(buffer 512 )

104ms
(buffer 512 )

2.a OS X
(CoreAudio)

4ms
(buffer 14*2 )

4 ms
(buffer 14*2 )

5.80ms
(buffer 14*2 )

4
Linux
(ALSA)

3.31ms 3.31ms error
22ms
(buffer 512*2)

22ms
(buffer 512*2)

22ms
(buffer 512*2)

The test results indicate that the CPU load generated outside of the audio applications
have very little effect on the latency of the audio processing chain. For Mac OS X and
Linux systems, this effect cannot be observed, for Windows system, this is very small.

To some extent, when the CPU load comes from the inside of the audio application,
latency is increased by 1-2ms for Mac OS X.

In the Linux system, it causes a system error when Ardour tries to connect to the JACK
audio server. With an increased audio buffer setting to 512 samples in the Linux system,
the inside CPU load doesn’t seems affect the latency.

However, with high audio processing load, test signal being the pulse train, it was ob-
served that the signal suffers distortions or loss of pulses as shown in the Figure 4.2.

The Figure 4.2 show in Linux, the signal channel processed by operating system lost
some information when the buffer setting and sampling frequency were set in order to
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obtain very low latency. The similar effects were observed in Windows and Mac OS X
systems.
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Figure 4.2: Loss of pulses in audio processing path at low latency setting

4.1.3.3 Multichannel Latency

The Table 4.11 shows the latency variation caused by the large number of channels e.g.
over 50 channels. This is the same effects to that of increased the internal CPU load.
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Table 4.11: Multichannel latency effects

Host OS
Latency Single
Channel

Latency Multi
Channel

2.b WinXP 73 ms 104 ms
2.a OS X 4 ms 5.80 ms

4 Linux
3.31 ms error
22 ms 22 ms

4.1.3.4 Adaptive Effect Latency

Adaptive audio effects combine audio feature extraction and audio processing in order
to give musicians and audio engineers another creative dimension. This helps in gener-
ating new musical concepts and contributes to making existing tasks and processes more
intelligent. In the real-time multichannel mode, it may require the audio analysis sub-
system to synchronise with the audio processing chain in order to make an audio effect
decision, which can be computational cost if the large number of channels are involved
and the required analysis rate is high.

The measurement in Table 4.11, however, did not include the adaptive audio effects.
The current audio application hosts have not widely supported this type of audio effects
yet. The “Max for Live”functionality of Ableton combines Max/Msp with Ableton
Live plug-in structure, providing an interesting starting point. Adaptive audio effects
are created fairly easily using“Max for Live”. It is of interest to test the latency in this
configuration.

In order to obtain an undistorted audio signal, the buffer is set to 256 samples. The effect
plug-in is based on feature extraction created to obtain “loudness”, “brightness”,

“noisiness”, and “onsets”of audio signal. Based on these features, the amplitude of
the signal is modulated with some random parameters. This patch is then applied to
multiple channels in order to increase the internal CPU load of the host. The test shows
the latency performance has a vast difference when Max/Msp edit window is opened
and closed.
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Table 4.12: Latency measurement of “Max for Live”

Host OS Max Window
Single channel
(ms)

MultiChannel
(ms)

2.a OS X Opened 97-99 100-103
2.a OS X Closed 32 -51 39-67

4.1.3.5 Cross-Reference Test

Table 4.13 shows the latency measurement of dedicated hardware audio devices.

Table 4.13: Latency of dedicated digital audio hardware

Type Latency
Yamaha 01v 2.42 ms
Yamaha O2R 96 2.04 ms
Yamaha DM2000 1.99 ms
ADSP-21161N EZ-KIT
(SHARC)

1.60 ms

Table 4.14 shows the latency measurement using an external soundcard and dedicated
ASIO soundcard driver for Windows. Under this circumstance, the Windows platform
performs at a comparable level to Mac OS X with the same buffer setting. Though, the
Mac OS X supports lower buffer settings up to 6.8ms.

Table 4.14: Latency measurement of external soundcard M-box 2 mini

Host Platform API Buffer setting Latency (ms)
2.a MacOSX CoreAudio 128*2 11.9
2.b WinXP ASIO 128*2 12

The Mac OS X CoreAudio driver has also been patched by the manufacturer to support
this particular soundcard.
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4.1.4 Discussion

4.1.4.1 Overall Latency Pictures

Beginning with the cross-platform host Audacity, the Vanilla Test obtained the general
latency picture of operating systems with onboard soundcards.

It shows that the latency of record enabled monitoring of the beta version of Audacity
is actually worse than the old stable version. This might link to the regression report
of using newer“portaudio v19”library (according to Audacity development website).
In addition, the Audacity software used in this testing are pre-built binaries. Giving its
open source nature, to test again with compiling “portaudio”and Audacity from the
source code to take advantage of the native audio API could be further investigated

With the onboard Intel HD audio sound system, the Linux and Mac OS X operating
system have low latency performance, and windows DirectSound API performs better
than its legacy MME sound API.

With native supported sound driver APIs, the audio hosts dedicated for live application
could have low latency within 8-10 ms monitoring requirements.

In 2001, [53], the lowest measured latency was 2.72 ms. It was measured from Linux
system with the ALSA audio API that replaced the default OSS at that time.

ALSA has already become the default Linux audio driver. Our test results show that the
lowest latency is provided by open source DAW project Ardour in Linux with ALSA
sound driver and JACK audio connection. When using a sampling frequency at 96k Hz,
the measurable latency can be as low as 1.68 ms (see Table 4.9). This is comparable
with the Yamaha digital consoles tested (see Table 4.13).

Another observation is that the reported latencies of most software hosts do not match
the measured values. The only exception is Ardour with Linux systems.

Figure 4.3 shows the plotting of latency measurements and the latency reported by the
hosts according to buffer settings. The measured value and software reported values are
consistent for Ardour in Linux. It needs further research to confirm if the real time Linux
kernel helped the audio host to maintains accurate timing information and scheduling.

152



Figure 4.3: Measured Latency vs. Hosts reported Latency in millisecond with different
buffer setting

It is noted that according to the results of cross-reference test, the measured latencies did
match the reported latencies for Mac OS X system if an external soundcard is used.

With the external soundcard and driver being used, the Windows system could have
comparable low latency as Mac OS X when using the same buffer setting.

4.1.4.2 Latency under load

In [53], it was shown that the CPU load outside the audio application had little effect on
the latency of audio processing.

In our research, the effects on audio processing latency by CPU load caused by audio
application itself are evaluated. Consistent with [53], the CPU load outside audio ap-
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plication has an unnoticeable effect on the latency for Mac OS X and Linux System,
whereas the CPU load inside audio application has caused some small increases of la-
tency generally for all operating systems.

However, the research in [53] did not mention the quality of audio signal when the low
latency is required the CPU is stressed. Our research indicates that in low latency mode,
especially with CPU is stressed by internal audio processing load, the signal suffers
losses and distortion.

It is worth noting that the hardware architecture of the SHARC board is fairly similar
to that Intel HD-Audio architecture [172]. However, it has very low latency (see Table
4.13) with good signal quality. The measurement is taken by running an embedded

“talk through”example code. This embedded software is driven by the hardware level
interrupt with enabled DMA features. The software architecture of this is quite different
with computer-based sound system.

4.1.4.3 Multichannel and Adaptive Audio Effects

Increasing the number of channels alone does not lead to increased audio processing
latency. Only when the channel number is increased considerably to around 50 audio
channels, it does affect the latency in the same way as increasing the internal CPU load
from the audio application host (see Table 4.11).

The adaptive audio effects provide new creative dimension and intelligent workflow.
Use advanced feature extraction based audio processing in real-time is proven interest-
ing and challenging. However the current audio application hosts have not been able
to support it widely and flexibly, with the exception of side chain based plug-ins etc.
Therefore the test is limited by the available host and the way the host operates.

The “Max for Live”product supports this flexibility by incorporating a Max patch as
plug-in. However the results show that the variations of latency do not strongly correlate
with audio processing load. The variations of latency might be caused by the configu-
ration and software structure themselves.
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4.1.4.4 Summary

We demonstrated and discussed the test results of the real-time audio processing latency
of current popular operating systems with onboard soundcards. Though the results pre-
sented in this chapter were published in 2010, there are researches carried out the similar
test in 2018 using similar methodologies on the latest DAW based systems including web
audio [167, 173]. The similar problems persist.

In addition to testing the effects on audio processing latency by CPU load outside au-
dio applications, this research method measured whether latency is affected by the load
coming from the audio processing application itself, especially with a large number of
concurrent audio processing channels.

The general latency pictures of common operating systems were obtained. Though the
lowest latency of an operating system with onboard soundcard can be close to the pro-
fessional digital audio hardware, it may suffer losses of audio signals when the CPU
is fully loaded with audio processing tasks due to the buffer underrun. The latency of
adaptive audio effects processing has also been evaluated. Due to the constraint of the
software structure, the value of the testing results is limited.

There are many factors affecting the latency of using operating systems to process audio
in real-time. For example, how audio software is programmed to avoid blocking in the
audio callback and to avoid complex algorithms with unbounded execution time.

There are suggestions that GPOS is lack of real-time scheduling support, so they under-
perform RTOS. However, most modern GPOS support pre-emptive scheduling schemes.
We suspect the priority based pre-emptive scheduling can provide good performance but
might still fail to meet deadline occasionally when CPU is under full utilisation. In the
next section, we propose the new scheduling algorithm that aims to provide deterministic
behaviour.
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4.2 TDCS:ANewScheduling Framework forReal-Time
Multimedia

4.2.1 How TDCS Relates GPOS and RTOS

General Purpose Operating System (GPOS) can satisfy versatile processing require-
ments for intelligent audio production[55], that needs configurable feature extraction,
machine learning and digital signal processing (DSP) tasks. It can process multiple
channels with different source sampling rates with flexible routing capability as shown
in Figure 1.3. However, it often results in occasional bursting CPU utilisation that is
close to full, which may cause the unpredictable buffer underrun of real-time audio pro-
cessing [107] for audio signals [12].

The conventional approach to overcome the buffer underrun problem is to increase the
buffer size, but it results in increased latency. Another approach is to design the system
so that the processing time of audio tasks does not exceed the planned deadline hence
reduce the uncertainty of buffer underrun. The timing performance of scheduling the
audio processing tasks is the key to reduce excessive buffer size.

The scheduling of traditional GPOS is optimised toward tasks throughput. It often adopts
fair scheduling that each task is sharing equal amount processing time. An RTOS is used
for time-critical systems. RTOS is supposed to give a predictable response. The task
scheduling features of an RTOS usually include preemption and priority based schedul-
ing algorithm such and RMS or EDF.

