
A Hardware Implementation Method of Multi-Objective Genetic Algorithms

Tatsuhiro Tachibana, Yoshihiro Murata, Naoki Shibata†, Keiichi Yasumoto and Minoru Ito
Graduate School of Information Science,
Nara Institute of Science and Technology.

Ikoma, Nara 630-0192, Japan
{tatsu-ta,yosihi-m,yasumoto,ito}@is.naist.jp

† Department of Information Processing and
Management, Shiga University.
Hikone, Shiga 522-8522, Japan
shibata@biwako.shiga-u.ac.jp

Abstract—Multi-Objective Genetic Algorithms (MOGAs) are
approximation techniques to solve multi-objective optimization
problems. Since MOGAs search a wide variety of pareto optimal
solutions at the same time, MOGAs require large computation
power. In order to solve practical sizes of the multi objective
optimization problems, it is desirable to design and develop
a hardware implementation method for MOGAs with high
search efficiency and calculation speed. In this paper, we
propose a new method to easily implement MOGAs as high
performance hardware circuits. In the proposed method, we
adopt simple Minimal Generation Gap (MGG) model as the
generation model, because it is easy to be pipelined. In order
to preserve diversity of individuals, we need a special selection
mechanism such as the niching method which takes large
computation time to repeatedly compare superiority among
all individuals in the population. In the proposed method, we
developed a new selection mechanism which greatly reduces the
number of comparisons among individuals, keeping diversity
of individuals. Our method also includes a parallel execution
architecture based on Island GA which is scalable to the number
of concurrent pipelines and effective to keep diversity of indi-
viduals. We applied our method to multi-objective Knapsack
Problem. As a result, we confirmed that our method has higher
search efficiency than existing method.

I. INTRODUCTION

Multi-Objective Genetic Algorithms (MOGAs) are tech-
niques to solve multi-objective optimization problems which
optimize multiple conflicting objectives at the same time.
Multi-objective optimization problems have a set of opti-
mal solutions called Pareto optimal solutions which may
include many solutions. So, MOGAs require large compu-
tation power to search pareto optimal solutions uniformly.
For practical use of MOGAs, it is mandatory to solve the
problems in short time. For this purpose, existing software
implementation techniques are not enough. So, we need an
efficient hardware implementation technique for MOGAs.
There are several existing studies regarding to hardware

implementation of optimization algorithms. Ant Colony Op-
timization (ACO) and Simulated Annealing (SA) have been
implemented on hardware platforms in [8], [9], respectively.
Several techniques for hardware implementation of GAs have
also been proposed. In [13], Wakabayshi et al. implemented
a GA with an adaptive selection. In [11], Kobayashi et al.
implemented a GA for extraction of disconnected closed
loops on FPGA. In order to improve calculation speed of
these circuit, it is important to prevent pipeline stall. Some
of existing studies adopt steady-state GAs since they achieve
less pipeline stalls than traditional generation models. In [10],

hardware GA called H3 engine that adopts steady-state GA
was implemented. In [1], Barry et al. developed hardware
circuits for Set Coverage Problem using Steady-state GA. In
[2], Aporntewan et al. proposed a hardware implementation
technique for Compact Genetic Algorithm on FPGAs. These
existing studies target GAs with a single objective function.
As long as we know, there is no study aiming at hardware
implementation of MOGAs.

Several software implementation techniques for MOGAs
have been proposed so far. In [3], Deb et al. proposed an
algorithm called NSGA-II (Non-Dominated Sorting Genetic
Algorithm). In [17], Zitzler et al. proposed an algorithm
called SPEA-II (Strength Pareto Evolutionary Algorithm-II).
These algorithms are difficult to be implemented as hardware
circuits, since they use general generation models and com-
plex selection mechanisms such as the niching method. So,
we need an appropriate method for implementing MOGAs
as hardware.

In this paper, we propose a new method to easily imple-
ment MOGAs as high performance hardware circuits. The
proposed method is an extension of our previous method
[15] which implements single objective GAs as hardware
circuits. In the proposed method, we adopt simple Minimal
Generation Gap (MGG) model as the generation model, be-
cause it is easy to be pipelined. In order to preserve diversity
of individuals, we developed a new selection mechanism
which greatly reduces the number of comparisons among
individuals, keeping diversity of individuals. Our method also
includes a parallel execution architecture based on Island GA
which is scalable to the number of concurrent pipelines and
effective to keep diversity of individuals.

