6,218 research outputs found

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    TweeProfiles4: a weighted multidimensional stream clustering algorithm

    Get PDF
    O aparecimento das redes sociais abriu aos utilizadores a possibilidade de facilmente partilharem as suas ideias a respeito de diferentes temas, o que constitui uma fonte de informação enriquecedora para diversos campos. As plataformas de microblogging sofreram um grande crescimento e de forma constante nos últimos anos. O Twitter é o site de microblogging mais popular, tornando-se uma fonte de dados interessante para extração de conhecimento. Um dos principais desafios na análise de dados provenientes de redes sociais é o seu fluxo, o que dificulta a aplicação de processos tradicionais de data mining. Neste sentido, a extração de conhecimento sobre fluxos de dados tem recebido um foco significativo recentemente. O TweeProfiles é a uma ferramenta de data mining para análise e visualização de dados do Twitter sobre quatro dimensões: espacial (a localização geográfica do tweet), temporal (a data de publicação do tweet), de conteúdo (o texto do tweet) e social (o grafo dos relacionamentos). Este é um projeto em desenvolvimento que ainda possui muitos aspetos que podem ser melhorados. Uma das recentes melhorias inclui a substituição do algoritmo de clustering original, o qual não suportava o fluxo contínuo dos dados, por um método de streaming. O objetivo desta dissertação passa pela continuação do desenvolvimento do TweeProfiles. Em primeiro lugar, será proposto um novo algoritmo de clustering para fluxos de dados com o objetivo de melhorar o existente. Para esse efeito será desenvolvido um algoritmo incremental com suporte para fluxos de dados multi-dimensionais. Esta abordagem deve permitir ao utilizador alterar dinamicamente a importância relativa de cada dimensão do processo de clustering. Adicionalmente, a avaliação empírica dos resultados será alvo de melhoramento através da identificação e implementação de medidas adequadas de avaliação dos padrões extraídos. O estudo empírico será realizado através de tweets georreferenciados obtidos pelo SocialBus.The emergence of social media made it possible for users to easily share their thoughts on different topics, which constitutes a rich source of information for many fields. Microblogging platforms experienced a large and steady growth over the last few years. Twitter is the most popular microblogging site, making it an interesting source of data for pattern extraction. One of the main challenges of analyzing social media data is its continuous nature, which makes it hard to use traditional data mining. Therefore, mining stream data has also received a lot of attention recently.TweeProfiles is a data mining tool for analyzing and visualizing Twitter data over four dimensions: spatial (the location of the tweet), temporal (the timestamp of the tweet), content (the text of the tweet) and social (relationship graph). This is an ongoing project which still has many aspects that can be improved. For instance, it was recently improved by replacing the original clustering algorithm which could not handle the continuous flow of data with a streaming method. The goal of this dissertation is to continue the development of TweeProfiles. First, the stream clustering process will be improved by proposing a new algorithm. This will be achieved by developing an incremental algorithm with support for multi-dimensional streaming data. Moreover, it should make it possible for the user to dynamically change the relative importance of each dimension in the clustering. Additionally, the empirical evaluation of the results will also be improved.Suitable measures to evaluate the extracted patterns will be identified and implemented. An empirical study will be done using data consisting of georeferenced tweets from SocialBus

    A survey on online active learning

    Full text link
    Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in the context of online active learning. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research. Our review aims to provide a comprehensive and up-to-date overview of the field and to highlight directions for future work

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Solving the challenges of concept drift in data stream classification.