Modern desktop operating systems though belong to the category of GPOS. They do also
have some important RTOS features. Windows OS has six different priority classes.
Mac OS has four different priority bands. Linux has preemptive kernels and can be
configured to use priority based RTOS scheduling algorithms such as EDF.

Therefore properly configured modern desktop OSes with RTOS features and optimisa-
tion can reduce the audio processing latency. However, we suspect this approach can
achieve the performance most of the time, although rarely but it still can fail occasionally
[107].
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This is because that when the high priority tasks occupy the full CPU cycles (up to 100%
CPU utilisation). Even the classic RTOS scheduling algorithm will fail to achieve the
deadline at all time. For example, the theoretical up-limit of the CPU utilisation of the
RMS scheduling algorithm is about 69.3% (Eq. (4.2)). That might be the case when
we tested the system with full CPU load form audio processing itself and the system
suffered underrun problem.

In this work, we proposed a new set of OS scheduling framework that is called Time
Deterministic Cyclic Scheduling (TDCS) that is specifically tailored for the real-time
multimedia system with trading off mechanism of latency and predictable QoE require-
ments that aims to achieve the predictability of specific tasks using systematic design
approach. The design philosophy of TDCS is to have a two-tier system. The foreground
tasks are scheduled in a cyclic and cooperative way so that they will have time determin-
istic behaviour. Whereas the background tasks can be scheduled in classic priority-based
approach but always only can fill the processing gaps of the foreground tasks. The per-
formance evaluation based on the simulation results between TDCS and RMS is given
in the following sections to show the pros and cons of it.

4.2.2 TheCharacteristics ofModernReal-TimeMultimedia System

Traditionally, there are two categories of real-time systems: hard real-time system and
soft real-time system. In hard real-time system, the missing deadline of tasks are re-
garded as a failure, whereas the soft real-time system can have some level of tolerances
of missing deadlines. Some textbooks regard multimedia systems as hard real-time sys-
tems, due to the strict timing requirements or human perception of glitch caused by
missing task deadline.

We think the live multimedia system is neither hard real-time nor soft real-time. It lays
in between. In a professional audio environment, we would not want to miss any au-
dio/video frames that cause the negative perceptual effects. The jitter of processing
single audio or video frame can be tolerated within acceptable user perceptions, using
de-jitter buffer to compensate it at the cost of delay. However, the behaviour of jitter
should be predictable. In summary, the characteristics of such system are below:
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• It mainly deals with multiple periodic tasks at different update rates with pseudo-
isochronous tasks pattern.

• It is acceptable to miss the deadline for some tasks, but will affect the quality of
experiences. Ideally those tasks that missed deadlines shall not be discarded but
still to be scheduled at later points.

• It shall provide the trade-off between delay and jitter, using buffer to mitigate the
jitter of the samples. There shall not be any unexpected jitter buffer underrun
when the CPU utilisation is close to full.

Traditional cyclic scheduling based approach is difficult to grow and maintain when the
number of tasks increases and the periods of tasks are not harmonically related. How-
ever, the properties of multimedia system indicates there are compromises can be made
that is to adjust the tasks’ deadlines within the perceptual tolerance to simplify the system
realisation and increase the efficiency of the scheduler.

4.2.3 Proposed Scheduling Scheme

Therefore, Time Deterministic Cyclic Scheduling (TDCS) provides trade-off between
overall input output delay with other system measures, that is based on a traditional
cyclic execution based scheduling. In addition, the TDCS is the main part of a hierar-
chical scheduling scheme for mixed criticality system.

4.2.4 Model of Rate Monotonic Tasks

In real-time system, a task consists with a sequence of jobs. For rate monotonic tasks,
we have τ = {τ1, τ2, ..., τn}, where τ is a task set that contains n different tasks. Each
task can be defined as τi = {Ci, Ti, Di, Pi}, where

• Ci is worst-case execution time;

• Ti is the period of τi;

• Di is the deadline of τi;
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• Pi is the priority of τi;

For each task the CPU utilisation is Ui = Ci/Ti, so the total utilisation is

U =
∞∑

n=1
Ui (4.1)

Normally we have Di = Ti. The rate monotonic scheduling (RMS) algorithm assigns
the task priority according to the task period. Task with shorter period has higher priority.
Liu and Layland [124] proved that the sufficient condition of scheduling of RMS is

U ≤ n(2(1/n) − 1) → 0.6931 (4.2)

where n is the number of tasks. This condition is sufficient but not necessary based
on the tasks are preemptible. Lehoczky 1989 [174] shows the sufficient and necessary
condition of schedulability of RMS with less up bond CPU utilisation but more complex
schedulability test formula. According to [174], for task set τ , we can define:

Wi(t) =
i∑

j=1
Cj⌈t/Ti⌉ (4.3)

Eq. (4.3) represents the accumulated CPU utilisation between time interval [0, t]. We
can also defines

Li(t) = Wi(t)/t (4.4)

Li = min{0<t≤Ti}Li(t) (4.5)

L = max{0≤i≤n}Li (4.6)

• When the ith task where (1 ≤ i ≤ n), τi is schedulable, we need Li ≤ 1;

• For the whole task set τ is schedulable, we need to have L ≤ 1.
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4.2.5 TDCS Algorithm

4.2.5.1 Temporal Segmentation

The foundation of timing correctness this scheduling is based on temporal segmentation
which is similar to ARINC 653 standard. The OS is partitioned as independent hyper-
periodic segments or Major Cycle in time domain driven by accurate low level system
timer. We define this cycle as Tc. The chosen of Tc is decided by applications’ context.

The selection of length of segmentation is similar to the problem of selection of hyper-
period or size of “Super frame”. However, we have a flexible architecture of using the
segmentation size that practically match the requirements of connected system such as
USB or networking interfaces.

In theory the period of temporal segmentation can be the Least Common Multiple (LCM)
of different task periods. However, this can be very large and impractical to implement.
In our design, The period tasks will go through two buffer system an input “mapping
buffer” and an output “de-jitter buffer”. The former buffer is used to convert to an arbi-
trary hyper-period that you want. The second buffer is to render the tasks as their own
source rate.

4.2.5.2 Hyper-Period Conversion Algorithms

The selection of Hyper-period in TDCS can be flexible. It is not necessary of the LCM of
periods of all tasks. As mentioned above, it could depend on the application context that
driven by master clock or the design criteria that needs to protect the criticality within
certain time period.

We define LCM of the periods of all tasks as ‘Major Cycle’: TL, and ‘Minor Cycle’ be
Tc. We can have different way to decide the value of Tc.

For example Tc can be the longest period of tasks to be scheduled when the CPU util-
isation is under the upper bond of RMS schedulability conditions. In case of the very
high CPU utilisation that exceeds RMS schedulability but under 100%, we proposed an
“expanded hyper-period conversion algorithm” to calculate Tc
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Case 1General hyper-period conversion algorithm We propose a hyper-period con-
version algorithm to convert different Ti to new T ′

i . For example the following algorithm
convert longest Ti as minor cycle Tc that is normally much shorter than LCM based
hyper-period:

We define the following formula:

Tc = max{Ti} (4.7)

TL = LCM{Ti} (4.8)

Ki = ⌈Tc

Ti

⌉ (4.9)

we have fc = min{fi}. Increase fi by ∆fi to be f ′
i so that f ′

i = Kifc; where Ki is
integer. We have the new hyper-period Tc and for each task τi, we can schedule Ki of
them in one hyper-period.

For instance, that we have 3 tasks with period {10,20,35}, the TL is 140. fi = {14, 7, 4},
we then can find f ′

i = {16, 8, 4} ; and Ki = {4, 2, 1}. so in this case, we can use Task3
period as hyper-period. With task queue, we schedule Task1 four times, Task2 twice
and Task3 once within hyper-period. We introduce a scheduling jitter ∆fi that can be
mitigated by de-jitter task queue. This algorithm creates empty scheduling slots f empty

i ,
which can be calculated below:

f empty
i = f ′

i − fi = Ki × TL

Tc

− TL

Ti

(4.10)

Let M = TL

Tc
, we have M number of Minor cycles in one Major Cycle.

Case 2 Expanded hyper-period conversion algorithm For the CPU utilisation ex-
ceed the upper bond of RMS schedulability, we can alter the algorithm and provide
new hyper-period and Task mapping ‘As tight as possible’, for utilisation that is close to
100%.
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Let total empty slots in one Tc be TS, we have

TS =
N∑

i=1
∆fi × Ci =

N∑
i=1

f empty
i × Ci (4.11)

Tce = Tc + TS

M
(4.12)

In this case, the new Minor Cycle Tce shall guarantee the all the tasks to be scheduled
even the total CPU capacity is 100%. However, the Major Cycle as the production of
Tceand Mexceeds the value of LCM. We can further have an adjustment algorithm to
make an uneven minor cycle to fit all task within one major cycle LCM:

Let jbe the index of minor cycle Tce within Major Cycle, so we have

TL =
M∑

j=1
Tc (4.13)

Therefore we can have the uneven T ′
ce can be calculated as below. Let

jexpend = min{⌊ fi

Ki

⌋} (4.14)

T
′

ce(j) =

Tce, when j ≤ jexpand

Tce −∑|τ |
i=1 Lj(i), when j > jexpand

(4.15)

where

Lj(i) =

(j × Ki − fi) × Ci, when j × Ki > fi > (j − 1) × Ki

Ki × Ci, when (j × Ki − fi) > Ki

(4.16)

where 1 < j < M ; and 1 < i < |τ |.

4.2.5.3 Periodic Tasks Mapping Schemes

For most period task τi that happens every Ti, the tasks are scheduled off-line by allo-
cating the τi in cycle Tc. This is done by the task allocation mapping algorithms below:
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1. Calculate the number of tasks N of τi in every minor cycle by N ≥ Tc/Ti. For
example, if Tc is 20ms, Ti is 5ms, then N=4;

2. Allocate K timing positions within every Tc for τi, ensure the same positions for
every TL for any τi. There are different methods to allocate the positions such as
‘even spread’, or ‘as tight as possible’. Each of them has different performance
effects.

3. Prepare the multiple low level timers for dispatching the mapped task τi. and
prepare the de-jitter input/output task queue for τi.

Figure 4.4: Periodic Tasks Mapping

One of the advantages of TDCS is the predictability and CPU utilisation. We imple-
ment the TDCS scheduling algorithm with “As tight as possible’ tasks mapping scheme
and carried out the test. The various results are compared with classic RMS and Non-
Preemptive Rate-Monotonic Scheduling (NP-RMS). Next, we show the performance of
TDCS in comparison with RMS and NP-RMS.