We applied our method to multi-objective Knapsack Prob-
lem and compared search efficiency between our method and
NSGA-II. Through these experiments, we confirmed that the
proposed method has higher search efficiency than NSGA-II.

In the following Sect. II, we describe outline of our
architectures for hardware implementation of single objective
GA proposed in [15]. In Sect. III, we describe basic ideas of
our proposed method. In Sect. IV, we describe details of our
hardware implementation techniques. In Sect. V, we describe
the experimental results. Finally, we conclude the paper in
Sect. VI.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NAIST Academic Repository

https://core.ac.uk/display/75905597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. HARDWARE IMPLEMENTATION OF SINGLE OBJECTIVE

GA

In this section, we briefly explain our previously proposed
method for hardware implementation of single objective GA
on FPGA [15]. First, we describe the outline of hardware
implementation of GA circuits in Sect. II-A. Then, we
describe the generation model used in the architecture in
Sect. II-B. Finally, we describe the technique for parallel
execution in Sect. II-C.

A. Outline of Hardware Implementation of Single Objective
GA

We proposed a general hardware architecture for single
objective GA [15]. The goal of the architecture is to synthe-
size efficient hardware circuit of single objective GA for a
given problem and problem size (size of each solution) which
fully utilizes the target FPGA device. To achieve the goal,
the proposed architecture has the following features. (1) It
is easy to implement on FPGA and general enough to be
applied to various problems. (2) It has good performance by
fully utilizing target FPGA device and constructing parallel
execution circuit of GA operations.
For the above (1), efficient memory utilization is essen-

tial. So we adopted a generation model based on Minimal
Generation Gap (MGG) model [5]. The outline of this gen-
eration model is explained in Sect. II-B. In this architecture,
hardware modules corresponding to GA operations such as
crossover and mutation have to be designed separately, and
the throughputs of these modules have to be the same so that
they can be executed in a pipelined manner. This module-
based design allows our architecture to be applied to various
GA problems.
For the above (2), reducing synchronization among mul-

tiple parallel pipelines is important. We adopted Island GA
(IGA) model [4] as the parallel execution architecture. This
parallel architecture is explained in Sect. II-C.

B. Generation Model of Hardware GA

If the population management mechanism is implemented
as a hardware circuit in a straight-forward way, extra memory
to store newly generated individuals is required in addition
to the memory for storing current population. In [1] and
[2], survival-based steady-state GA and Compact Genetic
Algorithm are used to reduce sizes of a hardware circuit
and memory, respectively.
Survival-based steady-state GA replaces the individual

with the worst fitness value in the current population by
a newly generated individual with a better fitness value.
Steady-state GA always keeps track of the worst individual.
This requires extra clocks and makes pipelining difficult.
Compact Genetic Algorithm does not retain a population.
Instead, it retains a probability distribution to approximate
the set of chromosomes in the current population. Compact
GA assumes that all chromosomes are represented only by
0 and 1, and there is no straight-forward way to apply this
algorithm to TSP or other practical problems.

In the proposed method, we use a simplified MGG model
[5]. In this model, two individuals are picked up from the
current population. Crossover and mutation operations are
applied to these individuals to generate an offspring indi-
vidual. This offspring individual is then evaluated. Selection
operation selects the individual with the highest fitness value
from the family (an offspring individual and the parent indi-
viduals) and replaces the worst individual in the family with
it. This simplification makes it easy to construct pipelined
and parallel circuit for processing individuals, and greatly
reduces the required memory for storing individuals.

With this method, however, candidate solutions tend to
converge towards one point in the search space since it
targets single objective. We describe the enhanced technique
to solve this problem in Sect. III-B. In Sect. III-B, we extend
this method to be able to obtain wide variety of candidates
solutions for multi-objective optimization problems.

