1,028 research outputs found

    Exploiting Prior Knowledge in Compressed Sensing Wireless ECG Systems

    Full text link
    Recent results in telecardiology show that compressed sensing (CS) is a promising tool to lower energy consumption in wireless body area networks for electrocardiogram (ECG) monitoring. However, the performance of current CS-based algorithms, in terms of compression rate and reconstruction quality of the ECG, still falls short of the performance attained by state-of-the-art wavelet based algorithms. In this paper, we propose to exploit the structure of the wavelet representation of the ECG signal to boost the performance of CS-based methods for compression and reconstruction of ECG signals. More precisely, we incorporate prior information about the wavelet dependencies across scales into the reconstruction algorithms and exploit the high fraction of common support of the wavelet coefficients of consecutive ECG segments. Experimental results utilizing the MIT-BIH Arrhythmia Database show that significant performance gains, in terms of compression rate and reconstruction quality, can be obtained by the proposed algorithms compared to current CS-based methods.Comment: Accepted for publication at IEEE Journal of Biomedical and Health Informatic

    ECG Signal Compression Using Discrete Wavelet Transform

    Get PDF

    Embedded filter bank-based algorithm for ECG compression

    Get PDF
    In this work, two ECG compression schemes are presented using two types of filter banks to decompose the incoming signal: wavelet packets (WP) and nearly-perfect reconstruction cosine modulated filter banks. The conventional embedded zerotree wavelet (EZW) algorithm takes advantage of the hierarchical relationship among subband coefficients of the pyramidal wavelet decomposition. Nevertheless, it performs worse when used with WP as the hierarchy becomes more complex. In order to address this problem, we propose a new technique that considers no relationship among coefficients, and is therefore suitable for use with WP. Furthermore, this new approximation makes it possible to apply the quantization method toM-channel maximally decimated filter banks. In this fashion, the proposed algorithm provides two efficient and effective ECG compressors that show better ECG compression performance than the conventional EZW algorithm

    Compression of ECG signals using variable-length classified vector sets and wavelet transforms

    Get PDF
    In this article, an improved and more efficient algorithm for the compression of the electrocardiogram (ECG) signals is presented, which combines the processes of modeling ECG signal by variable-length classified signature and envelope vector sets (VL-CSEVS), and residual error coding via wavelet transform. In particular, we form the VL-CSEVS derived from the ECG signals, which exploits the relationship between energy variation and clinical information. The VL-CSEVS are unique patterns generated from many of thousands of ECG segments of two different lengths obtained by the energy based segmentation method, then they are presented to both the transmitter and the receiver used in our proposed compression system. The proposed algorithm is tested on the MIT-BIH Arrhythmia Database and MIT-BIH Compression Test Database and its performance is evaluated by using some evaluation metrics such as the percentage root-mean-square difference (PRD), modified PRD (MPRD), maximum error, and clinical evaluation. Our experimental results imply that our proposed algorithm achieves high compression ratios with low level reconstruction error while preserving the diagnostic information in the reconstructed ECG signal, which has been supported by the clinical tests that we have carried out.ISIK University [06B302]The author would like to special thank Prof. Siddik Yarman who is Board of Trustees Chairman of the ISIK University and Umit Guz, Assistant Professor at the ISIK University for their valuable contributions and continuous interest in this article. The author also would like to thank Prof. Osman Akdemir who is a cardiologist in the Department of Cardiology at the T. C. Maltepe University and Dr. Ruken Bengi Bakal who is a cardiologist in the Department of Cardiology at the Kartal Kosuyolu Yuksek Ihtisas Education and Research Hospital for their valuable clinical contributions and suggestions and the reviewers for their constructive comments which improved the technical quality and presentation of the article. The present work was supported by the Scientific Research Fund of ISIK University, Project number 06B302.Publisher's Versio

    Effective high compression of ECG signals at low level distortion

    Get PDF
    An effective method for compression of ECG signals, which falls within the transform lossy compression category, is proposed. The transformation is realized by a fast wavelet transform. The effectiveness of the approach, in relation to the simplicity and speed of its implementation, is a consequence of the efficient storage of the outputs of the algorithm which is realized in compressed Hierarchical Data Format. The compression performance is tested on the MIT-BIH Arrhythmia database producing compression results which largely improve upon recently reported benchmarks on the same database. For a distortion corresponding to a percentage root-mean-square difference (PRD) of 0.53, in mean value, the achieved average compression ratio is 23.17 with quality score of 43.93. For a mean value of PRD up to 1.71 the compression ratio increases up to 62.5. The compression of a 30 min record is realized in an average time of 0.14 s. The insignificant delay for the compression process, together with the high compression ratio achieved at low level distortion and the negligible time for the signal recovery, uphold the suitability of the technique for supporting distant clinical health care
    • …
    corecore