4.2.6 Compare TDCS with Non-Preemptive RMS and RMS

It is worth to compare TDCS with classic fixed priority scheduling algorithms. For
multimedia applications, the absolute deadline is not essential. The Non-Preemptive
RMS (NP-RMS) [175, 176] is the RMS scheduling algorithm without preemption, which
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reduces the system complexity. NP-RMS is suitable for the multimedia applications
where hard RT is not essential. We compare TDCS with both RMS and NP-RMS based
scheduling policies. We implemented TDCS scheduling in TORSCHE [177].

4.2.6.1 Schedulability Simulation

We define three task sets that represent the load of CPU from sparse to dense. The tasks
sets used for simulation are described in Table 4.15. The Set 1 is designed so that all
three schedulers can successfully schedule all the tasks. The Set 2 is designed to make
NP-RMS fail to scheudle whereas RMS and TDCS can. The Set 3 is designed to simulate
the CPU is heavily loaded so that both RMS and NP-RMS will miss some deadlines.

Table 4.15: Simulation Tasks Sets and CPU utilisation

Task Set Details Utilisation

Set 1
task1 = {2, 10, 10}

68.57%task2 = {4, 20, 20}
task3 = {10, 35, 35}

Set 2
task1 = {2, 10, 10}

82.86%task2 = {4, 20, 20}
task3 = {15, 35, 35}

Set 3
task1 = {2, 10, 10}

97.14%task2 = {4, 10, 10}
task3 = {20, 10, 10}

4.2.6.2 Simulation Results

Figure 4.5 shows the simulation results of Set 1 which has average CPU utilisation of
68.57%. The top sub figure shows the three original tasks defined in Set 1. Task1
has highest frequency hence will be assigned to the highest priority in RMS scheduling
policy. The Pb process is the background Non-RT tasks that can be fit into the gap of RT
tasks. The second sub-figure of Figure 4.5 is the task map of RMS, which shows some
of task2 and task3 are delayed or interrupted but can finish within the deadline Di. The
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third sub figure of Figure 4.5 shows the task map of NP-RMS scheduling. For NP-RMS,
none of the task can be interrupted, so even highest priority tasks in task1 have shown
some delays. The bottom sub figure in Figure 4.5 shows the task map of TDCS. We use
‘as tight as possible’ tasks mapping scheme to maximise the capacity of the system. It
shows the clear pattern within minor cycle and major cycle.

Figure 4.5: Simulation Results for Set 1

Figure 4.6 shows the results of Set 2 where the average CPU utilisation is 0.8286: In
this case, the non-preemptive scheduling algorithm cannot schedule all the tasks. Some
tasks in Task1 get lost such as the 2nd 5th, 9th and 13th tasks in Task1. Figure 4.7 shows
the results of Set 3 which has average CPU utilisation of 97.14%. In this case, both non-
preemptive RMS and RMS scheduling algorithms cannot schedule all the tasks. But
with expanded hyper-period conversion algorithm and ‘as tight as possible’. The TDCS
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can successfully schedule all the tasks.

Figure 4.6: Simulation Results Set 2

4.2.6.3 Jitter of Individual Delay Simulation

Figure 4.8 shows the individual task starting time (a) and the delay between the time of
the tasks actually starting execution and the time when the tasks are released (b). Figure
4.8 is based on Set 1 and compares between TDCS with NP-RMS. Figure 4.9 also based
on Set 1 but shows the results between TDCS and RMS. The negative value of TDCS
delay in the figures is because we buffered TDCS tasks then condense the ‘future’ tasks
together as often does in frame based audio processing. It shall be added with offset of
buffering delay.
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Figure 4.7: Simulation Results Set 3

RMS and NPRMS performs very well if the tasks loading is not very high. The simu-
lation shows the “As tight as possible” tasks mapping of TDCS that is geared towards
maximise CPU utilisation. Therefore TDCS shows some fluctuation of tasks delay in
comparison with tasks release time. With de-jitter buffer, this effect will be alleviated.
The future work will look into how to trade off between the jitter and delay performance
and overall tasks utilisation.

4.2.6.4 Overall Task Throughput Simulation

In this simulation,we created random tasks sets for all three cases TDCS, RMS and NP-
RMS. The random tasks sets have three RT tasks make up the CPU utilisation range from
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Figure 4.8: Task delay and starting time TDCS vs NP-RMS

60%, 65%, ..., until 100%. For each case, we created 100 random sets. The percentages
of RT tasks that can be executed successfully are plotted against CPU utilisation for all
three different scheduling algorithms. The result is shown in Figure 4.10. It clearly
shows that our proposed TDCS scheduling and “Expanded hyper-period conversion al-
gorithm” can handle the task load up to 100%.

4.2.7 Using TDCS in Mixed-Criticality System

In this section, we briefly discuss how to use TDCS in mixed criticality system or how
to incorporate TDCS with GPOS as RT extension.
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Figure 4.9: Task delay and starting time TDCS vs RMS

4.2.7.1 Slack Stealing

The new scheduling framework shall support the slack stealing concept. Even the mul-
tiple periodic tasks would not occupy 100% of CPU time. The background tasks Pb with
lower priority than multimedia periodic tasks τi can be scheduled in the slack time of
τi. However, they can be interrupted by τi that has higher priority and driven by pre-set
low level timer. This concept is demonstrated in Figure 4.5.

4.2.7.2 Hierarchy Priority Scheme

The system can be designed with three tiers of priority ring. The inner ring has higher
priority. In the inner most is the Tier 0 tasks that assign to the most emergency tasks such
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Figure 4.10: Task throughput vs CPU utilisation

as manually terminate the programme etc. The most multimedia periodic tasks will be
given tier 1 priority. These tasks will be statistically scheduled off-line by TDCS before
the task flow initiated. The background tasks Pb are assigned as tier 2. these can be
based on classic pre-emptive scheduling and are scheduled within slack time of tier 0
and tier 1.

• Tier 0 emergency tasks - the adjustable system timer that drive Major Cycle and
dispatch the periodic tasks belongs to this tier.

• Tier 1 periodic task - multimedia live tasks. audio samples or frames, video
frames, period check and control message.
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• Tier 2 pre-emptive background processes.

4.2.8 Advantages and Disadvantages of TDCS

There are a few advantages of integrating TDCS into the current system, especially in
mixed criticality system or as RT extension of GPOS.

1. Time deterministic for multimedia periodic tasks. The accurate delay can be esti-
mated in advance.

2. Flexible hyper-period conversion schemes that can create different hyper-periods
for different application context.

3. Support high CPU utilisation up to 100% with selectable task mapping scheme.

4. Simplified schedulability test, which enables pseudo on-line scheduling mecha-
nism.

5. Efficiency: The multimedia tasks can be driven by low level system timer not the
software interrupts. It has less context switches.

One of the disadvantages of TDCS is similar to classic RMS and EDF that is to rely on
worst-case execution time (WCET) of proper off-line planing. If the WCET value is
not accurate, that will affect the overall schedulability. TDCS also performs worse than
RMS in terms of suitability for hard-real time tasks, because TDCS provides flexibility
of re-allocation of tasks in the time line. It introduces the execution jitter, however, the
jitter is predicable and can be managed.

4.2.8.1 Contribute to Low Latency

When using TDCS to schedule low latency audio tasks. It shall not allow the unexpected
jitter buffer underrun and loss of audio frames happen in this case by providing full
schedulability under 100% CPU load. The system shall provide certainty of whether
it can accept more tasks or not. It shall prevent the uncertainty of scheduling latency
performance when large high priority tasks are presented in the system.

171



4.3 Conclusions

4.3.1 Summary

In this chapter, we firstly demonstrated and discussed the test results of the real-time
audio processing latency of current popular operating systems with onboard soundcard.
It provides updated knowledge and issues of using GPOS to process low latency audio
signals, especially losses of audio signals when the latency setting is as low as dedicated
hardware consoles (<2ms) and with heavy CPU load from audio processing itself via
large number of channels and adaptive audio effects. It demonstrates the problem of
using GPOS to schedule low latency high frequency tasks.

Secondly, we present a new TDCS scheduling framework for real-time multimedia ap-
plications especially for low latency audio processing. The design of TDCS is based on
classic cyclic executive concept, but with more flexible allocation of tasks and hyper-
period design. With ever increased CPU processing power, the TDCS has been designed
with possibilities of integration of Mixed-Criticality (MC) system and GPOS in mind.

The simulation shows TDCS has comparable performance as classic RMS scheduling,
especially TDCS is flexible to use different hyper period that trade-off with re-allocation
of tasks. In addition, TDCS can achieve high CPU utilisation of RT tasks without loss
of executions of tasks. That is important for heavy loaded multimedia processing.

4.3.2 Further Work

There are many areas of this work that can be further explored. One interesting work
in theoretical aspects might be to have a generic mathematical model for generating
arbitrary length of hyper-periods that is optimised towards different measures such as
minimise delay and/or tasks buffer size. One of the main direction of this work is to
actually put this in the use of GPOS such as Linux system, so next step, we will try to
integrate TDCS into current Linux kernel and provide a feasible interface to applications.
It might result in some compromise of original design and practical alteration of the
mechanism.
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For developing TDCS framework further in couple with current computer science trends.
The following areas are worth to consider to work with:

• Different TDCS tasks mapping schemes (As Even As Possible, As fit As Possible).

• Trade off between jitter buffer delay and QoS.

• Possible off-line vs on-line scheduling.

• Multi threading TDCS.

• Multi-core support for TDCS.

• TDCS in virtualisation and cloud computing

As [23] mentioned, perhaps the biggest challenge for real-time in CPS system is the
absence of time abstract from different lower layers. That is reflected as difficulty of
estimation of WCET in many cases. For multimedia processing, lots of tasks are DSP
based. It might be worth to see how modern DSP acceleration mechanism can be accu-
rately timed and reported for upper layer scheduling algorithm such as TDCS.

Desktop computing has moved into the multi-core era whether adopting heterogeneous
or homogenous architectures. With an integrated effect processor in the sound sub-
system, it could be interesting to evaluate the TDCS scheme to maintain the priority of
the low latency audio processing path. It would be challenging to satisfy both flexibility
of emerging audio processing tasks and the stability of constant low latency in the audio
signal path, especially when the flexibility of processing, routing, synchronising, and
feature extraction over multiple channels is needed.
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Chapter 5

Delay of Audio Networking and New
Low Latency Audio Networking
Architecture

In this chapter, we present the work of a new audio networking architecture that supports
low latency media delivery over existing networking infrastructure with network traffic
convergence. It is organised as the following.

• In Section 5.1, we present a new network architecture and protocol design: Flex-
ilink with its key concepts and features [29].

• In Section 5.2, we present the simulation results of jitter and latency performance
of Flexilink comparing with traditional priority-based networks [30].