C. Outline of Parallel Architecture

There are various techniques for parallel execution of GA.
In our architecture, we use the technique of Island GA (IGA).
IGA divides the population into several sets. Each set is
regarded as an island, and population in each island evolves
independently. Tiny fraction of the population periodically
migrates to another island so that all islands cooperatively
search for a good solution. Since IGA tends to retain better
diversity of individuals than simple GA (SGA, hereafter), it
hardly falls into a local optimum, and thus it has better search
efficiency than SGA.
For parallel processing in a hardware circuit, maximum

operating frequency may be decreased due to synchronization
among parallel processing units. By using the IGA model for
parallel execution of GA in a hardware circuit, each island
(processing unit) is only required to periodically exchange
individuals with its neighboring island for parallel execution.
So, the synchronization mechanism can be very simple and
its critical path does not depend on the number of parallel
processing units. This greatly contributes to the performance
scalability of the resulting circuits.

III. PROPOSED METHOD

In Sect. II-A, we described an architecture suitable to im-
plement single objective GAs as hardware circuits. However,
this architecture cannot be directly applied to MOGAs since
it is designed to keep individuals with better fitness values
calculated by a single objective function in the population
at each generation. On the other hand, MOGAs need to
keep a wide variety of individuals in the population at each
generation to find (near) pareto optimal solutions uniformly.
In order to keep diversity of individuals, existing MOGAs
adopt the niching method [6]. However, it is difficult to im-
plement those mechanisms as pipelined hardware modules,
since they require repeated comparison among all individuals
in the population. Therefore, if we implement MOGAs as
hardware circuits in a straightforward way, this part would
be bottleneck.

According to the above discussion, we propose a new
selection mechanism to keep diversity of individuals which is
suitable for hardware implementation. Our proposed mech-
anism can be implemented as pipelined modules on a hard-
ware platform. Also, we propose an overall architecture
suitable to implement MOGAs as hardware circuits. Our
proposed architecture is scalable with respect to the number
of concurrent pipelines, that is, within the available circuit
size, the parallel degree can be increased with low overhead
to improve search speed of MOGAs.
In the following subsections, first we define multi-

objective optimization problems. Our selection mechanism
for MOGAs is explained in Sect. III-B. Finally, we describe
our architecture for parallel execution of MOGAs in Sect.
III-C.

A. Multi-Objective optimization problem

Multi-objective optimization problems are problems to
find solutions which optimize multiple conflicting objectives
at the same time. So, the superior solution candidate cannot
be determined by comparison of fitness values of a single
objective.
Let I denote a set of objectives. Let x and y denote

solution candidates (individuals). Let fi(x) denote the fitness
value of individual x with respect to the objective i ∈ I . We
say that x is superior to (or dominates) y if the following
condition holds.

∃i∈I(fi(x) > fi(y)) ∧ ∀i∈I(fi(x) ≥ fi(y))

Pareto optimal solutions are solutions which are not dom-
inated by all other solutions in the whole search space. In
general, pareto optimal solutions are represented by a set of
points in the search space and could contain many points.
Multi-objective optimization problems are problems to find
all of pareto optimal solutions.
MOGAs is one of the approximation techniques to find

near pareto optimal solutions as uniformly as possible for
multi-objective optimization problems.

B. Proposed mechanism for keeping diversity of individuals

We propose a selection operation to be easily implemented
as a pipelined hardware module where individuals with
similar chromosomes are removed prior to others to keep
diversity in the population.
In our method, two individuals (parent individuals) are

chosen from the current population (all solution candidates).
Then crossover and mutation operations are applied to them
to generate a new individual (offspring individual). The
fitness value of each objective is calculated for the offspring
individual. These operations can be implemented similarly to
our method for single objective GA explained in Sect. II-B.
The selection operation is quite different from our previous

method. In our method, two selection operations called nor-
mal selection and biased selection are used. Both of selection
operations work as follows: (1) Two parent individuals are
compared to investigate superiority between them. Then

dominated parent individual is compared with the offspring
individual. The offspring individual is replaced with the
dominated parent individual in the current population, if
they satisfy the condition explained below (This operation
is called Replacement Part). (2) The offspring individual is
compared with all candidate solutions in the current popu-
lation. If there are individuals with the same chromosome
as the offspring individual in the current population, they
are removed from the population (This operation is called
Overlap Rejection Part).
normal selection and biased selection differ in the policy

