3,173 research outputs found

    Analog-Aware Schematic Synthesis

    Get PDF

    Approximate and timing-speculative hardware design for high-performance and energy-efficient video processing

    Get PDF
    Since the end of transistor scaling in 2-D appeared on the horizon, innovative circuit design paradigms have been on the rise to go beyond the well-established and ultraconservative exact computing. Many compute-intensive applications – such as video processing – exhibit an intrinsic error resilience and do not necessarily require perfect accuracy in their numerical operations. Approximate computing (AxC) is emerging as a design alternative to improve the performance and energy-efficiency requirements for many applications by trading its intrinsic error tolerance with algorithm and circuit efficiency. Exact computing also imposes a worst-case timing to the conventional design of hardware accelerators to ensure reliability, leading to an efficiency loss. Conversely, the timing-speculative (TS) hardware design paradigm allows increasing the frequency or decreasing the voltage beyond the limits determined by static timing analysis (STA), thereby narrowing pessimistic safety margins that conventional design methods implement to prevent hardware timing errors. Timing errors should be evaluated by an accurate gate-level simulation, but a significant gap remains: How these timing errors propagate from the underlying hardware all the way up to the entire algorithm behavior, where they just may degrade the performance and quality of service of the application at stake? This thesis tackles this issue by developing and demonstrating a cross-layer framework capable of performing investigations of both AxC (i.e., from approximate arithmetic operators, approximate synthesis, gate-level pruning) and TS hardware design (i.e., from voltage over-scaling, frequency over-clocking, temperature rising, and device aging). The cross-layer framework can simulate both timing errors and logic errors at the gate-level by crossing them dynamically, linking the hardware result with the algorithm-level, and vice versa during the evolution of the application’s runtime. Existing frameworks perform investigations of AxC and TS techniques at circuit-level (i.e., at the output of the accelerator) agnostic to the ultimate impact at the application level (i.e., where the impact is truly manifested), leading to less optimization. Unlike state of the art, the framework proposed offers a holistic approach to assessing the tradeoff of AxC and TS techniques at the application-level. This framework maximizes energy efficiency and performance by identifying the maximum approximation levels at the application level to fulfill the required good enough quality. This thesis evaluates the framework with an 8-way SAD (Sum of Absolute Differences) hardware accelerator operating into an HEVC encoder as a case study. Application-level results showed that the SAD based on the approximate adders achieve savings of up to 45% of energy/operation with an increase of only 1.9% in BD-BR. On the other hand, VOS (Voltage Over-Scaling) applied to the SAD generates savings of up to 16.5% in energy/operation with around 6% of increase in BD-BR. The framework also reveals that the boost of about 6.96% (at 50°) to 17.41% (at 75° with 10- Y aging) in the maximum clock frequency achieved with TS hardware design is totally lost by the processing overhead from 8.06% to 46.96% when choosing an unreliable algorithm to the blocking match algorithm (BMA). We also show that the overhead can be avoided by adopting a reliable BMA. This thesis also shows approximate DTT (Discrete Tchebichef Transform) hardware proposals by exploring a transform matrix approximation, truncation and pruning. The results show that the approximate DTT hardware proposal increases the maximum frequency up to 64%, minimizes the circuit area in up to 43.6%, and saves up to 65.4% in power dissipation. The DTT proposal mapped for FPGA shows an increase of up to 58.9% on the maximum frequency and savings of about 28.7% and 32.2% on slices and dynamic power, respectively compared with stat

    Power-Aware Design Methodologies for FPGA-Based Implementation of Video Processing Systems