• In Section 5.3, we present the hardware performance test of Flexilink comparing
with the popular professional Audio over IP devices.

The Flexilink concept and design presented in Section 5.1 was conducted in 2011 and
published in 2012 [29]. The simulation model of Flexilink protocol was developed and
evaluated in around 2015 and the results were published in 2017 as a paper [30]. The
work presented in Section 5.3 was submitted for publication in 2018. Also a recent work
on scheduling method for Flexilink guided by the author was published in a 2018 paper
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[178] that indicates the relevance of the research up to date.

5.1 DesignNewLowLatencyDeterministic NetworkPro-
tocol: Flexilink

5.1.1 Motivations

The industry revenue of streaming music over the Internet had already overtaken digital
downloading and CD sale since 2015. For audio production and live broadcasting, us-
ing TCP/IP based network infrastructure to transmit audio has become very popular in
recent years. The advantages of using the digital network for live audio production are
obvious, including saving analogue cables, providing flexible routing, and overcoming
the geographic limitations.

For low latency applications such as live broadcasting or live music performance, using
TDM based systems is a standard approach. For example, using AES50 in live console
performance or using ISDN for long distance live broadcasting.

However, these TDM technology-based solutions are planned to be made obsolete [130,
131]. The industry is moving toward IP based solutions such as AES67 [179] . The idea
is to use IP technology to support productions, broadcasting and distribution network.
The vision is that all different types of traffic can be transmitted over a single IP network
without sacrificing the timing performance and audio quality.

However, this vision is not without its problems. We had various feedbacks from the
industry who adopted the approaches of using the IP network to transmit audio signal for
live and low latency applications. They suffered various issues especially when using
public Internet in some section of their network. The quality and stability cannot be
compared with the traditional TDM based solutions. We believe this is because that the
statistical multiplexing nature of the IP based best-effort network cannot provide time
deterministic packet delivery even with sophisticated QoS.

Therefore, we designed an network architecture combining the features of both TDM
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and best-effort technologies to provide low latency and deterministic network perfor-
mance that close to the traditional TDM system. It can support flexible configurations
of audio streams with different sampling rates and packet sizes. Also, the new proto-
col is designed with convergence in mind so that is compatible with best effort network
traffic such as the IP traffic.

5.1.2 Introduction

In an audio processing system such as in Figure 5.1, the E2E latency arises from differ-
ent sources [15]: conversion from analogue to digital and back to analogue (ADC/DAC)
[26]; networking and routing; the digital console; and the computer system with soft-
ware plugins (DAW) [12] etc. Buffering is the major cause of latency in IP networks
[45], especially in the Internet, but also including intranets. For professional live au-
dio applications, where low latency is required, closed networks with the audio specific
layer 1 and layer 2 technology are commonly adopted.

Figure 5.1: Audio Processing System

In high resolution and low latency audio applications, many audio specific networking
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technologies modify the existing layer 2 or layer 3 protocols to utilise the current lower
layer network infrastructure such as Ethernet. However, it is difficult to achieve a net-
working architecture, which supports both time critical audio data and also best effort
data (such as file transfer and emails). Converged networks based on IP, scalable from
LAN to WAN are required to support the vast (and growing) interactive audio/video me-
dia traffic on the Internet. However connectionless packet architectures are inevitably a
problem for deterministic data, especially when low latency is required. Current QoS,
traffic engineering and over-provisioning solutions cannot solve the entire problem: they
complicate the system, and increase power requirements and cost. The professional au-
dio networking industry is reluctant to use current Internet solution for time critical ap-
plications. Instead, they normally adopt solutions based on specific protocols designed
and modified from physical layer up to layer 3 such as AES50, EtherSound, CobraNet
etc. For low latency live audio, TDM based protocols such as AES50 can provide very
good performance. The proprietary AES50 router can provide latency as low as a few
samples with a fixed number of channels reserved for packet data.

It appears that there is no unified network solution to provide flexible and bandwidth ef-
ficient support for both low latency deterministic traffic and best effort traffic. There is
also an issue with multi-channel digital audio streams with a range of sampling frequen-
cies and variable bit lengths, and the need for flexible routing and channel assignments.
Current multiplexing methods are insufficient to support them without sampling rate
conversion and data format rectification.

The proposed architecture is aiming to effectively support both best effort data and time
deterministic data (audio sample packets). It should also interwork with existing net-
work infrastructure and protocols at maximum compatibility. Since the current physical
network layer (such as full duplex Ethernet) can be viewed as time deterministic bit pipe
there is no reason why a time deterministic logical control layer cannot be implemented.
This allows a guaranteed Quality of Service (QoS) and expected Quality of Experience
(QoE) for the higher layer protocols. The exact time delay for the transmission of time-
critical data can therefore be estimated.

Based on earlier work [180], we proposed a novel unified network architecture that com-
bines the advantages of TDM and best effort networks. The proposed layer 2 protocols,
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“Flexilink”, have been developed along with a prototyped network processor architec-
ture and interface cards. Compatibility with existing Ethernet infrastructure is main-
tained. Flexilink can operate at full-duplex mode, where non-deterministic CSMA-CD
can be avoided.

5.1.3 The Architecture Design of Flexilink

5.1.3.1 The Rationale of the Design

User generated data can be categorised as (i) data to be transmitted as time-deterministic
with constant intervals and predicable delay, i.e. real-time data; (ii) data to be transmitted
at earliest opportunity but without the constraints of real time, i.e. best effort data. The
network also conveys network management data.

This gives us the three data categories as follows:

1. Synchronous Flow (SF) for audio/video and other time deterministic data.

2. Asynchronous Flow (AF) for best effort data.

3. Control Message (CM) for session control and link management.

The theoretical requirements of a single SF can be determined; for example - transmitting
a 44.1kHz sampled CD with 16 bit samples, without any headers and error checking
mechanism will require 1.4112Mb/s. Compressed formats will also have a nominal bit
rate allocated (with the associated compromised quality). So, for a link with sufficient
bandwidth, we are able preallocate spaces or slots for the SF data packets. AF data can
be transmitted in the gaps between SF data packets. A simple theoretical link model is
shown in Figure 5.2, where SF data packets are transmitted at constant time t0. Since
SF packets are of variable length, gaps to be filled are also variable.

Figure 5.2: Ideal Link for the Traffic
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To ensure SF data are transmitted in a time deterministic manner, resources (bandwidth
requirements) need to be reserved when the link is established. Individual SF data pack-
ets are identified by the position of the SF packets within the stream (similar to time slots
in a TDM frame).

Control messages (CM) with associated protocols are used for establishing links and
negotiating resource reservations.

Flexilink supports variable length SF packets where the varying length gaps are filled by
any AF traffic awaiting transmission. To facilitate this a small header is added to an SF
packet. The header is simplified to contain only the length of the SF packet plus basic
error checking bits. Therefore, there is no need for AF data to be encapsulated with a
new header when it is fragmented by the SF flow. This also simplifies the hardware
logic required to forward both SF and AF traffic effectively.

This operation could be considered as a continuous AF stream frequently interrupted by
the frequent real-time SF data, since the main parameters are all known: the speed of
network link, the data rate of SF, and length of the SF data packets. There is no additional
reassembly required to reconstruct the segmented AF traffic. In addition, this design can
achieve the maximum utilisation of link bandwidth with all the gaps (unused capacity)
filled by the available best effort traffic. [181] and [182] proposed a similar system, but
[181] has fixed TDM channels so that the capacity allocated but not carrying data is not
utilised. [182] has two types of traffic, but the low priority traffic is fragmented with
an additional header carrying type and destination information being required for each
fragment.

5.1.3.2 Architecture Design

The network node supporting the proposed Flexilink would have a common network
architecture below in Figure 5.3, with two major functional blocks: the “control unit”
for setting up and tearing down call flows, allocating the resources, and route finding
algorithms; and the data “forwarding logic” for fast forwarding and switching the data
for both SF and AF data.
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Figure 5.3: Architecture of Network Node

First of all, there is a process for setting up and tearing down the link between two
end points with an intelligent time slot map allocation algorithm, which is based on the
available network link resources and the requirements of deterministic traffic (SF). This
setup can be managed by control messages (CM).

The CM can be implemented as standard IEC 62379-5-2 (Common Control Interface for
networked audio and video products) messages [183]. Essentially, they are considered
as normal AF traffic for the purposes of the link. However, whereas normal AF traffic is
routed to the output to be transmitted over the link, the CMs are directed to the controller.
CMs have priority over AFs on each link. For audio traffic, the packages in a SF can be
as small as audio samples, for example 48000 packets per second with a payload of 4
bytes.

Design Header of SF

The simple header added to SFs contain only the length information. To minimise the
header cost, the length of the header is also variable as shown in Figure 5.4(a) and Table
5.1:
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Table 5.1: The length of a SF packet’s header

Header Length Data Length
1 byte 0 ∼ 15 bytes
2 bytes 16 ∼ 255 bytes
3 bytes 256 ∼ 4096 bytes

A 1-byte header consists of 4 bits to encode the length information; 3 bits for CRC; and
1 bit flag to indicate if there are further header bytes as shown in Figure 5.4(b).

Figure 5.4: Header of SF packet

Interface Architecture to Support Flexilink

To maximise compatibility, Flexilink should be able to use the existing physical network
interface. However to support the proposed Flexilink protocol, a new media access
control (MAC) layer architecture needs to be considered, which allows AF and SF to be
treated differently. Figure 5.5 shows the simplified Flexilink MAC layer in which AF
and SF have separate buffers and copy logic allocated for them.
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Figure 5.5: The MAC layer design of Flexilink

Layered Traffic Model

The theoretical link traffic slot allocation is shown in Figure 5.6. The SF and AF access
may be implemented over an existing point-to-point link mechanism in order to utilise
the current network infrastructure. Figure 5.6 shows a practical implementation of the
layered traffic model.

Figure 5.6: The layered structure of Flexilink

The Frame layer can be a standard fixed size Ethernet frame, so the position of an SF
packet in relation to the start symbol of frame can be used as a reference for identification
of the SF data packets.
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Supporting Flexible Multichannel Audio Streams With Different Sampling Fre-
quencies

A current problem in networking audio traffic is the lack of flexibility to support arbitrary
numbers of audio channels with different sampling frequencies and of compressed or
uncompressed data format. In the proposal given here, multiple channels of different
sampling frequencies can be readily supported as long as the capacity of the link above
the frame layer is greater than the total bandwidth requirements of number of the SFs.

For Ethernet physical media, the Ethernet Jumbo Frame format can be used to maximise
the capacity of available bandwidth and minimise the cost of inter-frame gaps. The time
slot map is allocated within the payloads of the frames. The time slot map allocation
algorithm will ensure the SF streams are distributed evenly. A phase control algorithm
corrects the delivery of samples at the end points to ensure the samples are rendered
at certain jitter requirements. The Precision Time Protocol can be adopted for accurate
timing and provision of clocking.

