6 research outputs found

    Dynamic identification of a 6 dof industrial robot without joint position data

    Get PDF
    Off-line robot dynamic identification methods are mostly based on the use of the inverse dynamic model, which is linear with respect to the dynamic parameters. This model is sampled while the robot is tracking reference trajectories that excite the system dynamics. This allows using linear least-squares techniques to estimate the parameters. This method requires the joint force/torque and position measurements and the estimate of the joint velocity and acceleration, through the bandpass filtering of the joint position at high sampling rates. A new method called DIDIM has been proposed and validated on a 2 degree-of-freedom robot. DIDIM method requires only the joint force/torque measurement. It is based on a closed-loop simulation of the robot using the direct dynamic model, the same structure of the control law, and the same reference trajectory for both the actual and the simulated robot. The optimal parameters minimize the 2-norm of the error between the actual force/torque and the simulated force/torque. A validation experiment on a 6 dof Staubli TX40 robot shows that DIDIM method is very efficient on industrial robot

    Experimental Identification of the Inverse Dynamic Model: Minimal Encoder Resolution Needed Application to an Industrial Robot Arm and a Haptic Interface

    Get PDF
    Ce chapitre de livre, accessible par internet, décrit une méthode pour connaître l'influence de l'erreur de mesure sur le résultat final. Elle revient à utiliser une méthode classique utilisée dans l'évaluation de la robustesse des simulations numériques vis à vis de la troncature liée au codage des réels par les ordinateurs. (la méthode CESTAC :Contrôle et Estimation Stochastique des Arrondis de Calculs)

    A new closed-loop output error method for parameter identification of robot dynamics

    Get PDF
    Off-line robot dynamic identification methods are mostly based on the use of the inverse dynamic model, which is linear with respect to the dynamic parameters. This model is sampled while the robot is tracking reference trajectories that excite the system dynamics. This allows using linear least-squares techniques to estimate the parameters. The efficiency of this method has been proved through the experimental identification of many prototypes and industrial robots. However, this method requires the joint force/torque and position measurements and the estimate of the joint velocity and acceleration, through the bandpass filtering of the joint position at high sampling rates. The proposed new method requires only the joint force/torque measurement. It is a closed-loop output error method where the usual joint position output is replaced by the joint force/torque. It is based on a closed-loop simulation of the robot using the direct dynamic model, the same structure of the control law, and the same reference trajectory for both the actual and the simulated robot. The optimal parameters minimize the 2-norm of the error between the actual force/torque and the simulated force/torque. This is a non-linear least-squares problem which is dramatically simplified using the inverse dynamic model to obtain an analytical expression of the simulated force/torque, linear in the parameters. A validation experiment on a 2 degree-of-freedom direct drive robot shows that the new method is efficient

    Estimación de parámetros dinámicos en robots manipuladores

    Full text link
    La identificación de los parámetros dinámicos que constituyen el modelo dinámico de un robot manipulador tiene por objeto la estimación de valores precisos de dichos parámetros a partir de medidas experimentales del movimiento del robot, siendo éste el único procedimiento práctico que permite la obtención de valores fiables de los mismos cuando el sistema mecánico presenta una mínima complejidad. La importancia de la identificación de parámetros dinámicos se manifiesta especialmente tanto en aplicaciones de control por dinámica inversa como en simulación dinámica. En esta tesis, se aborda la identificación de parámetros dinámicos, tanto desde el punto de vista teórico como experimental, en robots manipuladores con configuración de cadena cinemática abierta. Por una parte, se desarrolla el modelo dinámico de un robot manipulador a partir de las ecuaciones de la dinámica de acuerdo al formalismo de Gibbs-Appell. Para ello, se asume el robot constituido por barras rígidas, modelándose independientemente el comportamiento dinámico de los actuadores. Se consideran asimismo algunos modelos de fricción lineales con respecto a sus coeficientes con objeto de modelar los fenómenos de fricción en los nudos. Posteriormente, las ecuaciones que constituyen dicho modelo dinámico son reescritas de forma lineal respecto a los parámetros dinámicos a identificar y en forma matricial, a fin de permitir la posterior aplicación de técnicas numéricas tanto de análisis y reducción como de resolución del sistema de ecuaciones así constituido. Por otra parte, se tratan algunos aspectos fundamentales de la identificación de parámetros dinámicos tanto a nivel teórico como práctico. Así, se aborda la generación de trayectorias optimizadas, recurriéndose a la parametrización de las mismas mediante series finitas de Fourier, lo cual permite beneficiarse del carácter periódico de éstas. Asimismo, se propone un procedimiento para la resolución del sistema de ecuaciones mediante el cual se asegura lBenimeli Andreu, FJ. (2005). Estimación de parámetros dinámicos en robots manipuladores [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1995Palanci

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications
    corecore