71 research outputs found

    An efficient and extensible approach for compressing phylogenetic trees

    Get PDF
    Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. TreeZip is a novel method for compressing phylogenetic trees. Recently, we extended our TreeZip algorithm to support branch lengths and show how it can be used to extract sets of trees of interest quickly. The key advantage of TreeZip over standard compression methods like 7zip is its ability to interpret and compress tree collections semantically, making it immune to branch rotations and allowing key operations (such calculating a consensus tree) to be performed quickly and without a loss of space savings. On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99 % (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community.

    Data Compression Concepts and Algorithms and Their Applications to Bioinformatics

    Get PDF
    Data compression at its base is concerned with how information is organized in data. Understanding this organization can lead to efficient ways of representing the information and hence data compression. In this paper we review the ways in which ideas and approaches fundamental to the theory and practice of data compression have been used in the area of bioinformatics. We look at how basic theoretical ideas from data compression, such as the notions of entropy, mutual information, and complexity have been used for analyzing biological sequences in order to discover hidden patterns, infer phylogenetic relationships between organisms and study viral populations. Finally, we look at how inferred grammars for biological sequences have been used to uncover structure in biological sequences

    Data Compression Concepts and Algorithms and Their Applications to Bioinformatics

    Get PDF
    Data compression at its base is concerned with how information is organized in data. Understanding this organization can lead to efficient ways of representing the information and hence data compression. In this paper we review the ways in which ideas and approaches fundamental to the theory and practice of data compression have been used in the area of bioinformatics. We look at how basic theoretical ideas from data compression, such as the notions of entropy, mutual information, and complexity have been used for analyzing biological sequences in order to discover hidden patterns, infer phylogenetic relationships between organisms and study viral populations. Finally, we look at how inferred grammars for biological sequences have been used to uncover structure in biological sequences

    Interactive metagenomic visualization in a Web browser

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables.</p> <p>Results</p> <p>Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools.</p> <p>Conclusions</p> <p>Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: <url>http://krona.sourceforge.net</url>.</p