5.1.4 Ethernet Implementations of Flexilink

The Flexilink design can be implemented in different types of physical layer as long as
the bit transfer rate can be fixed and the bit pipe is guaranteed.

This section will discuss how Flexilink is implemented using 1 Gigabit Ethernet in-
frastructure, since 90% internet traffic is originated from Ethernet or WiFi, and Gigabit
Ethernet is commonly used by other proprietary audio network technology.

5.1.4.1 Ethernet Frame Structure for Flexilink

To maximise bandwidth efficiency, Flexilink adopts the Jumbo Frame format in which
the payload size is greater than the standard 1500bytes common Ethernet frame. The
maximum size of a Jumbo Frame cannot exceed 11455 bytes in order to allow CRC
algorithm to effectively working [184]. Another limitation is that some Ethernet PHY
chips do not support frames larger than 9000 bytes.
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To be able to accurately access the allocation slots and the positions of SF packets, it is
preferred to have a fixed allocation period at the frame layer. In this case the allocation
period of 124.96µs is chosen to be slightly faster than 125µs since the 125µs is the
frame cycle used in many other designs such as Synchronous Digital Hierarchy (SDH),
Firewire and full speed USB.

The network devices can use standard AES51 [185] negotiation packets (which are stan-
dard Ethernet MAC packets) to setup the links. Once both ends are in Flexilink mode, a
“Reduced Jumbo Frame” (RJF) format is utilised to maximise the payload. The RJF
eliminates some unnecessary parts of the standard Ethernet frame (for example, the
source and destination addresses, because all frames are sent from the node at one end
of the link to the node at the other) to give more payload space to the allocation periods.

It is described as below:

1. 2 bytes preamble + Start Frame Delimiter (SFD).

2. 5 bytes AES51 packet type and timing information.

3. 7785 bytes payload data.

4. 4 bytes FCS.

5. 14 bytes inter frame gap (IFG).

In total the RJF frame size including IFG is 7810 bytes long. Two successive RJF com-
bine together to make a 124.96’s allocation period (AP) at full duplex 1 Gigabit Ethernet
link. This design is to guarantee the 8000 allocation periods/second can be transmitted
over 1 Gigabit Ethernet link. Each allocation period has 15570 bytes payload space to
transmit SF and AF traffic. The theoretical bandwidth utilisation can up to 99.6%.

The FCS is only used to check that the link is working reliably. Routing of AFs and SFs
does not wait until the FCS has been received, and for many media formats it is better
to deliver data with a few bit errors than to discard whole frames.
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5.1.4.2 Methods for Support LowLatencyMultiple SamplingRateAudio Streams

The following example demonstrates how Flexilink supports multichannel audio streams
with different sampling frequencies.

Assuming that we have audio streams as (i) Flow 1: 48kHz mono 24bits; (ii) Flow 2:
44.1kHz stereo 16bits; and (iii) Flow 3: 96kHz mono 24 bits; we need to transmit (or
multiplex) them using Flexilink.

The audio data of all three flows plus other possible metadata is less than 15 bytes;
therefore 1 byte SF header is needed for each packet.

The control unit of the sender node will reserve the network resource and allocate trans-
mitting slots for each flow as SF packets; i.e. the slot allocation map will be established
and agreed by both ends of the link by CM messages. Within each packet, in addition to
the audio data, there is 1 byte containing the synchronisation information as specified in
7.3.2 of IEC 62379-5-2 [183]. (An additional 1 byte per channel of overhead may also
be added to carry channel status CRC, etc.)

1. For flow 1: The number of allocation slots within allocation period should be ≥
48/8. Therefore 6 slots are needed from one allocation period with each slot being
3+1+1 = 5 bytes long.

2. For flow 2: The number of allocation slots ≥44.1/8 = 5.5. Hence 6 slots as well,
with each slot being 4+1+1 = 6 bytes long.

3. For flow 3: The number of allocation slots ≥ 96/8. Hence also 12 slots, with each
slot being 3+1+1 = 5 bytes long.

Note that for flow 2 although the number of slots we allocated is more than actually
needed for delivery of audio samples at 44.1Khz, this is because the number of slots is
rounded up to a whole number. Approximately every twelfth slot there will be an empty
SF data packet for flow 2. However this is not a problem since the header will indicate
an empty packet, therefore the space can be used for AF data.

Having AES51 packet type and timing information in the Flexilink over Ethernet im-
plementation, the sender and receiver can be synchronised easily. When accurate time
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information needs to be distributed, the Precision Time Protocol (PTP) can also be used
for synchronisation between sender and receiver to avoid potential drift of clock and
jitter over a period of transmission.

Typical latency for synchronous flows would be 3 to 6 microseconds per hop, plus the
“speed of light” delay in the transmission line.

5.1.5 Interconnection With Existing Network

In a mixed network environment with multiple low latency audio flows of different sam-
pling frequencies, bit depths and numbers of channels, can be well supported by Flex-
ilink as described in Section 5.1.4.2

Normal data transfer, typically IP-based traffic (e.g. file transfer), is mapped into the AF
traffic and so is safely transmitted over a Flexilink network.

The architecture design maintains separation between the AF and SF data and thus en-
sures that there is no interference between two types of data whilst fully utilising the
bandwidth not used by SF data.

For IP based audio data, Flexilink can map audio IP packets to SF data packet according
to the identified service priority. So Flexilink should not negate the original QoS.

In the case where a Flexilink interface is peering with a normal Ethernet interface which
does not support the Flexilink mode, Flexilink can (i) switch to standard Ethernet mode
or (ii) negotiate an Ethernet AVB mode to prioritize delivery of the audio traffic.
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5.2 Simulation of the Flexilink Architecture

5.2.1 Motivation of the work

In the last section, we proposed the new low latency audio network architecture: Flex-
ilink. It adopts a simplified model that combines the advantages of TDM network and
the best-effort network such as IP based Internet. The design philosophy of Flexilink
takes the future trend of the audio delivery into account: The system should deliver
multiple audio channels each with the different source transmission rate. The metadata,
compressed and uncompressed audio signals, and other types of traffic need to coexist
in the same transmission channel with low E2E delay. Mapping the new architecture
to the existing network infrastructure such as Ethernet is also proposed. How does this
design compare to the current networking technology needs to be investigated. In this
section, we use a simulation model to evaluate the performance of Flexilink in compar-
ison with the existing Ethernet and priority based RT Ethernet and present the results of
the simulation tests.

5.2.2 Simulation Model

The simulation structure model is illustrated in Figure 5.7 based on the MAC layer design
of Flexilink demonstrated in Figure 5.5. The main Flexilink modules are simulated in
node A, such as two traffic sources, the dual-buffer model, and the control logic. The
transmitter and receiver work together to schedule the slots allocation and transmission.
Flexilink can use the existing physical media. In this section, a simulation model is
going to be built for Flexilink to verify the performance of this architecture. The model
is realised on the SimEvents [186] platform within Simulink, which is developed for the
discrete event simulation. The main parameters associated with each block are listed in
Figure 5.8.

Assuming node A is the transmitter and node B the receiver, connected by the cable
block. The propagation delay is calculated as dividing the cable’s length by 2×108m/s,
2/3 of the speed of light. It is the same for every packet as it depends on only the materials
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Figure 5.7: The Flexilink architecture simulation model

of the physical media. The SF and AF sources are controlled separately given a packet
generation rate and packet sizes (a specified distribution). The set SF packet header
block will first check the length of the SF packet’s payload and compare it with the
parameter settings expressed in Table 5.1, then a calculated header will be generated
and attached to the SF packet. Following the two traffic sources, there are two buffers
to store the packets before they can be forwarded to the transmitter.

The SF allocation block works with the transmission clock and the transmission con-
troller. It determines the SF packets’ allocation and transmission time. When there is an
empty slot, it will accept a 1-byte header from the generate SF header block. The trans-
mission control block schedules the transmission of both SF and AF as well as skipping
the frame control messages. The frame control messages containing the FH and FT are
used to encapsulate the SF and AF packets into a RJF. The size and position of a RJF
are fixed on a link as presented in Figure 5.6. The fix-sized frame control messages
are transmitted at a constant frequency, which is controlled by the frame control and
synchronous clock blocks.

All packets will stay in the single server located in the transmitter for some time depend-
ing on the value of transmission delay calculated as dividing the packet length by the
link bandwidth. The transmitter has a feedback scheme which gives the transmission
information back to the transmission controller block to further schedule the transmis-
sion. The transmission controller decides when the packets are able to be transmitted,
depends on the packet size and available bandwidth. The link slots are allocated based
on SF transmission rate characteristics to minimise the SF delay. An AF packet may
need more than one slot to be transmitted.

Given a 44.1K audio transmitted on a one Gigabit Ethernet link, 5.5 slots are needed in
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Figure 5.8: The parameter list diagram

one AP. In practice, 6 slots will be allocated. Therefore, there will be some empty slots,
one empty slot in every two APs in this case. An empty slot needs a one-byte header to
inform the controller so that it can transmit AF packets to make a better utilisation of the
available bandwidth. The one-byte header is generated whenever there is no SF packet
waiting to be transmitted in a slot.

In node B, packets are first received and stored by the receiver block. The route control
block will route the packets to different sinks (users) identified by their locations on the
link. A de-jitter buffer is applied to SF packets before they are sent to the sink, which is
controlled by the synchronous clock given a fixed frequency the same as the SF traffic
source. Some SF packets will have a little bit of jitter caused by the transmission (empty
slots) and synchronisation.
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5.2.3 Simulation Overview

The Flexilink protocol is designed to provide a guaranteed deterministic traffic trans-
mission with an acceptable low latency. It also supports the best effort traffic without
affecting the RT traffic. In the following, several scenarios are employed to evaluate the
performance of Flexilink, including increasing the amount of AF data, adding a burst of
traffic and having multiple sources. The amount of AF traffic is increased through all the
scenarios to verify whether the AF traffic would have any influence on the transmission
of SF traffic.

In this model, assume the SF traffic source is a flow comprised of 128 audio channels.
Each channel has a 44.1 KHz stereo 16 bits flow. The SF packet will have a 1-byte meta
data, therefore, the size of each SF packet is 5 bytes and the total rate of the SF source is
640 bytes per sample (packet) in average. The size of each SF packet is variable which
obeys a uniform distribution between 390 and 890 bytes. According to Table 5.1, each
SF packet will have a 3-byte header. The AF traffic source is simulated using a uniform
distribution given a minimal and a maximal packet size, 64 and 1518 bytes, respectively.
Flexilink will put AF packets into the gaps between two successive SF packets, therefore,
it is the amount of AF data rather than the size of each AF packet that matters in this
simulation.