of replacing the parent individual with the offspring individ-
ual. In Replacement Part, the condition of normal selection
is whether the offspring individual dominates the parent
offspring. The condition of the biased selection is whether
the fitness value of the offspring individual is superior to that
of the parent individual, with respect to a single specified
objective.
In Overlap Rejection Part, the offspring individual is com-

pared with all individuals in the current population in order
to remove the individuals with the same chromosome. In our
proposed method, however, we adopt a method to compare
individuals by their fitness values. We will explain the reason
in Sect. IV-E. If the solution candidates with the same
fitness value as the offspring individual are found, they are
marked. If it does not satisfy the condition of Replacement
Part, the marked individuals are compared with the offspring
individual. In that case, if the offspring individual dominates
a marked individual, the marked individual is replaced with
the offspring individual in the population.

C. Parallel Execution Architecture for Multi-Objective GA

Similarly to our previous method in Sect. II-C, we adopted
IGA as parallel execution of MOGAs. To improve search
efficiency of MOGAs, we added the following features.
In our new parallel execution architecture, in order to

keep diversity of individuals among islands, we let one
island use normal selection (normal Island) and remaining
k islands use biased selection (biased Island) for multi-
objective optimization problems with k objectives.
In general IGA, immigration operation exchanges small

number of individuals in an island with its neighboring
island. In our new architecture, immigrating individuals are
chosen from k biased Island one by one every fixed period.
Then they are compared and the individual which dominates
others is selected. After that, we let the selected individual
immigrate to normal Island. At the same time, one individual
is selected in normal Island, and we duplicate it and let the
duplicated individuals to immigrate to all biased Islands. The
above immigration operation aims at preventing individuals
from being selected in a particular island with the specific
objective.

IV. HARDWARE IMPLEMENTATION OF PROPOSED
METHOD

In this section, we show two architectures suitable to
hardware implementation of MOGAs based on our proposed

(d)

Crossover

module

Mutation

module

Management

module

fitness
address

chromosome chromosome
(offspring)

fitness
address

(parent 1 or
parent2)

address (parent1 or parent2)
fitness(parent1 or parent2)

fitness(offspring2)
chromosome (offspring2)

chromosome
(offspring)

fitness
address

(parent 1 or
parent2)

Evaluation

module
(e)

(b)
(c)

fitness
chromosome
(offspring2)

address
(parent 1 or
parent2 or

other)

(a)

Selection

module

Overlap

rejection

module

fitness
chromosome
(offspring2)

address
(parent 1 or

parent2)
(f)

Fig. 1. Basic Architecture

method. One is called the basic architecture for constructing
minimum GA circuits. The basic architecture composes a
single pipeline consisting of several modules. These mod-
ules execute corresponding GA operations in a pipelined
manner. We use the following modules: management mod-
ule, crossover module, mutation module, evaluation module,
selection module and overlap rejection module. The basic
architecture is shown in Fig. 1.
The other one is called the parallel architecture for

constructing parallel GA circuits. The parallel architecture
composes multiple pipelines to be executed in parallel in
an IGA manner. The parallel architecture consists of the
following modules : management module, crossover mod-
ule, mutation module, evaluation module, selection module,
overlap rejection module, immigration module and relation
module. The parallel architecture is shown in Fig. 2.
Management module retains population where each indi-

vidual consists of fitness values and chromosomes. Crossover
module, mutation module and evaluation module perform
corresponding genetic operations. Selection module and
overlap rejection module use techniques explained in Sect.
III-B. Immigration module and relation module are used only
in the parallel architecture.
In our proposed architectures, each module must be

designed to receive and send out m bits of data
(i.e.,chromosome) every clock (though it may require some
extra clocks to output the first m bit data after the first m
bit data is input). Buses between neighboring modules have
width of m bits. Since each chromosome is coded as a fixed
size string of n bits (n and m are given as parameters), � n

m�
clocks are required to process each chromosome, where n ≥
m. Each module receives and processes data in a pipelined
manner. We describe details of each module, hereafter.