    Get PDF
    The rise of network connected devices and applications leads to a significant increase in the volume of data that are continuously generated overtime time, called data streams. In real world applications, storing the entirety of a data stream for analyzing later is often not practical, due to the data stream’s potentially infinite volume. Data stream mining techniques and frameworks are therefore created to analyze streaming data as they arrive. However, compared to traditional data mining techniques, challenges unique to data stream mining also emerge, due to the high arrival rate of data streams and their dynamic nature. In this dissertation, an array of techniques and frameworks are presented to improve the solutions on some of the challenges. First, this dissertation acknowledges that a “no free lunch” theorem exists for data stream mining, where no silver bullet solution can solve all problems of data stream mining. The dissertation focuses on detection of changes of data distribution in data stream mining. These changes are called concept drift. Concept drift can be categorized into many types. A detection algorithm often works only on some types of drift, but not all of them. Because of this, the dissertation finds specific techniques to solve specific challenges, instead of looking for a general solution. Then, this dissertation considers improving solutions for the challenges of high arrival rate of data streams. Data stream mining frameworks often need to process vast among of data samples in limited time. Some data mining activities, notably data sample labeling for classification, are too costly or too slow in such large scale. This dissertation presents two techniques that reduce the amount of labeling needed for data stream classification. The first technique presents a grid-based label selection process that apply to highly imbalanced data streams. Such data streams have one class of data samples vastly outnumber another class. Many majority class samples need to be labeled before a minority class sample can be found due to the imbalance. The presented technique divides the data samples into groups, called grids, and actively search for minority class samples that are close by within a grid. Experiment results show the technique can reduce the total number of data samples needed to be labeled. The second technique presents a smart preprocessing technique that reduce the number of times a new learning model needs to be trained due to concept drift. Less model training means less data labels required, and thus costs less. Experiment results show that in some cases the reduced performance of learning models is the result of improper preprocessing of the data, not due to concept drift. By adapting preprocessing to the changes in data streams, models can retain high performance without retraining. Acknowledging the high cost of labeling, the dissertation then considers the scenario where labels are unavailable when needed. The framework Sliding Reservoir Approach for Delayed Labeling (SRADL) is presented to explore solutions to such problem. SRADL tries to solve the delayed labeling problem where concept drift occurs, and no labels are immediately available. SRADL uses semi-supervised learning by employing a sliding windowed approach to store historical data, which is combined with newly unlabeled data to train new models. Experiments show that SRADL perform well in some cases of delayed labeling. Next, the dissertation considers improving solutions for the challenge of dynamism within data streams, most notably concept drift. The complex nature of concept drift means that most existing detection algorithms can only detect limited types of concept drift. To detect more types of concept drift, an ensemble approach that employs various algorithms, called Heuristic Ensemble Framework for Concept Drift Detection (HEFDD), is presented. The occurrence of each type of concept drift is voted on by the detection results of each algorithm in the ensemble. Types of concept drift with votes past majority are then declared detected. Experiment results show that HEFDD is able to improve detection accuracy significantly while reducing false positives. With the ability to detect various types of concept drift provided by HEFDD, the dissertation tries to improve the delayed labeling framework SRADL. A new combined framework, SRADL-HEFDD is presented, which produces synthetic labels to handle the unavailability of labels by human expert. SRADL-HEFDD employs different synthetic labeling techniques based on different types of drift detected by HEFDD. Experimental results show that comparing to the default SRADL, the combined framework improves prediction performance when small amount of labeled samples is available. Finally, as machine learning applications are increasingly used in critical domains such as medical diagnostics, accountability, explainability and interpretability of machine learning algorithms needs to be considered. Explainable machine learning aims to use a white box approach for data analytics, which enables learning models to be explained and interpreted by human users. However, few studies have been done on explaining what has changed in a dynamic data stream environment. This dissertation thus presents Data Stream Explainability (DSE) framework. DSE visualizes changes in data distribution and model classification boundaries between chunks of streaming data. The visualizations can then be used by a data mining researcher to generate explanations of what has changed within the data stream. To show that DSE can help average users understand data stream mining better, a survey was conducted with an expert group and a non-expert group of users. Results show DSE can reduce the gap of understanding what changed in data stream mining between the two groups

    Mining complex data in highly streaming environments

    Get PDF
    Data is growing at a rapid rate because of advanced hardware and software technologies and platforms such as e-health systems, sensor networks, and social media. One of the challenging problems is storing, processing and transferring this big data in an efficient and effective way. One solution to tackle these challenges is to construct synopsis by means of data summarization techniques. Motivated by the fact that without summarization, processing, analyzing and communicating this vast amount of data is inefficient, this thesis introduces new summarization frameworks with the main goals of reducing communication costs and accelerating data mining processes in different application scenarios. Specifically, we study the following big data summarizaion techniques:(i) dimensionality reduction;(ii)clustering,and(iii)histogram, considering their importance and wide use in various areas and domains. In our work, we propose three different frameworks using these summarization techniques to cover three different aspects of big data:"Volume","Velocity"and"Variety" in centralized and decentralized platforms. We use dimensionality reduction techniques for summarizing large 2D-arrays, clustering and histograms for processing multiple data streams. With respect to the importance and rapid growth of emerging e-health applications such as tele-radiology and tele-medicine that require fast, low cost, and often lossless access to massive amounts of medical images and data over band limited channels,our first framework attempts to summarize streams of large volume medical images (e.g. X-rays) for the purpose of compression. Significant amounts of correlation and redundancy exist across different medical images. These can be extracted and used as a data summary to achieve better compression, and consequently less storage and less communication overheads on the network. We propose a novel memory-assisted compression framework as a learning-based universal coding, which can be used to complement any existing algorithm to further eliminate redundancies/similarities across images. This approach is motivated by the fact that, often in medical applications, massive amounts of correlated images from the same family are available as training data for learning the dependencies and deriving appropriate reference or synopses models. The models can then be used for compression of any new image from the same family. In particular, dimensionality reduction techniques such as Principal Component Analysis (PCA) and Non-negative Matrix Factorization (NMF) are applied on a set of images from training data to form the required reference models. The proposed memory-assisted compression allows each image to be processed independently of other images, and hence allows individual image access and transmission. In the second part of our work,we investigate the problem of summarizing distributed multidimensional data streams using clustering. We devise a distributed clustering framework, DistClusTree, that extends the centralized ClusTree approach. The main difficulty in distributed clustering is balancing communication costs and clustering quality. We tackle this in DistClusTree through combining spatial index summaries and online tracking for efficient local and global incremental clustering. We demonstrate through extensive experiments the efficacy of the framework in terms of communication costs and approximate clustering quality. In the last part, we use a multidimensional index structure to merge distributed summaries in the form of a centralized histogram as another widely used summarization technique with the application in approximate range query answering. In this thesis, we propose the index-based Distributed Mergeable Summaries (iDMS) framework based on kd-trees that addresses these challenges with data generative models of Gaussian mixture models (GMMs) and a Generative Adversarial Network (GAN). iDMS maintains a global approximate kd-tree at a central site via GMMs or GANs upon new arrivals of streaming data at local sites. Experimental results validate the effectiveness and efficiency of iDMS against baseline distributed settings in terms of approximation error and communication costs
    corecore