Using a one-Gigabit Ethernet link, Flexilink guarantees 8 K APs per second. Thus 48 K
allocation slots are needed when transmitting a 44.1 KHz audio. The basic parameters
that will be used all through these several scenarios are listed in Table 5.2.

Table 5.2: The global parameters

Parameter Value Parameter Value
SF packet frequency 44.1 KHz FH size 7 bytes
SF allocation slot 48 KHz FT size 18 bytes
Frame frequency 16 KHz Cable length 100 meters

For comparison, two Ethernet network models are also built. The main differences are
listed as follows.
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1) Basic Ethernet Network This simulation model has only the transmitter and receiver
blocks. There is no QoS guaranteed transmission in this model.

2) Priority based Ethernet It has a higher priority for the SF port than the AF port, as
well as a priority based transmission buffer, which gives the SF packet a higher priority
to be transmitted.

In both models, the two traffic sources are kept the same, but without the Flexilink
reservation, allocation and control schemes. All the parameters and settings used for the
sources, the cable, the sinks and so on will also be kept the same as the Flexilink model.

5.2.4 Simulation Scenarios

Given the global parameters described in the last section, we can calculate how much
bandwidth is left for the AF traffic. This model simulates variable SF packet sizes.
The average SF bandwidth utilisation is 22.688% of the total bandwidth including SF
packet headers of the empty slots. This amount of SF data reflects the AV traffic in the
real world scenario according to paper [187]. The frame’s control messages take 0.32%
of the total bandwidth. Therefore, there is about 77% of the total bandwidth available
for the AF traffic. In the following, several simulation cases are used to compare their
performances. Table 5.3 gives a brief introduction to each case.
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Table 5.3: Cases introduction

Test Case Brief Description

Linear stress test Increase the AF load of
the link.

Burst test Give a burst of AF traf-
fic to each scenario.

Multiple sources Extend each scenario
to three SFs and three
AFs.

Multiple-port mixed sources Given two source nodes
with both SFs and AFs.

5.2.4.1 Case One: Linear Stress Test

In this simulation, the amount of AF traffic is increased to increase the overall network
load in each scenario to see whether it will affect the transmission of the SF flow. The
AF flow will take 20%, 40%, 60%, 80%, 100% and 120% of the total bandwidth, re-
spectively.

The simulation results are presented in Figure 5.9, the average End-to-End (E2E) delay,
and Figure 5.10, the jitter, for each model against the increasing AF load. The jitter is
calculated as the variance of the E2E delay in each scenario.
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Figure 5.9: Average Delay in Case One

Figure 5.10: Jitter in Case One

The basic Ethernet network without QoS implementation has a poor behaviour unless
there is only a little traffic on the link. Generally speaking, Flexilink maintains a very
stable performance no matter how much AF traffic we have pushed to the link. How-
ever, Flexilink performs slightly worse than the Priority Ethernet (PE) when it has a low
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network load. This is because Flexilink has an allocation mechanism to guarantee SF’s
transmission, which requires SF packets to wait in the buffer for some periods for the
right slot to be transmitted. It gives one sample’s delay in this situation. While in the
PE model, the SF packet can be transmitted immediately unless there is a packet being
transmitted, which will give a maximal delay of 12.144 µs. The Flexilink SF can be
configured to be close to the source data rate in order to reduce the latency, although
additional mechanisms may be needed for automatic configuration. However, the PE
network will get worse when having a burst of traffic and/or multiple SFs, which will
be discussed in the next several cases. PE also becomes precarious and gets more delay
when given massive AF traffic.

The simulation models all have a de-jitter buffer implemented, which alleviates the time
fluctuation problem. It is designed in the Flexilink architecture, while in reality, most
network switches do not have this mechanism.

In addition, AF sources will not always obey a uniform distribution in practice. Some-
times people may occasionally need to transmit or download a big file, then the burst of
traffic may appear during some periods. Therefore, we are going to add a burst of traffic
source with massive data which will take up all the bandwidth for some time.

5.2.4.2 Case Two: Burst Test

In this case, a burst of traffic source is added to every model. It will generate plenty of
1518-byte packets during a small period with a frequency of 82345 packets per second,
which will be able to take up all the available bandwidth on the link. The E2E delay
and jitter for the SF are illustrated in Figure 5.11 and Figure 5.12, respectively. It can
be seen that the basic Ethernet network model has a significant delay and dramatic fluc-
tuation. The E2E delays are similar for the Flexilink and PE networks. However, the
PE model has a much larger jitter, than that of Flexilink. If we represent the jitter as
standard deviation, it is around 1.88µs for the PE, which exceeds the 20ns limitation to
be audible [142]. For Flexilink, it is about 1.54e−6ns, is much lower than that.
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Figure 5.11: Average Delay for Case Two

Figure 5.12: Jitter for Case Two

This change in performance can be explained by Figure 5.13, which shows the detailed
E2E delay for every SF packet in scenario three which has an AF load of 60%. When
there is a burst of traffic, it will take up all the available bandwidth, which leads to an
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overflow in the buffer. The following packets will take more buffering time and may
need to wait for another sample’s period in the de-jitter buffer at the receiver. Thus, there
is a jump in the PE’s performance, which gives a higher delay as well as a higher jitter.
We can also find that Flexilink is not affected by the burst of traffic.

Figure 5.13: The E2E delay for each packet for Case Two

5.2.4.3 Case Three: Multiple Sources

The model is extended to several SF and AF sources, which is a more general situation
in practice. In this simulation, we will use three SFs and three AFs. The amount of
traffic in each flow will be decreased to keep the total traffic the same as the last two
cases. In the PE model, SF packets have higher priorities than AF packets, but there are
no priorities among the three SFs.

Here we choose the third scenario with an AF load of 60% as an example to analyse their
performance. The detailed E2E delays for Flexilink compared with the Ethernet and PE
models are illustrated in Figure 5.14 and Figure 5.15, separately.
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Figure 5.14: Detailed E2E delay for SF in Case Three

Figure 5.15: Detailed E2E delay for SF in Case Three

It can be seen from Figure 5.14 that the E2E delays for all SFs preserve at a relatively
high level and experience fluctuations during some periods in the basic Ethernet model.
It also started to drop SF packets with a rate of 2.8%, approximately. From Figure 5.15
we can see that SFs all have experienced a jump and several steps of decrease in the
PE model. Different SFs do not have the same delay at the same time, and there are no
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patterns during a period. This relatively random delays will also lead to a higher jitter.
Each SF in the Flexilink model holds the same E2E delay, which leads to a very small
jitter. Different SFs have different delays. This is because a world clock was used in the
model which will cause a different but stable delay within a sample period, depending
on the synchronisation between the transmission and receiving ends.

5.2.4.4 Case Four: Multiple-port Mixed Sources

Considering the following scenario as described in . Nodes A and B are both transmitting
several SFs and AFs to node C, simultaneously. There is only one node can be set to
a higher priority, for example, node A. Based on Case Three, we assume node A has
one SF and two AFs, while node B has two SFs and one AF. Within each node, the SF
has a higher priority than the AF. All other parameters are kept the same as Case Three.
Figure 5.17 shows the detailed E2E delay results.

Figure 5.16: Case Four settings description
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Figure 5.17: Detailed E2E delay for SF in Case Four

A similar conclusion can be given to the basic Ethernet and Flexilink network models
as Case Three. However, the PE model experiences a big change where there are some
spikes whenever there is a burst of traffic, which means some SF packets have significant
large delays. The third SF also has a higher average E2E delay than any other SFs in the
PE model or the Flexilink model. In addition, the second and third SFs began to drop
SF packets with an average rate of 1.77% and 4.88%, respectively.

5.2.5 Simulation Results Analysis

In the Flexilink network model, the average E2E delay of each SF packet for the first
SF in all the scenarios is approximately 45.35µs. The delay is mostly caused by the
transmission buffer, the transmission delay (transmitter), the propagation delay (cable)
and the de-jitter buffer [188]. The values of these parameters are listed in Table 5.4. The
total delay, a summation of the delays mentioned above, is shown at the end of the table.
The calculated total delay is close to the value obtained from the simulation, 45.35µs.
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Table 5.4: Factors that cause delay

Factor Delay (Second)
Buffer 1.038 × 10−5

Transmission delay 5.120 × 10−6

Propagation delay 5.000 × 10−7

De-jitter buffer 2.933 × 10−5

In total 4.500 × 10−5

Note that the average delay caused by the buffer is slightly less than 10.417µs which is
half a sample period of the transmission link which has a base frequency of 48 KHz in
this case. Similarly, the average delay caused by the de-jitter buffer is about 1.3 audio
samples. If we change the synchronous clock at the receiver end, the delay may be
slightly different but within an audio sample’s period.

Ddifference = DF lexilink − DP E (5.1)

Jratio = JF lexilink/JP E (5.2)

Table 5.5: Average E2E delay and jitter improvement for Flexilink compared to
Priority based Ethernet

Case Delay Difference
(µs)

Jitter Ratio

Case 1 a + 11.35 2.48e−14
Case 2 a + 0.16 6.71e−19
Case 3 b - 3.41 1.934e−19
Case 4 b - 8.07 8.06e−21

a Delay and jitter are calculated as the mean of six scenarios (AF loads).
b Delay and jitter are calculated as the mean of three real-time flows.

A summary of the average E2E delay and jitter performance improvement for Flexilink
compared to Priority based Ethernet is presented in Table 5.5, which are calculated using
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Equation 5.1 and 5.2, respectively. In Equation 5.1, Ddifference denotes the different
difference, while DF lexilink and DP E denote the average delay of the Flexilink and PE
networks, respectively. Similarly, Jratio denote the jitter ratio, while JF lexilink and JP E

denote the mean jitter of the Flexilink and PE networks, respectively.

Through all scenarios, we can see that the E2E delay over the Flexilink network will not
increase as the amount of AF data grows, and the jitter for all scenarios is close to zero.
For comparison, both the E2E delay and jitter increase rapidly in the Ethernet model.
The PE has a similar low latency and jitter when there are a small amount of AF data,
but it gets worse when having massive AF data and/or multiple SF sources. The burst
of traffic also has a significant influence on the performances of the basic Ethernet and
PE models. Flexilink keeps performing well when more and more AF data are pushed
to the Ethernet link, even with the burst of traffic and/or multiple sources.

