24,783 research outputs found

    An efficient graph algorithm for dominance constraints

    Get PDF
    Dominance constraints are logical descriptions of trees that are widely used in computational linguistics. Their general satisfiability problem is known to be NP-complete. Here we identify normal dominance constraints and present an efficient graph algorithm for testing their satisfiablity in deterministic polynomial time. Previously, no polynomial time algorithm was known

    A new algorithm for normal dominance constraints

    Get PDF
    Dominance constraints are logical descriptions of trees. Efficient algorithms for the subclass of normal dominance constraints were recently proposed. We present a new and simpler graph algorithm solving these constraints more efficiently, in quadratic time per solved form. It also applies to weakly normal dominance constraints as needed for an application to computational linguistics. Subquadratic running time can be achieved employing decremental graph biconnectivity algorithms

    Path computation in multi-layer networks: Complexity and algorithms

    Full text link
    Carrier-grade networks comprise several layers where different protocols coexist. Nowadays, most of these networks have different control planes to manage routing on different layers, leading to a suboptimal use of the network resources and additional operational costs. However, some routers are able to encapsulate, decapsulate and convert protocols and act as a liaison between these layers. A unified control plane would be useful to optimize the use of the network resources and automate the routing configurations. Software-Defined Networking (SDN) based architectures, such as OpenFlow, offer a chance to design such a control plane. One of the most important problems to deal with in this design is the path computation process. Classical path computation algorithms cannot resolve the problem as they do not take into account encapsulations and conversions of protocols. In this paper, we propose algorithms to solve this problem and study several cases: Path computation without bandwidth constraint, under bandwidth constraint and under other Quality of Service constraints. We study the complexity and the scalability of our algorithms and evaluate their performances on real topologies. The results show that they outperform the previous ones proposed in the literature.Comment: IEEE INFOCOM 2016, Apr 2016, San Francisco, United States. To be published in IEEE INFOCOM 2016, \<http://infocom2016.ieee-infocom.org/\&g
    • …
    corecore