4 research outputs found

    An efficient distributed randomized algorithm for solving large dense symmetric indefinite linear systems

    No full text
    International audienceRandomized algorithms are gaining ground in high-performance computing applications as they have the potential to outperform deterministic methods, while still providing accurate results. We propose a randomized solver for distributed multicore architectures to efficiently solve large dense symmetric indefinite linear systems that are encountered, for instance, in parameter estimation problems or electromagnetism simulations. The contribution of this paper is to propose efficient kernels for applying random butterfly transformations and a new distributed implementation combined with a runtime (PaRSEC) that automatically adjusts data structures, data mappings, and the scheduling as systems scale up. Both the parallel distributed solver and the supporting runtime environment are innovative. To our knowledge, the randomization approach associated with this solver has never been used in public domain software for symmetric indefinite systems. The underlying runtime framework allows seamless data mapping and task scheduling, mapping its capabilities to the underlying hardware features of heterogeneous distributed architectures. The performance of our software is similar to that obtained for symmetric positive definite systems, but requires only half the execution time and half the amount of data storage of a general dense solver

    Fast Algorithms on Random Matrices and Structured Matrices

    Full text link
    Randomization of matrix computations has become a hot research area in the big data era. Sampling with randomly generated matrices has enabled fast algorithms to perform well for some most fundamental problems of numerical algebra with probability close to 1. The dissertation develops a set of algorithms with random and structured matrices for the following applications: 1) We prove that using random sparse and structured sampling enables rank-r approximation of the average input matrix having numerical rank r. 2) We prove that Gaussian elimination with no pivoting (GENP) is numerically safe for the average nonsingular and well-conditioned matrix preprocessed with a nonsingular and well-conditioned f-Circulant or another structured multiplier. This can be an attractive alternative to the customary Gaussian elimination with partial pivoting (GEPP). 3) By using structured matrices of a large family we compress large-scale neural networks while retaining high accuracy. The results of our extensive are in good accordance with those of our theoretical study
    corecore