2,515 research outputs found

    Pricing Interest Rate Exotics in Multi-Factor Gaussian Interest Rate Models

    Get PDF
    For many interest rate exotic options, for example options on the slope of the yield curve or American featured options, a one factor assumption for term structure evolution is inappropriate. These options derive their value from changes in the slope or cuvature of the yield curve and hence are more realistically priced with multiple factor models. However, efficient construction of short rate trees becomes computationally intractable as we increase the number of factors and in particular as we move to non-Markovian models. In this paper we describe a general framework for pricing a wide range of interest rate exotic options under a very general family of multi-factor Gaussian interest rate models. Our framework is based on a computationally efficient implementation of Monte Carlo integration utilising analytical approximations as control variates. These techniques extend the analysis of Clewlow, Pang and Strickland [1997] for pricing interest rate caps and swaptions.

    Derivatives Performance Attribution.

    Get PDF
    This paper shows how to decompose the dollar profit earned from an option into two basic components: 1) mispricing of the option relative to the asset at the time of purchase, and 2) profit from subsequent fortuitous changes or mispricing of the underlying asset. This separation hinges on measuring the "true relative value" of the option from its realized payoff. The payoff from any one option has a huge standard error about this value which can be reduced by averaging the payoff from several independent option positions. It appears from simulations that 95% reductions in standard errors can be further achieved by using the payoff of a dynamic replicating portfolio as a Monte Carlo control variate. In addition, it is shown that these low standard errors are robust to discrete rather than continuous dynamic replication and to the likely degree of misspecification of the benchmark formula used to implement the replication.

    American options under stochastic volatility: control variates, maturity randomization & multiscale asymptotics

    Get PDF
    American options are actively traded worldwide on exchanges, thus making their accurate and efficient pricing an important problem. As most financial markets exhibit randomly varying volatility, in this paper we introduce an approximation of American option price under stochastic volatility models. We achieve this by using the maturity randomization method known as Canadization. The volatility process is characterized by fast and slow scale fluctuating factors. In particular, we study the case of an American put with a single underlying asset and use perturbative expansion techniques to approximate its price as well as the optimal exercise boundary up to the first order. We then use the approximate optimal exercise boundary formula to price American put via Monte Carlo. We also develop efficient control variates for our simulation method using martingales resulting from the approximate price formula. A numerical study is conducted to demonstrate that the proposed method performs better than the least squares regression method popular in the financial industry, in typical settings where values of the scaling parameters are small. Further, it is empirically observed that in the regimes where scaling parameter value is equal to unity, fast and slow scale approximations are equally accurate

    Smoothing the payoff for efficient computation of Basket option prices

    Get PDF
    We consider the problem of pricing basket options in a multivariate Black Scholes or Variance Gamma model. From a numerical point of view, pricing such options corresponds to moderate and high dimensional numerical integration problems with non-smooth integrands. Due to this lack of regularity, higher order numerical integration techniques may not be directly available, requiring the use of methods like Monte Carlo specifically designed to work for non-regular problems. We propose to use the inherent smoothing property of the density of the underlying in the above models to mollify the payoff function by means of an exact conditional expectation. The resulting conditional expectation is unbiased and yields a smooth integrand, which is amenable to the efficient use of adaptive sparse grid cubature. Numerical examples indicate that the high-order method may perform orders of magnitude faster compared to Monte Carlo or Quasi Monte Carlo in dimensions up to 35

    Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing

    Full text link
    We study the approximation of Ef(XT)\mathbb{E}f(X_T) by a Monte Carlo algorithm, where XX is the solution of a stochastic differential equation and ff is a given function. We introduce a new variance reduction method, which can be viewed as a statistical analogue of Romberg extrapolation method. Namely, we use two Euler schemes with steps δ\delta and δβ,0<β<1\delta^{\beta},0<\beta<1. This leads to an algorithm which, for a given level of the statistical error, has a complexity significantly lower than the complexity of the standard Monte Carlo method. We analyze the asymptotic error of this algorithm in the context of general (possibly degenerate) diffusions. In order to find the optimal β\beta (which turns out to be β=1/2\beta=1/2), we establish a central limit type theorem, based on a result of Jacod and Protter for the asymptotic distribution of the error in the Euler scheme. We test our method on various examples. In particular, we adapt it to Asian options. In this setting, we have a CLT and, as a by-product, an explicit expansion of the discretization error.Comment: Published at http://dx.doi.org/10.1214/105051605000000511 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Parallel Algorithm for solving BSDEs - Application to the pricing and hedging of American options

    Get PDF
    We present a parallel algorithm for solving backward stochastic differential equations (BSDEs in short) which are very useful theoretic tools to deal with many financial problems ranging from option pricing option to risk management. Our algorithm based on Gobet and Labart (2010) exploits the link between BSDEs and non linear partial differential equations (PDEs in short) and hence enables to solve high dimensional non linear PDEs. In this work, we apply it to the pricing and hedging of American options in high dimensional local volatility models, which remains very computationally demanding. We have tested our algorithm up to dimension 10 on a cluster of 512 CPUs and we obtained linear speedups which proves the scalability of our implementationComment: 25 page

    Pricing synthetic CDO tranche on ABS

    No full text
    Imperial Users onl

    Generic pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility

    Get PDF
    We consider the pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility, for which we use a generic multi-currency framework. We allow for a general correlation structure between the drivers of the volatility, the inflation index, the domestic (nominal) and the foreign (real) rates. Having the flexibility to correlate the underlying FX/Inflation/Stock index with both stochastic volatility and stochastic interest rates yields a realistic model, which is of practical importance for the pricing and hedging of options with a long-term exposure. We derive explicit valuation formulas for various securities, such as vanilla call/put options, forward starting options, inflation-indexed swaps and inflation caps/floors. These vanilla derivatives can be valued in closed-form under Schobel and Zhu (1999) stochastic volatility, whereas we devise an (Monte Carlo) approximation in the form of a very effective control variate for the general Heston (1993) model. Finally, we numerical investigate the quality of this approximation and consider a calibration example to FX market data
    • …
    corecore