    A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment

    Get PDF
    In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment

    Novel Methods for Analyzing and Visualizing Phylogenetic Placements

    Get PDF
    Die DNS (englisch: DNA) bildet die vererbbare Grundlage allen bekannten Lebens auf dem Planeten. Entsprechend wichtig ist ihre "Entschlüsselung" für die Biologie im Allgemeinen, und für die Erforschung der evolutionären Zusammenhänge verschiedener biologischer Artern im Besonderen. In den letzten Jahrzehnten hat eine rasante technologische Entwicklung im Bereich der DNS-Sequenzierung stattgefunden, die auch auf absehbare Zeit noch nicht zum Stillstand kommen wird. Die biologische Forschung hat daher den Bedarf an computer-gestützten Methoden erkannt, sowohl in Bezug auf die Speicherung und Verarbeitung der immensen Datenmengen, die bei der Sequenzierung anfallen, als auch in Bezug auf deren Analyse und Visualisierung. Eine grundlegene Fragestellung ist dabei die nach dem Stammbaum des Lebens, der die evolutionäre Verwandtschaft der Arten beschreibt. Diese Wissenschaft wird Phylogenetik, und die resultierenden Strukturen phylogenetische Bäume genannt. Häufig basieren diese Bäume auf dem Vergleich von DNS-Sequenzen der Arten, mit der Idee, dass Arten mit ähnlicher DNS auch im Baum nah beieinander liegen. Die Berechnung eines solchen Baumes aus DNS-Daten kann als Optimierungsproblem formuliert werden, das durch die stetig wachsende Menge an Daten für die Informatik eine Herausforderung darstellt. Aktuell beschäftigt sich die Mikrobiologie zum Beispiel mit der Erkundung und Erforschung von Proben (Samples), die aus Meereswasser, dem Erdreich, dem menschlichen Körper, und ähnlichen Umgebungen gewonnen wurden: Welche mikrobischen Arten, Bakterien und andere Einzeller, bewohnen diese Umgebungen und Proben? Das zugehörige Forschungsfeld ist die Meta-Genetik. Einen verlässlichen Stammbaum für die aber-millionen an Sequenzen aus solchen Proben zu errechnen ist praktisch unmöglich. Eine Alternative bietet die phylogenetische Platzierung der Sequenzen auf einem gegebenen Referenz-Baum von bekannten Arten (so genanntes phylogenetisches Placement): Hierbei wird ein Stammbaum aus Referenz-Sequenzen bekannter Arten gewählt, der möglichst viel der in den Proben zu erwartenden Artenvielfalt abdeckt, und dann für jede Sequenz aus den Proben die nächste Verwandtschaft innerhalb des Baumes bestimmt. Dies resultiert in einer Zuordnung von Sequenzen auf die Positionen verwandter Arten im Referenz-Baum. Diese Zuordnung kann auch als Verteilung der Sequenzen auf dem Baum verstanden werden: In dieser Interpretation kann man beispielsweise erkennen, welche Arten (und deren Verwandtschaft) besonders häufig in den Proben vertreten sind. Diese Arbeit beschäftigt sich mit neuen Methoden zur Vor- und Nachbereitung, Analyse, und Visualisierung rund um den Kernbereich des phylogenetischen Placements von DNS-Sequenzen. Zunächst stellen wir eine Methode vor, die einen geeigneten Referenz-Baum für die Platzierung liefern kann. Die Methode heißt PhAT (Phylogenetic Automatic (Reference) Trees), und nutzt Datenbanken bekannter DNS-Sequenzen, um geeigenete Referenz-Sequenzen für den Baum zu bestimmen. Die durch PhAT produzierten Bäume sind beispielsweise dann interessant, wenn die in den Proben zu erwartende Artenvielfalt noch nicht bekannt ist: In diesem Fall kann ein breiter Baum, der viele der bekannten Arten abdeckt, helfen, neue, unbekannte Arten zu entdecken. Im gleichen Kapitel stellen wir außerdem zwei Behilfs-Methoden vor, um den Prozess und die Berechnungen der Placements von großen Datensätzen zu beschleunigen und zu ermöglichen. Zum einen stellen wir Multilevel-Placement vor, mit dem besonders große Referenz-Bäume in kleinere, geschachtelte Bäume aufgeteilt werden können, um so schnellere und detalliertere Platzierungen vornehmen können, als auf einem einzelnen großen Baum möglich wären. Zum anderen beschreiben wir eine Pipeline, die durch geschickte Lastverteilung und Vermeidung von Duplikaten den Prozess weiter beschleunigen kann. Dies eignet sich insbesondere für große Datensätze von zu platzierenden Sequenzen, und hat die Berechnungen erst ermöglicht, die wir zum testen der im weiteren vorgestellten Methoden benötigt haben. Im Anschluss stellen wir zwei Methoden vor, um die Placement-Ergebnisse verschiedener Proben miteinander zu vergleichen. Die Methoden, Edge Dispersion und Edge Correlation, visualisieren den Referenz-Baum derart, dass die in Bezug auf die Proben interessanten und relevanten Regionen des Baumes sichtbar werden. Edge Dispersion zeigt dabei Regionen, in denen sich die Häufigkeit der in den Proben vorhandenen mikrobischen Arten besonders stark zwischen den einzelnen Proben unterscheided. Dies kann als erste Erkundung von neuen Datensätzen dienen, und gibt Aufschluss über die Varianz der Häufigkeit bestimmter Arten. Edge Correlation hingegen bezieht zusätzlich Meta-Daten mit ein, die zu den Proben gesammelt wurden. Dadurch können beispielsweise Abhängigkeiten zwischen Häufigkeiten von Arten und Faktoren wie dem pH-Wert des Bodens oder dem Nitrat-Gehalt des Wassers, aus dem die Proben stammen, aufgezeigt werden. Es hat damit ähnlichkeiten zu einer bestehenden Methode names Edge PCA, die ebenfalls relevante Regionen des Baumen identifizieren kann, allerdings die vorhandenen Meta-Daten nur indirekt einbeziehen kann. Eine weitere Fragestellung ist die Gruppierung (Clustering) von Proben anhand von Gemeinsamkeiten, wie beispielweise einer ähnlichen Verteilungen der Sequenzen auf dem Referenz-Baum. Anhand geeigneter Distanz-Maße wie der Kantorovich-Rubinstein-Distanz (KR-Distanz) können