62,248 research outputs found

    Extreme Quantum Advantage for Rare-Event Sampling

    Get PDF
    We introduce a quantum algorithm for efficient biased sampling of the rare events generated by classical memoryful stochastic processes. We show that this quantum algorithm gives an extreme advantage over known classical biased sampling algorithms in terms of the memory resources required. The quantum memory advantage ranges from polynomial to exponential and when sampling the rare equilibrium configurations of spin systems the quantum advantage diverges.Comment: 11 pages, 9 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/eqafbs.ht

    Determination of the chemical potential using energy-biased sampling

    Full text link
    An energy-biased method to evaluate ensemble averages requiring test-particle insertion is presented. The method is based on biasing the sampling within the subdomains of the test-particle configurational space with energies smaller than a given value freely assigned. These energy-wells are located via unbiased random insertion over the whole configurational space and are sampled using the so called Hit&Run algorithm, which uniformly samples compact regions of any shape immersed in a space of arbitrary dimensions. Because the bias is defined in terms of the energy landscape it can be exactly corrected to obtain the unbiased distribution. The test-particle energy distribution is then combined with the Bennett relation for the evaluation of the chemical potential. We apply this protocol to a system with relatively small probability of low-energy test-particle insertion, liquid argon at high density and low temperature, and show that the energy-biased Bennett method is around five times more efficient than the standard Bennett method. A similar performance gain is observed in the reconstruction of the energy distribution.Comment: 10 pages, 4 figure

    Free Energy Methods for Bayesian Inference: Efficient Exploration of Univariate Gaussian Mixture Posteriors

    Full text link
    Because of their multimodality, mixture posterior distributions are difficult to sample with standard Markov chain Monte Carlo (MCMC) methods. We propose a strategy to enhance the sampling of MCMC in this context, using a biasing procedure which originates from computational Statistical Physics. The principle is first to choose a "reaction coordinate", that is, a "direction" in which the target distribution is multimodal. In a second step, the marginal log-density of the reaction coordinate with respect to the posterior distribution is estimated; minus this quantity is called "free energy" in the computational Statistical Physics literature. To this end, we use adaptive biasing Markov chain algorithms which adapt their targeted invariant distribution on the fly, in order to overcome sampling barriers along the chosen reaction coordinate. Finally, we perform an importance sampling step in order to remove the bias and recover the true posterior. The efficiency factor of the importance sampling step can easily be estimated \emph{a priori} once the bias is known, and appears to be rather large for the test cases we considered. A crucial point is the choice of the reaction coordinate. One standard choice (used for example in the classical Wang-Landau algorithm) is minus the log-posterior density. We discuss other choices. We show in particular that the hyper-parameter that determines the order of magnitude of the variance of each component is both a convenient and an efficient reaction coordinate. We also show how to adapt the method to compute the evidence (marginal likelihood) of a mixture model. We illustrate our approach by analyzing two real data sets

    An Exact Auxiliary Variable Gibbs Sampler for a Class of Diffusions

    Full text link
    Stochastic differential equations (SDEs) or diffusions are continuous-valued continuous-time stochastic processes widely used in the applied and mathematical sciences. Simulating paths from these processes is usually an intractable problem, and typically involves time-discretization approximations. We propose an exact Markov chain Monte Carlo sampling algorithm that involves no such time-discretization error. Our sampler is applicable to the problem of prior simulation from an SDE, posterior simulation conditioned on noisy observations, as well as parameter inference given noisy observations. Our work recasts an existing rejection sampling algorithm for a class of diffusions as a latent variable model, and then derives an auxiliary variable Gibbs sampling algorithm that targets the associated joint distribution. At a high level, the resulting algorithm involves two steps: simulating a random grid of times from an inhomogeneous Poisson process, and updating the SDE trajectory conditioned on this grid. Our work allows the vast literature of Monte Carlo sampling algorithms from the Gaussian process literature to be brought to bear to applications involving diffusions. We study our method on synthetic and real datasets, where we demonstrate superior performance over competing methods.Comment: 37 pages, 13 figure

    Discriminative Density-ratio Estimation

    Full text link
    The covariate shift is a challenging problem in supervised learning that results from the discrepancy between the training and test distributions. An effective approach which recently drew a considerable attention in the research community is to reweight the training samples to minimize that discrepancy. In specific, many methods are based on developing Density-ratio (DR) estimation techniques that apply to both regression and classification problems. Although these methods work well for regression problems, their performance on classification problems is not satisfactory. This is due to a key observation that these methods focus on matching the sample marginal distributions without paying attention to preserving the separation between classes in the reweighted space. In this paper, we propose a novel method for Discriminative Density-ratio (DDR) estimation that addresses the aforementioned problem and aims at estimating the density-ratio of joint distributions in a class-wise manner. The proposed algorithm is an iterative procedure that alternates between estimating the class information for the test data and estimating new density ratio for each class. To incorporate the estimated class information of the test data, a soft matching technique is proposed. In addition, we employ an effective criterion which adopts mutual information as an indicator to stop the iterative procedure while resulting in a decision boundary that lies in a sparse region. Experiments on synthetic and benchmark datasets demonstrate the superiority of the proposed method in terms of both accuracy and robustness

    Efficient Dynamic Importance Sampling of Rare Events in One Dimension

    Get PDF
    Exploiting stochastic path integral theory, we obtain \emph{by simulation} substantial gains in efficiency for the computation of reaction rates in one-dimensional, bistable, overdamped stochastic systems. Using a well-defined measure of efficiency, we compare implementations of ``Dynamic Importance Sampling'' (DIMS) methods to unbiased simulation. The best DIMS algorithms are shown to increase efficiency by factors of approximately 20 for a 5kBT5 k_B T barrier height and 300 for 9kBT9 k_B T, compared to unbiased simulation. The gains result from close emulation of natural (unbiased), instanton-like crossing events with artificially decreased waiting times between events that are corrected for in rate calculations. The artificial crossing events are generated using the closed-form solution to the most probable crossing event described by the Onsager-Machlup action. While the best biasing methods require the second derivative of the potential (resulting from the ``Jacobian'' term in the action, which is discussed at length), algorithms employing solely the first derivative do nearly as well. We discuss the importance of one-dimensional models to larger systems, and suggest extensions to higher-dimensional systems.Comment: version to be published in Phys. Rev.

    Speeding Up MCMC by Delayed Acceptance and Data Subsampling

    Full text link
    The complexity of the Metropolis-Hastings (MH) algorithm arises from the requirement of a likelihood evaluation for the full data set in each iteration. Payne and Mallick (2015) propose to speed up the algorithm by a delayed acceptance approach where the acceptance decision proceeds in two stages. In the first stage, an estimate of the likelihood based on a random subsample determines if it is likely that the draw will be accepted and, if so, the second stage uses the full data likelihood to decide upon final acceptance. Evaluating the full data likelihood is thus avoided for draws that are unlikely to be accepted. We propose a more precise likelihood estimator which incorporates auxiliary information about the full data likelihood while only operating on a sparse set of the data. We prove that the resulting delayed acceptance MH is more efficient compared to that of Payne and Mallick (2015). The caveat of this approach is that the full data set needs to be evaluated in the second stage. We therefore propose to substitute this evaluation by an estimate and construct a state-dependent approximation thereof to use in the first stage. This results in an algorithm that (i) can use a smaller subsample m by leveraging on recent advances in Pseudo-Marginal MH (PMMH) and (ii) is provably within O(m−2)O(m^{-2}) of the true posterior.Comment: Accepted for publication in Journal of Computational and Graphical Statistic
    • …
    corecore