214 research outputs found

    Signature Schemes with Efficient Protocols and Dynamic Group Signatures from Lattice Assumptions

    Get PDF
    International audienceA recent line of works – initiated by Gordon, Katz and Vaikuntanathan (Asiacrypt 2010) – gave lattice-based realizations of privacy-preserving protocols allowing users to authenticate while remaining hidden in a crowd. Despite five years of efforts, known constructions remain limited to static populations of users, which cannot be dynamically updated. For example, none of the existing lattice-based group signatures seems easily extendable to the more realistic setting of dynamic groups. This work provides new tools enabling the design of anonymous authen-tication systems whereby new users can register and obtain credentials at any time. Our first contribution is a signature scheme with efficient protocols, which allows users to obtain a signature on a committed value and subsequently prove knowledge of a signature on a committed message. This construction, which builds on the lattice-based signature of Böhl et al. (Eurocrypt'13), is well-suited to the design of anonymous credentials and dynamic group signatures. As a second technical contribution, we provide a simple, round-optimal joining mechanism for introducing new members in a group. This mechanism consists of zero-knowledge arguments allowing registered group members to prove knowledge of a secret short vector of which the corresponding public syndrome was certified by the group manager. This method provides similar advantages to those of structure-preserving signatures in the realm of bilinear groups. Namely, it allows group members to generate their public key on their own without having to prove knowledge of the underlying secret key. This results in a two-round join protocol supporting concurrent enrollments, which can be used in other settings such as group encryption

    Lattice-based Blind Signatures

    Get PDF
    Motivated by the need to have secure blind signatures even in the presence of quantum computers, we present two efficient blind signature schemes based on hard worst-case lattice problems. Both schemes are provably secure in the random oracle model and unconditionally blind. The first scheme is based on preimage samplable functions that were introduced at STOC 2008 by Gentry, Peikert, and Vaikuntanathan. The scheme is stateful and runs in 3 moves. The second scheme builds upon the PKC 2008 identification scheme of Lyubashevsky. It is stateless, has 4 moves, and its security is based on the hardness of worst-case problems in ideal lattices

    Quisquis: A new design for anonymous cryptocurrencies

    Get PDF
    Despite their usage of pseudonyms rather than persistent identifiers, most existing cryptocurrencies do not provide users with any meaningful levels of privacy. This has prompted the creation of privacy-enhanced cryptocurrencies such as Monero and Zcash, which are specifically designed to counteract the tracking analysis possible in currencies like Bitcoin. These cryptocurrencies, however, also suffer from some drawbacks: in both Monero and Zcash, the set of potential unspent coins is always growing, which means users cannot store a concise representation of the blockchain. Additionally, Zcash requires a common reference string and the fact that addresses are reused multiple times in Monero has led to attacks to its anonymity. In this paper we propose a new design for anonymous cryptocurrencies, Quisquis, that achieves provably secure notions of anonymity. Quisquis stores a relatively small amount of data, does not require trusted setup, and in Quisquis each address appears on the blockchain at most twice: once when it is generated as output of a transaction, and once when it is spent as input to a transaction. Our result is achieved by combining a DDH-based tool (that we call updatable keys) with efficient zero-knowledge arguments

    Anonymous Deniable Identification in Ephemeral Setup & Leakage Scenarios

    Get PDF
    In this paper we concern anonymous identification, where the verifier can check that the user belongs to a given group of users (just like in case of ring signatures), however a transcript of a session executed between a user and a verifier is deniable. That is, neither the verifier nor the prover can convice a third party that a given user has been involved in a session but also he cannot prove that any user has been interacting with the verifier. Thereby one can achieve high standards for protecting personal data according to the General Data Protection Regulation – the fact that an interaction took place might be a sensitive data from information security perspective. We show a simple realization of this idea based on Schnorr identification scheme arranged like for ring signatures. We show that with minor modifications one can create a version immune to leakage of ephemeral keys. We extend the above scenario to the case of k out of n, where the prover must use at least k private keys corresponding to the set of n public keys. With the most probable setting of k = 2 or 3, we are talking about the practical case of multifactor authentication that might be necessary for applications with higher security level

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin

    Research Philosophy of Modern Cryptography

    Get PDF
    Proposing novel cryptography schemes (e.g., encryption, signatures, and protocols) is one of the main research goals in modern cryptography. In this paper, based on more than 800 research papers since 1976 that we have surveyed, we introduce the research philosophy of cryptography behind these papers. We use ``benefits and ``novelty as the keywords to introduce the research philosophy of proposing new schemes, assuming that there is already one scheme proposed for a cryptography notion. Next, we introduce how benefits were explored in the literature and we have categorized the methodology into 3 ways for benefits, 6 types of benefits, and 17 benefit areas. As examples, we introduce 40 research strategies within these benefit areas that were invented in the literature. The introduced research strategies have covered most cryptography schemes published in top-tier cryptography conferences

    On the (in)security of ROS

    Get PDF
    We present an algorithm solving the ROS (Random inhomogeneities in a Overdetermined Solvable system of linear equations) problem in polynomial time for l > log p dimensions. Our algorithm can be combined with Wagner’s attack, and leads to a sub-exponential solution for any dimension l with best complexity known so far. When concurrent executions are allowed, our algorithm leads to practical attacks against unforgeability of blind signature schemes such as Schnorr and Okamoto--Schnorr blind signatures, threshold signatures such as GJKR and the original version of FROST, multisignatures such as CoSI and the two-round version of MuSig, partially blind signatures such as Abe-Okamoto, and conditional blind signatures such as ZGP17. Schemes for e-cash (such as Brands\u27 signature) and anonymous credentials (such as Anonymous Credentials Light) inspired from the above are also affected

    CDLS: Proving Knowledge of Committed Discrete Logarithms with Soundness

    Get PDF
    ÎŁ\Sigma-protocols, a class of interactive two-party protocols, which are used as a framework to instantiate many other authentication schemes, are automatically a proof of knowledge (PoK) given that they satisfy the special-soundness property. This fact provides a convenient method to compose ÎŁ\Sigma-protocols and PoKs for complex relations. However, composing in this manner can be error-prone. While they must satisfy special-soundness, this is unfortunately not the case for many recently proposed composed practical schemes. Here we explore two schemes: ZKAttest from Faz-HernĂĄndez et al. and the ones from Agrawal et al., and show that their ÎŁ\Sigma-protocol\u27s suffer from several security misdesigns which invalidate their security proofs, and state a practical cheap attack on ZKAttest\u27s implementation. By exploring and resolving their misdesigns, we propose CDLS, a sound and secure variant of their protocols
    • 

    corecore