ähnlichkeiten zwischen Proben quantifiziert werden, und somit ein Clustering erstellt werden. Für große Datensätze mit hunderten und tausenden von einzlnen Proben stoßen bestehende Methoden für diesen Einsatzzweck, wie zum Beispiel das so genannte Squash Clustering, an ihre Grenzen. Wir haben daher die kk-means-Methode derart erweitert, dass sie für Placement-Daten genutzt werden kann. Dazu präsentieren wir zwei Methoden, Phylogenetic kk-means und Imbalance kk-means, die verschiedene Distanzmaße zwischen Proben (KR-Distanz, und ein weiteres geeignetes Maß) nutzen, um Bäume mit ähnlichen Verteilungen von platzierten Sequenzen zu gruppieren. Sie betrachten jede Probe als einen Datenpunkt, und nutzen die zugrunde liegende Struktur des Referenz-Baumes für die Berechnungen. Mit diesen Methoden können auch Datensätze mit zehntausenden Proben verarbeitet werden, und Clusterings und ähnlichkeiten von Proben erkannt und visualisiert werden. Wir haben außerdem ein Konzept namens Balances für Placement-Daten adaptiert, welches ursprünglich für so genannte OTU-Sequenzen (Operational Taxonomic Units) entwickelt wurde. Balances erlauben eine Beschreibung des Referenz-Baumes und der darauf platzierten Sequenzen, die ganze Gruppen von Referenz-Arten zusammenfasst, statt jede Art einzeln in die Berechnungen einfließen zu lassen. Diese Beschreibung der Daten bietet verschiedene Vorteile für die darauf basierenden Analysen, wie zum Beispiel eine Robustheit gegenüber der exakten Wahl der Referenz-Sequenzen, und einer anschaulichen Beschreibung und Visualisierung der Ergebnisse. Insbesondere aus mathematischer Sicht sind Balances für die Analyse interessant, da sie problematische Artefakte aufgrund der kompositionellen Natur meta-genetischer Daten beheben. Im Zuge dieser Arbeit dienen Balances hauptsächlich als Zwischenschritt zur Daten-Repräsentation. Eine Anwendung von Balances ist die so genannte Phylofactorization. Diese recht neue Methode teilt einen gegebenen Baum derart in Sub-Bäume ein, dass jeder Sub-Baum eine Gruppe von Arten darstellt, die in Bezug auf gegebene Meta-Daten pro Probe relevant sind. Dadurch können beispielsweise Gruppen identifiziert werden, deren evolutionäre Merkmale sich in Abhängigkeit von Meta-Daten wie pH-Wert angepasst haben im Vergleich zu anderen Gruppen. Dies ist ähnlich zur oben genannten Edge Correlation, aber kann zum einen durch geschickte mathematische Ansätze (insbesondere der Nutzung von Generalized Linear Models) mehrere Meta-Daten gleichzeitig einbeziehen, und zum anderen auch verschachtelte Gruppen finden. Die zugrunde liegenden Ideen dieser Methoden bieten einen großen Spielraum sowohl für Analysen von Daten, als auch für Weiterentwicklungen und Ergänzungen für verwandte Fragestellungen. Wir haben diese Methode für Placement-Daten adaptiert und erweitert, und stellen diese Variante, genannt Placement-Factorization, vor. Im Zuge dieser Adaption haben wir außerdem verschiedene ergänzende Berechnungen und Visalisierungen entwickelt, die auch für die ursprüngliche Phylofactorization nützlich sind. Alle genannten neuen Methoden wurden ausführlich getestet in Bezug auf ihre Eignung zur Erforschung von mikrobiologischen Zusammenhängen. Wir haben dazu verschiedene bekannte Datzensätze von DNS-Sequenzen aus Wasser- und Bodenproben, sowie Proben des menschlichen Mikrobioms, verwendet und diese auf geeigneten Referenz-Bäumen platziert. Anhand dieser Daten haben wir zum einen die Plausibilität der durch unsere Analysen erzielten Ergebnisse geprüft, als auch Vergleiche der Ergebnisse mit ähnlichen, etablierten Methoden vorgenommen. Sämtliche Analysen, Visualisierungen, und Vergleiche werden in den jeweils entsprechenden Kapiteln vorgestellt, und die Ergebnisse dargestellt. Alle Tests zeigen, dass unsere Methoden auf den getesteten Datensätzen zu Resultaten führen, die konsistent mit anderen Analysen sind, und geeignet sind, um neue biologische Erkenntnisse zu gewinnen. Sämtliche hier vorgestellten Methoden sind in unserer Software-Bibliothek genesis implementiert, die wir im Zuge dieser Arbeit entwickelt haben. Die Bibliothek ist in modernem C++11 geschrieben, hat einen modularen und funktions-orientierten Aufbau, ist auf Speichernutzung und Rechengeschwindigkeit optimiert, und nutzt vorhandene Multi-Prozessor-Umgebungen. Sie eignet sich daher sowohl für schnelle Tests von Prototypen, als auch zur Entwicklung von Analyse-Software für Endanwender. Wir haben genesis bereits erfolgreich in vielen unserer Projekte eingesetzt. Insbesondere bieten wir sämtliche hier präsentierten Methoden über unser Software-Tool gappa an, das intern auf genesis basiert. Das Tool stellt einen einfachen Kommandozeilen-Zugriff auf die vorhandenen Analysemethoden bereit, und bietet ausreichend Optionen für die Analysen der meisten End-Anwender. Im abschließenden Kapitel wagen wir einen Ausblick in weitere Forschungsmöglichkeiten im Bereich der Methoden-Entwicklung für meta-genetische Fragestellungen im Allgemeinen, und der placement-basierten Methoden im Speziellen. Wir benennen verschiedene Herausforderungen in Bezug auf die Nutzbarkeit solcher Methoden für Anwender und ihrer Skalierbarkeit für immer größer werdende Datensätze. Außerdem schlagen wir verschiedene weitergehende Ansätze vor, die zum Beispiel auf neuronalen Netzwerken und Deep Learning basieren könnten. Mit aktuellen Datensätzen wären solche Methoden nicht robust trainierbar; durch das in Zukuft zu erwartenden Wachstum an Daten kann dies allerdings bald in den Bereich des Möglichen kommen. Schließlich identifizierenden wir einige tiefer gehende Forschungsfragen aus der Biologie und Medizin, bei deren Beantwortung unsere Methoden in Zukunft helfen können