5.3 Flexilink Hardware Test

5.3.1 Hardware Implementation

The Flexilink architecture has been prototyped as hardware switches with collaboration
of external partners. The key building blocks of these devices are the data forwarding
unit and the control unit. The data forwarding unit needs to fast forward uses cut-through
forwarding for the SF data packets as well as storing and forwarding the AF data, which
can be implemented in hardware logic by FPGA. The control unit needs to flexibly al-
locate the resource for multichannel SF data requests, such as positioning the SF data
packet in the continuous bit stream, and allocating the SF data packets evenly to allow
phase correction algorithms work efficiently. The control unit needs to be an effective
general purpose CPU with accelerated networking processing capabilities.

The current version of prototype has 4 Gigabit Ethernet ports, four small form-factor
pluggable (SFP) ports for optical fibre or digital video extensions, 2 AES10 and 1 AES59
interfaces. The picture of the prototype hardware is shown in Figure 5.18. It can accept
audio native digital audio stream in AES format and convert them into Flexilink traffic

201



over Ethernet.

Figure 5.18: Picture of Flexilink switches

5.3.2 Testing Scenarios

We run two hardware tests to mainly test the latencies and jitters of Flexilink hardware
under different circumstances. The first Test Case 1 see Figure 5.19 is a proof of con-
cept test to find out a general benchmark of performance. The second Test Case 2 see
Figure 5.20 is a stress test to find out the effects of network performance under heavy
background traffic in comparison with other popular Audio over IP (AoIP) technology.

Figure 5.19: Test Case 1 Proof of Concept Test
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Figure 5.20: Test Case 2 Stress Test

The Test Case 1 topology is to route both channels of a stereo audio pulse trains sep-
arately from Audio Source A to Audio Receiver B. The left channel is directly routed
from A to B, whereas the right channel is routed through 3 Flexilink switches. The
Test Case 2 is to route audio signal through multiple Flexilink switches as well as hav-
ing background traffics ranging from 10% to 90%. The same topology is applied to
Dante networking devices such as RedNet-D16 switches that are essentially the same
technology as defined in AES67. The background traffic (sent as best-effort) is sent as
asynchronous flow (AF-flow) in Flexilink is generated using “Ostinato”, a free software
tool used for traffic generation. UDP flows are generated between sender and receiver
using maximum size Ethernet packets of 1518 bytes. Each experiment is repeated 10
times for 2 minutes each.

5.3.3 Testing Results

Figure 5.21 shows the results of Test Case 1. The end-to-end delay of audio traffic over
Flexilink network using Gigabit Ethernet is shown in Figure 5.21a. It shows average de-
lay of 767.517µsec over 3-hop Flexilink network. Figure 5.21b shows the average jitter
of 1.188ns over Ethernet that is below audio playback threshold 20ns [142]. Trans-
mitting audio signal over optical fibre connection is also tested. The average delay is
817.479µsec and jitter of 1.567ns respectively.

Figure 5.22 shows the results of Test Case 2 Stress Test. This experiment is to evaluate
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(a) End-to-End Latency (b) Jitter

Figure 5.21: Test Case 1 Flexilink over Gigabit Ethernet

the performance of real-time audio traffic over Flexilink under stressed network condi-
tions. In order to achieve this, the amount of background traffic (AF) is increased to
increase the overall network load to see whether this will affect the performance of the
real-time audio (SF) traffic. The AF traffic used 10%, 50% and 90% of the available
bandwidth i.e. at 100 Mbps, 500 Mbps and 900 Mbps.

Figure 5.22a shows the delay experienced by the real-time audio traffic against the in-
creasing background traffic load. It can be shown that Flexilink provides a stable perfor-
mance to the real-time audio traffic regardless of the amount of background traffic being
sent on the same link. Same tests had been carried out on AoIP network (Dante). Dante
network also achieve stable performance under stress of best efforts data with higher la-
tency values. It is worth noting that, at very high background traffic condition. Dante is
discarding all packets other than audio packets to maintain the performance of audio net-
working, whereas Flexilink is able to transmit background traffic with high throughput
as well as audio signals. This indicates that Flexilink has better mechanism of dealing
with converged data. Figure 5.22b shows the statistically the jitter performance of Flex-
ilink and Dante. There is no significant different between these two technologies. In
general, Flexilink achieved low jitter performance no matter of network load.
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(a) Flexilink vs Dante End-to-End Latency (b) Flexilink vs Dante Jitter

Figure 5.22: Test Case 2 Stress Test with comparison

5.4 Conclusion

5.4.1 Summary

The prominent latency problem in audio networking is the unexpected network jitter and
uneven packet delivery. Therefore the various buffers are used to mitigate the problem
with the cost of increased latency. Also, the latency cannot be predicted accurately.
Using carefully managed or isolated audio network can provide good delay performance.
However, it lacks the mechanism to support future versatile audio delivery requirements,
such as multiple real-time streams mixed with other types of traffic. Therefore the key
solution is to provide time deterministic transmission mechanism that is able to support
different real-time and non-real-time streams effectively.

In this chapter, we proposed a new time deterministic audio networking protocol and
architecture: Flexilink, that combines the merits of both TDM and packet switched net-
work. It is designed to support both real-time traffic (synchronous flow) and best effort
traffic (asynchronous flow), with a capability of utilisation of full network bandwidth.
Flexilink is a promising approach as an efficient model of the converged network tech-
nology in the professional media industry, without complex QoS management.

We presented the simulation model and results of Flexilink. It shows that although it
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may introduce minor latency due to slot scheduling. There are advantages in some of
the key multimedia quality measures such as the end-to-end delay, jitter and packet loss
rate. In particular, Flexilink is the only architecture examined whose jitter is below the
audible threshold in the case of streaming live digital audio signals. Flexilink has been
prototyped as a hardware switch with multiple network and digital audio interfaces. The
hardware test also shows it performs better than current professional audio networking
devices in terms of latency and jitter.

Most relevant researches in networked music performance focus on prediction and man-
agement of network latency which treats underline network latency as some level of un-
controllable parameters with statistical profile [8, 9, 10]. Whereas our research provide
a bottom up approach to provide deterministic network latency performances. If it is
adopted in network infrastructure, it will be a great help for higher level applications
and researches.

The Flexilink project is trying to re-introduce some nice time deterministic features from
TDM and virtual circuit switching network to the new converged media network. The
design goal is to ensure the timing and quality of audio signal delivery to service the
up-layer applications. It is a hybrid approach. Many aspects of this proposed architec-
ture are still under research. There are trade-off and pros and cons comparing IP based
solution. The Table 5.6 gives brief summaries of these three main design approaches.

5.4.2 Future Work

The architecture of Flexilink is not only for audio applications, but potentially for all real
time media content with isochronous pattern. Future work should look into how Flex-
ilink could support broadcasting network content that has audio, video, control message
and meta data, as well as to support synchronised audio/video delivery and low latency
interactive media distribution networks.

Efficient scheduling and routing mechanism are key requirements to guarantee a profes-
sional performance in the wide area networks. We should also investigate how the slot
reservation based mechanism can be developed and optimised over multiple hops and
routes.
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Table 5.6: Compare different networking infrastructure designs for audio

 4 

 
 
 
 

Technology 
TDM & Virtual 
circuit switching 
based 

IP/Ethernet & 
Packet switching 
based 

Flexilink - Hybrid 
mode (TDM + 
Packet) 

Delivery 
mode Deterministic  Best effort Deterministic for SF 

Best effort for AF 

Quality of 
Service 
mechanism 

Simple: Reserving 
virtual circuit signal 
path, no QoS required. 

Complex: Priority and 
traffic engineering-
based Layer 2&3 
solutions: IntServ, 
DiffServ, IEEE 802.1p, 
IEEE 802.1Q. 

Simple: Two tier 
system, SF using point 
to point path 
reservation; AF 
transmission on the 
background. 

Latency  
Very low: speed of 
light in the physical 
media. 

Variable: unpredictable 
when network is 
congested. 

Low: predictable 
based on de-jitter 
buffer size of SF 
scheduling mapping. 

Supporting 
different 
traffic types 

Low efficiency, low 
bandwidth utilisation, 
such as IP over 
TDM/ISDN. 

Hight efficiency and 
high bandwidth 
utilisation: everything 
over IP. 

High efficiency to 
support different types 
of traffics, high 
bandwidth utilisation. 

Compatibility Becoming obsolete for 
data network. 

Becoming predominate 
network infrastructure. 

Can be connected to 
IP network but require 
customised hardware 
and software.  

Resilience 
Low, failure signal path 
results in loss of the 
communication. 

High, can automatically 
establish the routing 
path.  

Redundancy and 
backup 
communication 
methods are not 
implemented yet. 

Cost for 
traffic High Low 

Can be made low if 
there are enough 
Flexilink networks. 

Typical 
protocols for 
audio   

ISDN  
AES50 
ATM/AES47 

AES67  
Dante 
CobraNet 

Flexilink 

 
 
 The Flexilink network architecture also provides an ideal solution for a QoS guaranteed

end-to-end ‘Integrated Service’, although more development is required on the scalabil-
ity and interoperability with current rapidly evolving networks.
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Chapter 6

Conclusions

6.1 Summary of Main Contributions

Analogue electronic audio transmission drastically increases the speed of dissemination
of the sound. However, in the digital audio era, the delay caused by AD/DA conversion,
multichannel and complex processing, and network transmission draws the attention of
audio engineers and system designers.

In this thesis, we investigated the latency problem in the real-time audio processing
chain. We have attempted to answer the research questions that were raised at the be-
ginning of this work.

1. What are the sources of delay in the digital audio processing chain?

2. Can we accurately estimate the delay when designing a digital audio system?

3. Can we adopt deterministic approach in the system design to minimise the delay
in the digital audio system?

For the first question, we understand that the latency in audio processing is mainly caused
by three factors: Group Delay, Buffering, and Physical Propagation Delay. This leads
to the second question of delay estimation. For the delay caused by buffering, there
are many reasons why a large buffering is needed. In this research, we focus on how
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to remove the uncertainty of audio data processing and transmission. Then we can ac-
curately estimate the buffer requirements hence the precise values of latency. For the
group delay caused by digital filters, the most prominent problem is in the multistage
multirate design for High-resolution Anti-aliasing Anti-image Filter (HAAF), a series
mathematical formulas are derived to accurately calculate the overall group delay from
the design parameters.

For the question 3, We focused on how to minimise Group Delay and Buffering Delay
with a deterministic system design approach. We treat digital audio systems as multi-
nodes signal flow graphs. The latency of the whole system is the critical path of the graph
in terms of time. There are three main functional blocks in the critical path: ADC/DAC,
Audio processing using DAW and General Purpose Operating System (GPOS), and Au-
dio Networking. Group Delay is the main contribution of latency of ∆Σ ADC/DAC.
Buffering delay is the main cause of GPOS delay and audio networking. The formu-
las of group delay estimation provide an optimisation approach to design the low delay
filters for HAAF. We proposed and designed a new deterministic network system ar-
chitecture and OS scheduling framework to enable minimised buffering design and to
provide deterministic latency behaviour. The main contributions of this work are de-
scribed in the following sections.