A. Management Module

Management module includes memory in which the pop-
ulation is stored. This module reads individuals from the
memory, and sends them to crossover module (Fig. 1 (b)),

one by one. It also receives individuals from overlap rejection
module (Fig. 1 (a)) and writes them to the memory.
When overlap rejection module requests management

module to write an individual to the memory, chromosome
and fitness values of the individual received from selection
module are written to the specified address. Since memory
read and write cannot be performed simultaneously, data of
an individual cannot be sent to crossover module during
memory write. Such a pipeline stall can be prevented by
sending an offspring individual (which overlap rejection
module retains) directly to crossover module. In the case
when overlap rejection module does not request memory
write, a randomly selected individual in the population, its
address and fitness value are sent to crossover module (Fig.
1 (b)).

B. Crossover Module

Crossover module has a register r which retains chro-
mosome, address and fitness value of the individual par-
ent1 received � n

m� clocks before. Crossover module applies
crossover operator to chromosome parent1 and chromosome
parent2 which has just been received, and creates a new
chromosome offspring. Crossover module also performs part
of selection operation. The module compares fitness values of
parent1 and parent2 and sends the address and fitness values
of the superior individual. If two parents do not dominate
each other, parent1 is sent to crossover module.

C. Mutation Module

Mutation module applies mutation operator to the chromo-
some of offspring which is received from crossover module,
and sends the chromosome of the resulting individual off-
spring2 to the evaluation module. Also, the module sends
the address and chromosome of parent1 or parent2 received
from crossover module to evaluation module (Fig. 1 (d)).

D. Evaluation Module

Evaluation module calculates the fitness values of off-
spring2 received from the mutation module using all objec-

Crossover

module

Mutation

module

Overlap rejection module

Management

module

Immigration

module

Evaluation

module

Crossover

module

Mutation

module

Overlap rejection module

Management

module

Immigration

module

Evaluation

module

Crossover

module

Mutation

module

Overlap rejection module

Management

module

Immigration

module

Evaluation

module

R
e
la
ti
o
n
 m
o
d
u
le

normal Island
biased Islands

Selection

module

Selection

module

Selection

module

Fig. 2. Parallel Architecture

tive functions. Then, this module sends the calculated fitness
values in addition to the information received from mutation
module (Fig. 1 (e)).

E. Selection Module

Selection module uses one of two proposed selection
methods described in Sect. III-B. The inputs of selection
module are the chromosome and calculated fitness values of
offspring, fitness values and address of the selected parent.
Selection module compares fitness values of the selected
parent and offspring, and then it decides if the offspring
should be replaced with the parent or not. The result of
decision is represented by a selected flag, which becomes true
if the offspring should be replaced with the parent. Selection
module transfers the fitness values and chromosome of
offspring individual, selected flag, the address of the parent
individual to overlap rejection module.

F. Overlap rejection module

Overlap rejection module updates population while remov-
ing redundant individuals. Removal of redundant individual
is performed based on following three policies.
1) Offspring is replaced with parent in the population if

the offspring is selected, except policy 2).
2) Offspring is not replaced with parent if population

already has individual identical to the offspring. This

fitness

free_flag

fitness

free_flag

fitness

free_flag

0 1 K

Fig. 3. Overlap Rejection Module

is performed by comparing their fitness values, instead
of their chromosomes.

3) If the offspring is not selected for replacement, and
population includes identical individuals, one of these
individual is replaced with the offspring.

Overlap rejection module consists of k submodules. Vari-
able k is the number of population size. Each submodule
corresponds to each individual in the population (Fig. 3).
Each submodule i has following parameters:

• Address of corresponding individual (i)
• Fitness values of corresponding individual (fitnessp

i)
• A flag (free flagp

i)
free flagp

i is used to implement policy 3). This flag is set
to true when more than two individuals with identical fitness
values are found, and in this case, one of these individuals

will be replaced with offspring. The initial value of the flag
is set to false.
Overlap rejection module receives parameter set of indi-

vidual j from selection module. The parameter set consists of
the fitness values fitnesso

j and chromosome chromosomeo
j

of offspring individual, selected flago
j and the address

overwrite adresso
j of parent individual. Besides them, each

offspring individual retains a flag This flag is set to true
when an individual with fitness values identical to offspring
individual is found in the population. The initial value of the
flag is set to false.
The algorithm of submodule i is shown below. The input

of the first submodule is given by selection module, and the
output from the last module is disposed.

