6 research outputs found

    Performance modelling and analysis of software defined networking

    Get PDF
    Software Defined Networking (SDN) is an emerging architecture for the next-generation Internet, providing unprecedented network programmability to handle the explosive growth of Big Data driven by the popularisation of smart mobile devices and the pervasiveness of content-rich multimedia applications. In order to quantitatively investigate the performance characteristics of SDN networks, several research efforts from both simulation experiments and analytical modelling have been reported in the current literature. Among those studies, analytical modelling has demonstrated its superiority in terms of cost-effectiveness in the evaluation of large-scale networks. However, for analytical tractability and simplification, existing analytical models are derived based on the unrealistic assumptions that the network traffic follows the Poisson process which is suitable to model non-bursty text data and the data plane of SDN is modelled by one simplified Single Server Single Queue (SSSQ) system. Recent measurement studies have shown that, due to the features of heavy volume and high velocity, the multimedia big data generated by real-world multimedia applications reveals the bursty and correlated nature in the network transmission. With the aim of the capturing such features of realistic traffic patterns and obtaining a comprehensive and deeper understanding of the performance behaviour of SDN networks, this paper presents a new analytical model to investigate the performance of SDN in the presence of the bursty and correlated arrivals modelled by Markov Modulated Poisson Process (MMPP). The Quality-of-Service performance metrics in terms of the average latency and average network throughput of the SDN networks are derived based on the developed analytical model. To consider realistic multi-queue system of forwarding elements, a Priority-Queue (PQ) system is adopted to model SDN data plane. To address the challenging problem of obtaining the key performance metrics, e.g., queue length distribution of PQ system with a given service capacity, a versatile methodology extending the Empty Buffer Approximation (EBA) method is proposed to facilitate the decomposition of such a PQ system to two SSSQ systems. The validity of the proposed model is demonstrated through extensive simulation experiments. To illustrate its application, the developed model is then utilised to study the strategy of the network configuration and resource allocation in SDN networksThis work is supported by the EU FP7 “QUICK” Project (Grant NO. PIRSES-GA-2013-612652) and the National Natural Science Foundation of China (Grant NO. 61303241)

    Performance Modelling and Resource Allocation of the Emerging Network Architectures for Future Internet

    Get PDF
    With the rapid development of information and communications technologies, the traditional network architecture has approached to its performance limit, and thus is unable to meet the requirements of various resource-hungry applications. Significant infrastructure improvements to the network domain are urgently needed to guarantee the continuous network evolution and innovation. To address this important challenge, tremendous research efforts have been made to foster the evolution to Future Internet. Long-term Evolution Advanced (LTE-A), Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have been proposed as the key promising network architectures for Future Internet and attract significant attentions in the network and telecom community. This research mainly focuses on the performance modelling and resource allocations of these three architectures. The major contributions are three-fold: 1) LTE-A has been proposed by the 3rd Generation Partnership Project (3GPP) as a promising candidate for the evolution of LTE wireless communication. One of the major features of LTE-A is the concept of Carrier Aggregation (CA). CA enables the network operators to exploit the fragmented spectrum and increase the peak transmission data rate, however, this technical innovation introduces serious unbalanced loads among in the radio resource allocation of LTE-A. To alleviate this problem, a novel QoS-aware resource allocation scheme, termed as Cross-CC User Migration (CUM) scheme, is proposed in this research to support real-time services, taking into consideration the system throughput, user fairness and QoS constraints. 2) SDN is an emerging technology towards next-generation Internet. In order to improve the performance of the SDN network, a preemption-based packet-scheduling scheme is firstly proposed in this research to improve the global fairness and reduce the packet loss rate in SDN data plane. Furthermore, in order to achieve a comprehensive and deeper understanding of the performance behaviour of SDN network, this work develops two analytical models to investigate the performance of SDN in the presence of Poisson Process and Markov Modulated Poisson Process (MMPP) respectively. 3) NFV is regarded as a disruptive technology for telecommunication service providers to reduce the Capital Expenditure (CAPEX) and Operational Expenditure (OPEX) through decoupling individual network functions from the underlying hardware devices. While NFV faces a significant challenging problem of Service-Level-Agreement (SLA) guarantee during service provisioning. In order to bridge this gap, a novel comprehensive analytical model based on stochastic network calculus is proposed in this research to investigate end-to-end performance of NFV network. The resource allocation strategies proposed in this study significantly improve the network performance in terms of packet loss probability, global allocation fairness and throughput per user in LTE-A and SDN networks; the analytical models designed in this study can accurately predict the network performances of SDN and NFV networks. Both theoretical analysis and simulation experiments are conducted to demonstrate the effectiveness of the proposed algorithms and the accuracy of the designed models. In addition, the models are used as practical and cost-effective tools to pinpoint the performance bottlenecks of SDN and NFV networks under various network conditions

    An efficient adaptive scheduling policy for high-performance computing

    Full text link
    The advent of commodity-based high-performance clusters has raised parallel and distributed computing to a new level. However, in order to achieve the best possible performance improvements for large-scale computing problems as well as good resource utilization, efficient resource management and scheduling is required. This paper proposes a new two-level adaptive space-sharing scheduling policy for non-dedicated heterogeneous commodity-based high-performance clusters. Using trace-driven simulation, the performance of the proposed scheduling policy is compared with existing adaptive space-sharing policies. Results of the simulation show that the proposed policy performs substantially better than the existing policies.<br /

    Adaptive monitoring and control framework in Application Service Management environment

    Get PDF
    The economics of data centres and cloud computing services have pushed hardware and software requirements to the limits, leaving only very small performance overhead before systems get into saturation. For Application Service Management–ASM, this carries the growing risk of impacting the execution times of various processes. In order to deliver a stable service at times of great demand for computational power, enterprise data centres and cloud providers must implement fast and robust control mechanisms that are capable of adapting to changing operating conditions while satisfying service–level agreements. In ASM practice, there are normally two methods for dealing with increased load, namely increasing computational power or releasing load. The first approach typically involves allocating additional machines, which must be available, waiting idle, to deal with high demand situations. The second approach is implemented by terminating incoming actions that are less important to new activity demand patterns, throttling, or rescheduling jobs. Although most modern cloud platforms, or operating systems, do not allow adaptive/automatic termination of processes, tasks or actions, it is administrators’ common practice to manually end, or stop, tasks or actions at any level of the system, such as at the level of a node, function, or process, or kill a long session that is executing on a database server. In this context, adaptive control of actions termination remains a significantly underutilised subject of Application Service Management and deserves further consideration. For example, this approach may be eminently suitable for systems with harsh execution time Service Level Agreements, such as real–time systems, or systems running under conditions of hard pressure on power supplies, systems running under variable priority, or constraints set up by the green computing paradigm. Along this line of work, the thesis investigates the potential of dimension relevance and metrics signals decomposition as methods that would enable more efficient action termination. These methods are integrated in adaptive control emulators and actuators powered by neural networks that are used to adjust the operation of the system to better conditions in environments with established goals seen from both system performance and economics perspectives. The behaviour of the proposed control framework is evaluated using complex load and service agreements scenarios of systems compatible with the requirements of on–premises, elastic compute cloud deployments, server–less computing, and micro–services architectures
    corecore