6.1.1 Group Delay Caused by Multistage Filters in Audio Conver-
sion

In this area, we investigated the latency caused by digital decimation and interpola-
tion filters in ∆Σ ADC/DAC. We name this type of filter High-resolution Anti-aliasing
Anti-image Filter (HAAF) which has a large number of orders and multistage multirate
structure. The group delay caused by this type of filter has not been fully studied before
this research. We investigated the delay problem caused by HAAF with below research
outputs:

1. Engineering brief of delay measurement of audio ADC/DAC [26].

2. Time Domain Performance of Decimation Filter Architectures for High Resolu-
tion Sigma Delta Analogue to Digital Conversion [27].
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3. Practical considerations on optimising multistage decimation and interpolation
processes [28].

In addition, there are two unpublished findings presented in this report.

4. The quantitative analysis of delay of High-resolution Anti-aliasing Anti-image
Filter with overall trade-off design. (To be submitted to a journal publication)

5. Quantitative and Qualitative evaluation of minimum phase filter for High-resolution
Anti-aliasing Anti-image Filter.

Paper 1 as in Chapter 3 Section 3.1, measured the latency of popular ∆Σ ADC/DAC used
in most audio devices using a high speed multichannel data acquisition device. The test
revealed latency problem of ∆Σ ADC/DAC caused by internal group delay of high-
performance digital filters. There is lack of accurate reporting mechanism and standard
way of describing delay of the hardware codecs. Paper 2 as in Chapter 3 Section 3.2
carried out comprehensive test and analysis on time domain performances of different
types of multistage and multirate filters that can be used in high resolution ADC/DAC.
Being the first time comprehensive review of time domain performance of different types
of filters in this area, the work demonstrated some impacts and had been cited more than
ten times by conference and journal papers till the time this thesis is written.

Paper 3 is the first part of Chapter 3 Section 3.3. This work simplified the traditional
methods of searching optimal design of HAAF in terms of computational and area cost.
This provides the good foundation of the second parts of the Chapter 3 Section 3.3 which
is intended to be unpublished work item 4. This work considered an overall balanced
design that taking group delay into account. It also formalised the new mathematical
model of group delay formula that is used for analytically showing how different de-
sign parameters affect the overall delay. It provided a new HAAF design approach that
considers both hardware cost and group delay.

Research work item 5 in Chapter 3 Section 3.4.1, created a set of new delay estimation
formulas that can be used to quantitatively measure non-linear group delay, especially
for minimum phase filters that have lowest average delay within the passband. The
qualitative measure can be further developed by conducting listening tests in the future.
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6.1.2 Delay of OS Processing and New Scheduling Framework

In this area, we measured the current latency values of using computer systems to pro-
cess audio, especially with a large number of concurrent channels, with intelligent audio
processing features, and with high CPU load. The relevant outputs are below:

1. Audio Latency Measurement for Desktop Operating Systems with Onboard Sound-
cards [12].

2. TDCS - A new scheduling framework for real-time Multimedia OS (ready to sub-
mit).

There are other research works the author contributed and co-authored [31, 32, 33, 34].
These work helped reinforce the findings, understand the general problem of audio pro-
cessing software architecture, and inspire the solutions. Paper 1 [12] as in Chapter 4
Section 4.1 conducted the comprehensive audio processing latency test on GPOS and
DAW. It revealed the problem of using GPOS to process low latency audio, especially
when CPU is heavily loaded. And the current DAW lacks support and timing assurance
for adaptive and cross-adaptive audio effects. This work has been widely cited more
than 14 times until now. It shows the prevalence of the problem. Especially the intel-
ligent audio processing paradigm is moving towards not only on GPOS but also within
the Web platform [33] [34]. The underlying non-deterministic timing issues become the
major obstacles of low latency audio processing tasks.

The research output item 2 as in Chapter 4 Section 4.2 proposed a new time deterministic
scheduling framework. The simulation results showed good performance in comparing
with classic scheduling algorithms that are commonly used in the real-time embedded
system. Integrating this new scheduling framework into GPOS could be promising for
solving the low latency audio processing problem. This proposed direction has already
been awarded funding from a provisional key lab in China that will continue support this
work further.
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6.1.3 New Audio Networking Architecture

In this area, the tendency requires transmitting multiple channels of different source rates
audio signals on a single communication channel. There is also increasing demand of
transmitting different types of real-time multimedia data along with non-real time best
effort data. We proposed a new network architecture and protocol to provide the means
of carrying audio in low latency over existing networking infrastructure with network
traffic convergence.

1. Flexilink: A unified low latency network architecture for multichannel live audio
[29].

2. Performance Evaluation of a New Flexible Time Division Multiplexing Protocol
on Mixed Traffic Types [30].

3. Towards true convergence, the architecture and performance evaluation of dy-
namic TDM system: Flexilink (paper drafted).

Paper 1 as in Chapter 5 Section 5.1 proposed the conceptual design of the Flexilink.
Paper 2 as in Chapter 5 Section 5.2 presented the simulated performance of Flexilink in
comparison with the traditional priority-based systems. It shows the deterministic char-
acteristics of Flexilink with superior low jitter and latency performance. The planned
paper 3 will provide the overarching overview of the Flexilink technology that developed
so far including the performance test of prototyped hardware. The initial performance
test of the hardware prototyping of Flexilink is presented in Chapter 5 Section 5.3.

6.2 Critical Assessment of Work

This research breaks down the latency issues of the whole audio processing chain into
three main functional blocks and three main latency factors. The audio processing chain
is continuously evolving to be the more complex system. There are many other aspects
of the system can be investigated in-depth to improve the responsiveness of the system.
This research looked into the overall picture of three main functional components. How-
ever, this study covers a little bit too wide areas, any one of these three aspects has lots
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of open questions that can be further researched on.

For group delay of the digital filter for ADC/DAC, the significant saving of the delay
could be using minimum phase filter in multistage structure. However, the minimum
phase structure and its suitability of being used in ∆Σ ADC/DAC are not fully under-
stood. The group delay curve of Minimum Phase (MP) filters tilt towards the 20k edges.
Especially, it is an interesting question that whether this property would affect people’s
perception of music. The objective minimum phase measurements proposed in this study
can further correlate with future perception tests to give qualitative analysis results.

For the new OS scheduling framework Time Deterministic Cyclic Scheduling (TDCS),
the simulation showed that the new scheduling algorithm is able to provide stable perfor-
mance when CPU load is 100% full. However, the work towards the combination of RT
scheduling into GPOS needs system implementation to validate the results. The software
engineering work of creating appropriate API interfaces and programming practices for
the low latency applications to access this new scheduling scheme might not be a trivial
work.

For the new audio networking architecture Flexilink, the current trend is using AoIP
such as AES67 for professional live audio transmission. This approach has been proven
to have a good level of latency performance. The critics of our proposed technology
are that the level of improvement and scale of the jitter performance of Flexilink might
not be necessary. However, for the future 5G network, the survey mentioned about the
requirements of control plane latency under 10ms and user plane latency under 0.5ms
[189]. The concepts and design of our proposal might be able to help in terms of the
future carrier network architecture.

6.3 Future Work

The criticisms mentioned in the last section sheds light on the future work.

For HAAF in ∆Σ ADC/DAC, there are a few directions that can be further explored:

Design and conduct a listening test in a controlled environment for comparison of lin-
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ear phase and minimum phase multistage filter in ∆Σ ADC/DAC. Because the filter
curves of them have differences mainly around 20kHz corner frequency, the percep-
tion differences can be very subtle [100, 190, 101]. The recent research only shows the
distinguishable differences all around 14KHz between minimum phase and linear phase
filter. The proper design of testing method needs to be considered and any other filtering
components that affect the results in the audio processing chain needs to be eliminated.

The efficient hardware implementation of HAAF. The HAAF eventually will be imple-
mented in hardware form. There are theoretical and practical questions to be answered:
To what extent the extra number of stages and associated clock controls will offset the
cost saved by the multistage structure and what is a balanced design? How to effectively
using a fixed-point parallel structure of multiplier and adders to implement preferred fil-
ters? Moreover, what are the pros and cons of using minimum phase or IIR filter in the
hardware form and how to avoid pitfalls of using them?

For the new OS scheduling scheme TDCS, it will be interesting to develop a general
theory of TDCS hyper-period conversion algorithm, and its objective function in terms
allocated flow jitter and accumulated delay. Then it would be good to see if this can be
converted into an optimisation problem concerning different timing properties measures.
The general theory can also help quantifying the QoS in a practical case when the hyper-
period is decided by system factor rather than optimal theoretical values. Furthermore,
the task mapping scheme can be elaborated to have different types of mapping such as
‘as even as possible’ or based on other static scheduling policies. Essentially to have the
real impact, to implement TDCS in an OS such as in Linux is desired.

For the new network architecture Flexilink, it is interesting to study how the reserve
based SF flow can be expanded into the multi-hop network. There are concerns about
the scalability of the reserve based protocols. However, today there are limited nodes in
the backbone network. Flexilink might be more suitable for the carrier network, then to
work out the inter-domain communication protocol that can preserve the dynamic TDM
features of this architecture. The current SDN standards are not well defined for time
constraints. Collective efforts from different groups need to be made to work together
such as IEEE time sensitive networking group, IETF Deterministic Networking group,
AES audio networking standardisation group, and SMPTE standardisation group. Some
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core concepts of Flexilink can be applied within the standardisation framework. To have
real-world impact, a software driver stack can be developed to enable common operating
systems to operate their network interface in Flexilink mode.

In fact, this work tried to tackle similar problems to those that current Cyber-physical
system (CPS) research does [191]. A typical example of CPS is autonomous vehicle that
needs to response the multiple sensor signals in a very short time window. Live audio
system can be regarded as a particular case of real-time CPS system that involves com-
munication, computing, and physical interactions as the constraints (music interaction).
It will be interesting to use formal CPS system design method to consider the design
and implement the live audio system and extend the concept to the broader interactive
digital media system.

Fundamentally, as professor Edward A. Lee mentioned in “Cyber-Physical Systems:
Design Challenges” [23], maybe because “Turing completeness” does not dictate tim-
ing assurance, the “timing” is semantically lost in the different abstraction layers of
computing. This causes loss of predictability and reliability at the application layer,
even though the underlying ‘digital hardware (layer) delivers astonishingly precise tim-
ing behaviour’. It needs to be tackled from a bottom-up approach. Our work has made
some efforts and advancement in this way, and it could be the continuous direction in
the future.
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