1,773 research outputs found

    Analysis of Parkinson's Disease Gait using Computational Intelligence

    Get PDF
    Millions of individuals throughout the world are living with Parkinson’s disease (PD), a neurodegenerative condition whose symptoms are difficult to differentiate from those of other disorders. Freezing of gait (FOG) is one of the signs of Parkinson’s disease that have been utilized as the main diagnostic factor. Bradykinesia, tremors, depression, hallucinations, cognitive impairment, and falls are all common symptoms of Parkinson’s disease (PD). This research uses a dataset that captures data on individuals with PD who suffer from freezing of gait. This dataset includes data for medication in both the “On” and “Off” stages (denoting whether patients have taken their medicines or not). The dataset is comprised of four separate experiments, which are referred to as Voluntary Stop, Timed Up and Go (TUG), Simple Motor Task, and Dual Motor and Cognitive Task. Each of these tests has been carried out over a total of three separate attempts (trials) to verify that they are both reliable and accurate. The dataset was used for four significant challenges. The first challenge is to differentiate between people with Parkinson’s disease and healthy volunteers, and the second task is to evaluate effectiveness of medicines on the patients. The third task is to detect episodes of FOG in each individual, and the last task is to predict the FOG episode at the time of occurrence. For the last task, the author proposed. a new framework to make real-time predictions for detecting FOG, in which the results demonstrated the effectiveness of the approach. It is worth mentioning that techniques from many classifiers have been combined in order to reduce the likelihood of being biased toward a single approach. Multilayer Perceptron, K-Nearest Neighbors, random Forest, and Decision Tree Classifier all produced the best results when applied to the first three tasks with an accuracy of more than 90% amongst the classifiers that were investigated

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    The biomechanics of human locomotion

    Get PDF
    Includes bibliographical references. The thesis on CD-ROM includes Animate, GaitBib, GaitBook and GaitLab, four quick time movies which focus on the functional understanding of human gait. The CD-ROM is available at the Health Sciences Library
    • …
    corecore