    Get PDF
    The increasing capacity and capabilities of FPGA devices in recent years provide an attractive option for performance-hungry applications in the image and video processing domain. FPGA devices are often used as implementation platforms for image and video processing algorithms for real-time applications due to their programmable structure that can exploit inherent spatial and temporal parallelism. While performance and area remain as two main design criteria, power consumption has become an important design goal especially for mobile devices. Reduction in power consumption can be achieved by reducing the supply voltage, capacitances, clock frequency and switching activities in a circuit. Switching activities can be reduced by architectural optimization of the processing cores such as adders, multipliers, multiply and accumulators (MACS), etc. This dissertation research focuses on reducing the switching activities in digital circuits by considering data dependencies in bit level, word level and block level neighborhoods in a video frame. The bit level data neighborhood dependency consideration for power reduction is illustrated in the design of pipelined array, Booth and log-based multipliers. For an array multiplier, operands of the multipliers are partitioned into higher and lower parts so that the probability of the higher order parts being zero or one increases. The gating technique for the pipelined approach deactivates part(s) of the multiplier when the above special values are detected. For the Booth multiplier, the partitioning and gating technique is integrated into the Booth recoding scheme. In addition, a delay correction strategy is developed for the Booth multiplier to reduce the switching activities of the sign extension part in the partial products. A novel architecture design for the computation of log and inverse-log functions for the reduction of power consumption in arithmetic circuits is also presented. This also utilizes the proposed partitioning and gating technique for further dynamic power reduction by reducing the switching activities. The word level and block level data dependencies for reducing the dynamic power consumption are illustrated by presenting the design of a 2-D convolution architecture. Here the similarities of the neighboring pixels in window-based operations of image and video processing algorithms are considered for reduced switching activities. A partitioning and detection mechanism is developed to deactivate the parallel architecture for window-based operations if higher order parts of the pixel values are the same. A neighborhood dependent approach (NDA) is incorporated with different window buffering schemes. Consideration of the symmetry property in filter kernels is also applied with the NDA method for further reduction of switching activities. The proposed design methodologies are implemented and evaluated in a FPGA environment. It is observed that the dynamic power consumption in FPGA-based circuit implementations is significantly reduced in bit level, data level and block level architectures when compared to state-of-the-art design techniques. A specific application for the design of a real-time video processing system incorporating the proposed design methodologies for low power consumption is also presented. An image enhancement application is considered and the proposed partitioning and gating, and NDA methods are utilized in the design of the enhancement system. Experimental results show that the proposed multi-level power aware methodology achieves considerable power reduction. Research work is progressing In utilizing the data dependencies in subsequent frames in a video stream for the reduction of circuit switching activities and thereby the dynamic power consumption

    Performance Comparison of Static CMOS and Domino Logic Style in VLSI Design: A Review

    Get PDF
    Of late, there is a steep rise in the usage of handheld gadgets and high speed applications. VLSI designers often choose static CMOS logic style for low power applications. This logic style provides low power dissipation and is free from signal noise integrity issues. However, designs based on this logic style often are slow and cannot be used in high performance circuits. On the other hand designs based on Domino logic style yield high performance and occupy less area. Yet, they have more power dissipation compared to their static CMOS counterparts. As a practice, designers during circuit synthesis, mix more than one logic style judiciously to obtain the advantages of each logic style. Carefully designing a mixed static Domino CMOS circuit can tap the advantages of both static and Domino logic styles overcoming their own short comings

    Real-Time Dense Stereo Matching With ELAS on FPGA Accelerated Embedded Devices

    Full text link
    For many applications in low-power real-time robotics, stereo cameras are the sensors of choice for depth perception as they are typically cheaper and more versatile than their active counterparts. Their biggest drawback, however, is that they do not directly sense depth maps; instead, these must be estimated through data-intensive processes. Therefore, appropriate algorithm selection plays an important role in achieving the desired performance characteristics. Motivated by applications in space and mobile robotics, we implement and evaluate a FPGA-accelerated adaptation of the ELAS algorithm. Despite offering one of the best trade-offs between efficiency and accuracy, ELAS has only been shown to run at 1.5-3 fps on a high-end CPU. Our system preserves all intriguing properties of the original algorithm, such as the slanted plane priors, but can achieve a frame rate of 47fps whilst consuming under 4W of power. Unlike previous FPGA based designs, we take advantage of both components on the CPU/FPGA System-on-Chip to showcase the strategy necessary to accelerate more complex and computationally diverse algorithms for such low power, real-time systems.Comment: 8 pages, 7 figures, 2 table

    An integrated soft- and hard-programmable multithreaded architecture

    Get PDF
    • …
    corecore