1) Submodule i receives parameters of individual j from
submodule i − 1 as follows:
fitnesso

j , chromosomeo
j , selected flago

j ,
overwrite adresso

j and found flago
j .

2) If found flago
j == false then goto 5.

3) If fitnessp
i == fitnesso

j then
free flagp

i ← true.
(cancels replacement according to policy 2)

4) Goto 11.
5) If (selected flago

j == true and
i == overwrite addresso

j) == false then goto 7.
6) fitnessp

i ← fitnesso
j ,

found flago
j ← true,

goto 11.
(this overwrites individual according to policy 1)

7) If fitnessp
i == fitnesso

j then
found flago

j ← true,
goto 11.

8) If (free flagp
i == true and

i! = overwrite addresso
j) == false then

goto 11
9) fitnessp

i and fitnesso
j are compared, and if individual

i dominates individual j, then goto 11.
10) fitnessp

i ← fitnesso
j ,

found flago
j ← true,

free flagp
i ← false

(this overwrites an individual according to policy 3).
11) Parameters of individual j are passed to the next

submodule i + 1.

G. Parallel Architecture

In the proposed parallelization method, one ordinary
MOGA called normal MOGA and multiple biased MOGAs
each of which takes one objective function prior to other
objective functions are executed in the corresponding islands
(pipelines). Basically we assign selection policies to islands
so that the number of biased MOGAs is the same as the
number of objective functions.
In order to exchange individuals between parallel MOGA

islands, immigration module is introduced between manage-

TABLE I

COMPARISON BETWEEN PROPOSED METHOD AND NSGA-II.

pareto evaluations total processing
method solutions per Island evaluations time (sec)

normal method (1) 34.6 1000000 1000000 0.0100
normal method (2) 36.1 1000000 2000000 0.0100
normal method (4) 39.0 1000000 4000000 0.0100
normal method (6) 39.6 1000000 6000000 0.0100
biased method (3) 46.6 1000000 3000000 0.0100

NSGA-II 33.8 320000 320000 43.2

ment module and crossover module, as shown in Fig. 2.
Most of time, we let crossover module receive individuals
from management module from the same island, but we let it
receive individuals from other island every specified interval.
Relation module chooses the best individual from individ-

uals output from biased MOGA islands, and sends it to a
normal MOGA island.

V. EXPERIMENTAL RESULTS

In order to evaluate search efficiency of our method, we
have implemented the method as software and conducted
some experiments with it. In the implementation, we used
Half Uniform Crossover (HUX) and bit-mutation. As bench-
mark, the multi-objective Knapsack Problem [7] 2KP50-50
was used for evaluation. This problem has 52 pareto optimal
solutions. Parameter values used in the experiment are as
follows: the number of individuals per island is 64, crossover
rate is 0.4, and mutation rate is 0.04. Experimental results
are shown as average values of 10 trials.
The number of obtained pareto optimal solutions are

shown in Fig. 4. We assume that MOGAs with our method
are implemented as hardware circuits. So, we evaluated
search efficiency as the number of obtained pareto optimal
solutions per clock. In Fig. 4, “normal method” corresponds
to the case when only the normal selection is used, and
“biased method” does the case when both the biased selection
and the normal selection are used together. The number
in parentheses shows the number of islands (it shows the
number of concurrent pipelines).
This result shows that our proposed method can generate

part of pareto optimal solutions. We see that the cases with
larger parallel degrees achieve higher performance and “bi-
ased method(3)” outperforms “normal method(6)”. The ob-
tained non-dominated solutions in the experiments are shown
in Fig. 5, 6, 7, 8 and 9. Here, the number of evaluations
per island is 1,000,000. These figures show the best results
of 10 trials. In Fig. 5, “normal method(1)” mainly obtained
non-dominated solutions around center part of pareto front.
Normal methods with many island obtained wider variety
of non-dominated solutions in pareto front, but they could
not obtain pareto optimal solutions on both edges of pareto
front. On the other hand, “biased method(3)” obtained the
pareto optimal solutions on both edges. According to this
discussion, we confirmed that executing biased selection
together with normal selection concurrently is effective.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 200000 400000 600000 800000 1e+06

nu
m

be
r

of
 fo

un
d

pa
re

to
 o

pt
im

al
 s

ol
ut

io
ns

number of evaluation per island

normal method (1)

biased method (3)

normal method (2)
normal method (4)
normal method (6)

Fig. 4. Number of found pareto optimal solutions for Multi-Objective
Knapsack Problem (2KP50-50).

