169 research outputs found

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    WIC midwintermeeting on IP-television (IP-TV):proceedings of a one-day workshop, Eindhoven, January 19, 2007

    Get PDF

    QoS Provisioning in Converged Satellite and Terrestrial Networks: A Survey of the State-of-the-Art

    Get PDF
    It has been widely acknowledged that future networks will need to provide significantly more capacity than current ones in order to deal with the increasing traffic demands of the users. Particularly in regions where optical fibers are unlikely to be deployed due to economical constraints, this is a major challenge. One option to address this issue is to complement existing narrow-band terrestrial networks with additional satellite connections. Satellites cover huge areas, and recent developments have considerably increased the available capacity while decreasing the cost. However, geostationary satellite links have significantly different link characteristics than most terrestrial links, mainly due to the higher signal propagation time, which often renders them not suitable for delay intolerant traffic. This paper surveys the current state-of-the-art of satellite and terrestrial network convergence. We mainly focus on scenarios in which satellite networks complement existing terrestrial infrastructures, i.e., parallel satellite and terrestrial links exist, in order to provide high bandwidth connections while ideally achieving a similar end user quality-of-experience as in high bandwidth terrestrial networks. Thus, we identify the technical challenges associated with the convergence of satellite and terrestrial networks and analyze the related work. Based on this, we identify four key functional building blocks, which are essential to distribute traffic optimally between the terrestrial and the satellite networks. These are the traffic requirement identification function, the link characteristics identification function, as well as the traffic engineering function and the execution function. Afterwards, we survey current network architectures with respect to these key functional building blocks and perform a gap analysis, which shows that all analyzed network architectures require adaptations to effectively support converged satellite and terrestrial networks. Hence, we conclude by formulating several open research questions with respect to satellite and terrestrial network convergence.This work was supported by the BATS Research Project through the European Union Seventh Framework Programme under Contract 317533

    Video Streaming over Vehicular Ad Hoc Networks: A Comparative Study and Future Perspectives

    Get PDF
    Vehicular  Ad Hoc Network  (VANET) is emerged as an important research area that provides ubiquitous short-range connectivity among moving vehicles.  This network enables efficient traffic safety and infotainment applications. One of the promising applications is video transmission in vehicle-to-vehicle or vehicle-to-infrastructure environments.  But, video streaming over vehicular environment is a daunting task due to high movement of vehicles. This paper presents a survey on state-of-arts of video streaming over VANET. Furthermore, taxonomy of vehicular video transmission is highlighted in this paper with special focus on significant applications and their requirements with challenges, video content sharing, multi-source video streaming and video broadcast services. The comparative study of the paper compares the video streaming schemes based on type of error resilient technique, objective of study, summary of their study, the utilized simulator and the type of video sharing.  Lastly, we discussed the open issues and research directions related to video communication over VANET

    COST EFFICIENT PROVISIONING OF MASS MOBILE MULTIMEDIA SERVICES IN HYBRID CELLULAR AND BROADCASTING SYSTEMS

    Full text link
    Uno de los retos a los que se enfrenta la industria de las comunicaciones móviles e inalámbricas es proporcionar servicios multimedia masivos a bajo coste, haciéndolos asequibles para los usuarios y rentables a los operadores. El servicio más representativo es el de TV móvil, el cual se espera que sea una aplicación clave en las futuras redes móviles. Actualmente las redes celulares no pueden soportar un consumo a gran escala de este tipo de servicios, y las nuevas redes de radiodifusión móvil son muy costosas de desplegar debido a la gran inversión en infraestructura de red necesaria para proporcionar niveles aceptables de cobertura. Esta tesis doctoral aborda el problema de la provisión eficiente de servicios multimedia masivos a dispositivos móviles y portables utilizando la infraestructura de radiodifusión y celular existente. La tesis contempla las tecnologías comerciales de última generación para la radiodifusión móvil (DVB-H) y para las redes celulares (redes 3G+ con HSDPA y MBMS), aunque se centra principalmente en DVB-H. El principal paradigma propuesto para proporcionar servicios multimedia masivos a bajo coste es evitar el despliegue de una red DVB-H con alta capacidad y cobertura desde el inicio. En su lugar se propone realizar un despliegue progresivo de la infraestructura DVB-H siguiendo la demanda de los usuarios. Bajo este contexto, la red celular es fundamental para evitar sobre-dimensionar la red DVB-H en capacidad y también en áreas con una baja densidad de usuarios hasta que el despliegue de un transmisor o un repetidor DVB-H sea necesario. Como principal solución tecnológica la tesis propone realizar una codificación multi-burst en DVB-H utilizando códigos Raptor. El objetivo es explotar la diversidad temporal del canal móvil para aumentar la robustez de la señal y, por tanto, el nivel de cobertura, a costa de incrementar la latencia de la red.Gómez Barquero, D. (2009). COST EFFICIENT PROVISIONING OF MASS MOBILE MULTIMEDIA SERVICES IN HYBRID CELLULAR AND BROADCASTING SYSTEMS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/6881Palanci
    corecore