5,791 research outputs found

    Pipelined genetic propagation

    Get PDF
    © 2015 IEEE.Genetic Algorithms (GAs) are a class of numerical and combinatorial optimisers which are especially useful for solving complex non-linear and non-convex problems. However, the required execution time often limits their application to small-scale or latency-insensitive problems, so techniques to increase the computational efficiency of GAs are needed. FPGA-based acceleration has significant potential for speeding up genetic algorithms, but existing FPGA GAs are limited by the generational approaches inherited from software GAs. Many parts of the generational approach do not map well to hardware, such as the large shared population memory and intrinsic loop-carried dependency. To address this problem, this paper proposes a new hardware-oriented approach to GAs, called Pipelined Genetic Propagation (PGP), which is intrinsically distributed and pipelined. PGP represents a GA solver as a graph of loosely coupled genetic operators, which allows the solution to be scaled to the available resources, and also to dynamically change topology at run-time to explore different solution strategies. Experiments show that pipelined genetic propagation is effective in solving seven different applications. Our PGP design is 5 times faster than a recent FPGA-based GA system, and 90 times faster than a CPU-based GA system

    Towards hardware acceleration of neuroevolution for multimedia processing applications on mobile devices

    Get PDF
    This paper addresses the problem of accelerating large artificial neural networks (ANN), whose topology and weights can evolve via the use of a genetic algorithm. The proposed digital hardware architecture is capable of processing any evolved network topology, whilst at the same time providing a good trade off between throughput, area and power consumption. The latter is vital for a longer battery life on mobile devices. The architecture uses multiple parallel arithmetic units in each processing element (PE). Memory partitioning and data caching are used to minimise the effects of PE pipeline stalling. A first order minimax polynomial approximation scheme, tuned via a genetic algorithm, is used for the activation function generator. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design

    High-speed detection of emergent market clustering via an unsupervised parallel genetic algorithm

    Full text link
    We implement a master-slave parallel genetic algorithm (PGA) with a bespoke log-likelihood fitness function to identify emergent clusters within price evolutions. We use graphics processing units (GPUs) to implement a PGA and visualise the results using disjoint minimal spanning trees (MSTs). We demonstrate that our GPU PGA, implemented on a commercially available general purpose GPU, is able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market. This represents a pragmatic choice for low-cost, scalable parallel computing and is significantly faster than a prototype serial implementation in an optimised C-based fourth-generation programming language, although the results are not directly comparable due to compiler differences. Combined with fast online intraday correlation matrix estimation from high frequency data for cluster identification, the proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.Comment: 10 pages, 5 figures, 4 tables, More thorough discussion of implementatio

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    A Hardware Implementation Method of Multi-Objective Genetic Algorithms

    Get PDF
    CEC2006 : IEEE International Conference on Evolutionary Computation , Jul 16-21, 2006 , Vancouver, BC, CanadaMulti-objective genetic algorithms (MOGAs) are approximation techniques to solve multi-objective optimization problems. Since MOGAs search a wide variety of pareto optimal solutions at the same time, MOGAs require large computation power. In order to solve practical sizes of the multi objective optimization problems, it is desirable to design and develop a hardware implementation method for MOGAs with high search efficiency and calculation speed. In this paper, we propose a new method to easily implement MOGAs as high performance hardware circuits. In the proposed method, we adopt simple Minimal Generation Gap (MGG) model as the generation model, because it is easy to be pipelined. In order to preserve diversity of individuals, we need a special selection mechanism such as the niching method which takes large computation time to repeatedly compare superiority among all individuals in the population. In the proposed method, we developed a new selection mechanism which greatly reduces the number of comparisons among individuals, keeping diversity of individuals. Our method also includes a parallel execution architecture based on Island GA which is scalable to the number of concurrent pipelines and effective to keep diversity of individuals. We applied our method to multi-objective Knapsack Problem. As a result, we confirmed that our method has higher search efficiency than existing method

    Efficient VLSI Architecture for Memetic Vector Quantizer Design

    Get PDF

    Flexible implementation of genetic algorithms on FPGAs

    Get PDF
    FPGA '06 : ACM/SIGDA 14th international symposium on Field programmable gate arrays , Feb 22-24, 2006 , Monterey, CA, USAGenetic algorithms (GAs) are useful since they can find near optimal solutions for combinatorial optimization problems quickly. Although there are many mobile/home applications of GAs such as navigation systems, QoS routing and video encoding systems, it was difficult to apply GAs to those applications due to low computational power of mobile/home appliances. In this paper, we propose a technique to flexibly implement genetic algorithms for various problems on FPGAs. For the purpose, we propose a basic architecture which consists of several modules for GA operations to compose a GA pipeline, and a parallel architecture consisting of multiple concurrent pipelines. The proposed architectures are simple enough to be implemented on FPGAs, applicable to various problems, and easy to estimate the size of the resulting circuit. We also propose a model for predicting the size of resulting circuit from given parameters consisting of the problem size, the number of concurrent pipelines and the number of candidate solutions for GA. Based on the proposed method, we have implemented a tool to facilitate GA circuit design and development. This tool allows designers to find appropriate parameter values so that the resulting circuit can be accommodated in the target FPGA device, and to automatically obtain RTL VHDL description. Through experiments using Knapsack Problem and TSP, we show that the FPGA circuits synthesized based on the proposed method run much faster and consume much lower power than software implementation on a PC and that our model can predict the size of the resulting circuit accurately enough

    VirtFogSim: A parallel toolbox for dynamic energy-delay performance testing and optimization of 5G Mobile-Fog-Cloud virtualized platforms

    Get PDF
    It is expected that the pervasive deployment of multi-tier 5G-supported Mobile-Fog-Cloudtechnological computing platforms will constitute an effective means to support the real-time execution of future Internet applications by resource- and energy-limited mobile devices. Increasing interest in this emerging networking-computing technology demands the optimization and performance evaluation of several parts of the underlying infrastructures. However, field trials are challenging due to their operational costs, and in every case, the obtained results could be difficult to repeat and customize. These emergingMobile-Fog-Cloud ecosystems still lack, indeed, customizable software tools for the performance simulation of their computing-networking building blocks. Motivated by these considerations, in this contribution, we present VirtFogSim. It is aMATLAB-supported software toolbox that allows the dynamic joint optimization and tracking of the energy and delay performance of Mobile-Fog-Cloud systems for the execution of applications described by general Directed Application Graphs (DAGs). In a nutshell, the main peculiar features of the proposed VirtFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the placement of the application tasks and the allocation of the needed computing-networking resources under hard constraints on acceptable overall execution times, (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall system; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operational environments, as those typically featuring mobile applications; (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering, and (v) itsMATLAB code is optimized for running atop multi-core parallel execution platforms. To check both the actual optimization and scalability capabilities of the VirtFogSim toolbox, a number of experimental setups featuring different use cases and operational environments are simulated, and their performances are compared
    corecore