Next, we evaluated computation speed when our pro-
posed method is implemented as hardware circuits. From
our previous work [15], hardware circuits implemented on
FPGA devices achieved 100–140MHz clock frequency. Since
hardware architecture proposed in this paper is similar to our
previous method, we assumed that our circuits can achieve
at least 100MHz clock frequency. In our proposed method,
evaluation of each individual can be executed in one clock
cycle per island. So, we can estimate that one evaluation
consumes 1.00 × 10−8 seconds. With this assumption, we
compared our proposed method with NSGA-II. Here, NSGA-
II is implemented as software. Experimental environments
are as follows: We used gcc version 3.35 with optimized
option O3 and executed the software on a general PC with
Pentium 4 (2.4GHz), 256MB memory on linux 2.6.10. We
used the following parameter values: the number of individ-
uals is 64; crossover rate is 0.6; and mutation rate is 0.02.
AS a result, software implementation of NSGA-II consumed
1.53×10−4 seconds for each evaluation. So, we see that our
proposed method achieves much higher performance than
NSGA-II.
Table I shows the number of obtained pareto optimal

solutions by both methods. Similarly, the number of evalua-
tions and processing time are shown in this table. Here, the
numbers of evaluations are the values when GAs converge.
Processing time of our proposed method is calculated based
on the assumption explained above.
From this result, we confirmed that our proposed methods

(normal methods and biased method) outperforms NSGA-
II, and especially our biased method achieves good perfor-
mance.

VI. CONCLUSIONS

In this paper, we proposed a method to implement MOGAs
as efficient hardware circuits. Novelty of our method is in
our selection mechanism to keep diversity of individuals by
efficiently checking superiority among individuals consider-

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 1800 1850 1900 1950 2000 2050 2100 2150 2200

f2

f1

pareto front

normal method (1)

Fig. 5. Results of normal method (1) for Multi-objective Knapsack Problem
(2KP50-50).

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 1800 1850 1900 1950 2000 2050 2100 2150 2200

f2

f1

pareto front

normal method (2)

Fig. 6. Results of normal method (2) for Multi-objective Knapsack Problem
(2KP50-50).

ing multi objectives, and our architecture which is scalable to
increase the number of concurrent pipelines. In experiments,
we compared search efficiency of MOGAs implemented by
our proposed method with existing method NSGA-II, and
confirmed that our MOGAs work much more efficiently.
As part of future work, we design interface module to

exchange input/output data between our MOGA circuits and
other circuits such as CPU. Then we are planning to imple-
ment MOGAs on FPGA using the proposed method, to apply
our method to various multi objective optimization problems,
and to improve execution efficiency of the resulting circuits.

REFERENCES

[1] Barry Shackleford, Etsuko Okushi, Mitsuhiro Yasuda, Hisao Koizumi,
Katsuhiko Seo, Takahashi Iwamoto and Hiroto Yasuura, High-
performance hardware design and implementation of genetic algo-
rithms, Hardware implementation of intelligent systems, pp.53–87,
2001.

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 1800 1850 1900 1950 2000 2050 2100 2150 2200

f2

f1

pareto front

normal method (4)

Fig. 7. Results of normal method (4) for Multi-objective Knapsack Problem
(2KP50-50).

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 1800 1850 1900 1950 2000 2050 2100 2150 2200

f2

f1

pareto front

normal method (6)

Fig. 8. Results of normal method (6) for Multi-objective Knapsack Problem
(2KP50-50).

[2] Chatchawit Aporntewan and Prabhas Chongstitvatana, A Hardware
Implementation of the Compact Genetic Algorithm, In Proc. of the
2001 Congress on Evolutionary Computation (CEC2001), pp.624–629,
2001.

[3] Deb, K., S. Agrawal, A. Pratap, and T. Meyarivan , A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II, In Proc. of the Parallel Problem Solving from Nature VI,
pp.849–858, 2000.

[4] Erick Cantú-Paz, A Survey of Parallel Genetic Algorithms, Technical
Report 97003, Illinois Genetic Algorithms Laboratory, 1997.