    Phylogenetic Divergence Time, Algorithms for Improved Accuracy and Performance

    Get PDF
    The inference of species divergence time is a key step in the study of phylogenetics. Methods have been available for the last ten years to perform the inference, but, there are two significant problems with these methods. First, the performance of the methods does not yet scale well to studies with hundreds of taxa and thousands of DNA base pairs. A study of 349 taxa was estimated to require over 9 months of processing time. Second, the accuracy of the inference process is subject to bias and variance in the specification of model parameters that is not completely understood. These parameters include both the topology of the phylogenetic tree and, more importantly for our purposes, the set of fossils used to calibrate the tree. In this work, we present new algorithms and methods to improve the performance of the divergence time process. We demonstrate a new algorithm for the computation of phylogenetic likelihood and experimentally illustrate a 90% improvement in likelihood computation time on the aforementioned dataset of 349 taxa with over 60,000 DNA base pairs. Additionally we show a new algorithm for the computation of the Bayesian prior on node ages that is experimentally shown to reduce the time for this computation on the 349 taxa dataset by 99%. Using our high performance methods, we present a novel new method for assessing the level of support for the ages inferred. This method utilizes a statistical jackknifing technique on the set of fossil calibrations producing a support value similar to the bootstrap used in phylogenetic inference. Finally, we present efficient methods for divergence time inference on sets of trees based on our development of subtree sharing models. We show a 60% improvement in processing times on a dataset of 567 taxa with over 10,000 DNA base pairs

    Algorithms for the analysis of molecular sequences

    Get PDF
    corecore