[5] Hiroshi Satoh, Isao Ono and Shigenobu Kobayashi, Minimal Gen-
eration Gap Model for GAs Considering Both Exploration and Ex-
ploitation, In Proc. 4th Int’l Conf. on Soft Computing (IIZUKA’96),
pp.494–497, 1996.

[6] Hisashi Shimodaira, An Empirical Performance Comparison of Nich-
ing Methods for Genetic Algorithms, IEICE Trans. Inf. & Syst.,
vol.E85-D, no.11, pp.1872–1880, 2002.

[7] MCDM Numerical Instances Library, http://www.
univ-valenciennes.fr/ROAD/MCDM/ListMOKP.html

[8] Michael Guntsch, Bernd Scheuermann, Hartmut Schmeck, Martin
Middendorf, Oliver Diessel, Hossam ElGindy and Keith So, Population
based Ant Colony Optimization on FPGA, Proc. of 2002 IEEE Int’l.
Conf. on Field-Programmable Technology (FPT2002), pp.125–133,
2002.

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 1800 1850 1900 1950 2000 2050 2100 2150 2200

f2

f1

pareto front

biased mthod (3)

Fig. 9. Results of biased method (3) for Multi-objective Knapsack Problem
(2KP50-50).

[9] Michael Wrighton and Andre DeHon, Hardware-Assisted Simulated
Annealing with Application for Fast FPGA Placement, In Proc.
of 2003 ACM Int’l. Symp. on Field Programmable Gate Arrays
(FPGA2003), pp.33–42, 2003.

[10] Osamu Kitaura, Hideaki Asada, Motoaki Matsuzaki, Takamitsu Kawai,
Hideki Ando and Toshi Shimada, A Custom Computing Machine for
Genetic Algorithms without Pipeline Stalls, In Proc. of 1999 IEEE Int’l
Conf. on Systems, Man, and Cybernetics (SMC’99), vol. V, pp.577–
584, 1999.

[11] Ryoichi Kobayashi, Masahide Abe,and Masayuki Kawata, A Hardware
Implementation of Genetic Algorithm for Extraction of Disconnected
Closed Loops Using FPGAs, IEICE Tech. Rep., CS2000-151, pp.29–
36, 2001 (in Japanese).

[12] Sadiq M. Sait and Habib Youssef, Iterative Computer Algorithms with
Applications in Engineering, pp.109–181, THE IEEE COMPUTER
SOCIETY, 1999.

[13] Shin’ichi Wakabayashi, Tetsushi Koide, Koichi Hatta, Yoshikatsu
Nakayama, mutsuaki Goto, Naoyoshi Toshine, An LSI Implementation
of a Genetic Algorithm with Adaptive selection of Crossover Opera-
tors, IPSJ Journal, vol.41, no.6, pp.1766–1776l, 2000 (in Japanese).

[14] Shin’ichi Wakabayashi, Tetsushi Koide, Naoyoshi Toshine, Masataka
Yamane, Hajime Ueno, Genetic algorithm accelerator GAA-II, In Proc.
2000 Asia-South Pacific Design Automation Conf. (ASP-DAC2000),
University LSI Design Contest, pp.9–10, 2000.

[15] Tatsuhiro Tachibana, Yoshihiro Murata, Naoki Shibata, Keiichi Ya-
sumoto, Minoru Ito, General Architecture for Hardware Implemen-
tation of Genetic Algorithm, In Proc, of the Fourteenth Annual
IEEE Symp. on Field-Programmable Custom Computing Machines
(FCCM2006), 2006 (to appear).

[16] Tomoya Kitani, Yoshifumi Takamoto, Keiichi Yasumoto, Akio Nakata
and Teruo Higashino, A Flexible and High-Reliable HW/SW Co-
Design Method for Real-Time Embedded Systems, In Proc. of 25th
IEEE Int’l. Real-Time Systems Symp. (RTSS 2004), pp.437-446, 2004.

[17] Zitzler, E., Laumanns, M., and Thiele, L. , SPEA2: Improving the
Strength Pareto Evolutionary Algorithm, Technical Report 103, Com-
puter Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology (ETH) Zurich, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

