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ABSTRACT

Data is growing at a rapid rate because of advanced hardware and software tech-
nologies and platforms such as e-health systems, sensor networks, and social
media. One of the challenging problems is storing, processing and transferring

this big data in an efficient and effective way. One solution to tackle these challenges
is to construct synopsis by means of data summarization techniques. Motivated by the
fact that without summarization, processing, analyzing and communicating this vast
amount of data is inefficient, this thesis introduces new summarization frameworks
with the main goals of reducing communication costs and accelerating data mining
processes in different application scenarios. Specifically, we study the following big data
summarizaion techniques: (i) dimensionality reduction; (ii) clustering, and (iii) histogram,
considering their importance and wide use in various areas and domains.

In our work, we propose three different frameworks using these summarization
techniques to cover three different aspects of big data: "Volume", "Velocity" and "Variety"
in centralized and decentralized platforms. We use dimensionality reduction techniques
for summarizing large 2D-arrays, clustering and histograms for processing multiple data
streams.

With respect to the importance and rapid growth of emerging e-health applications
such as tele-radiology and tele-medicine that require fast, low cost, and often lossless
access to massive amount of medical images and data over bandlimited channels, our first
framework attempts to summarize streams of large volume medical images (e.g. X-rays)
for the purpose of compression. Significant amounts of correlation and redundancy exist
across different medical images. These can be extracted and used as a data summary
to achieve better compression, and consequently less storage and less communication
overheads on the network. We propose a novel memory-assisted compression framework
as a learning-based universal coding, which can be used to complement any existing
algorithm to further eliminate redundancies/similarities across images. This approach is
motivated by the fact that, often in medical applications, massive amounts of correlated
images from the same family are available as training data for learning the dependencies
and deriving appropriate reference or synopses models. The models can then be used
for compression of any new image from the same family. In particular, dimensionality
reduction techniques such as Principal Component Analysis (PCA) and Non-negative
Matrix Factorization (NMF) are applied on a set of images from training data to form
the required reference models. The proposed memory-assisted compression allows each
image to be processed independently of other images, and hence allows individual image

x



access and transmission.
In the second part of our work, we investigate the problem of summarizing distributed

multidimensional data streams using clustering. We devise a distributed clustering
framework, DistClusTree, that extends the centralized ClusTree approach. The main
difficulty in distributed clustering is balancing communication costs and clustering
quality. We tackle this in DistClusTree through combining spatial index summaries and
online tracking for efficient local and global incremental clustering. We demonstrate
through extensive experiments the efficacy of the framework in terms of communication
costs and approximate clustering quality.

In the last part, we use a multidimensional index structure to merge distributed
summaries in the form of a centralized histogram as another widely used summarization
technique with the application in approximate range query answering. In this thesis, we
propose the index-based Distributed Mergeable Summaries (iDMS) framework based
on kd-trees that addresses these challenges with data generative models of Gaussian
mixture models (GMMs) and a Generative Adversarial Network (GAN). iDMS maintains
a global approximate kd-tree at a central site via GMMs or GANs upon new arrivals
of streaming data at local sites. Experimental results validate the effectiveness and
efficiency of iDMS against baseline distributed settings in terms of approximation error
and communication costs.

Keywords: Big data, Data Summarization, Dimensionalty reduction, Compression, Clustering,
Histograms, Distributed computing, Index data structures
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INTRODUCTION

W ith the advent of online technologies such as filmless imaging, online Global

Positioning System and sensory data, huge volumes of data with large variety

and high velocity are produced daily. These are so-called big data. Although

a collection of this huge data is beneficial in serving customers more efficiently, the

problems of storing, transmitting and processing big data are still challenging.

As data volumes grow rapidly, their applications need to adapt with the speed of

generating data to answer requirements of users on demand. For example, many queries,

database processing and mining algorithms need to be performed in an efficient way

while it is in contrast with online demands of users and the speed of data streams. One

solution to deal with this problem is to process and analyse summarized data instead of

the complete data. Therefore, summarization is considered as a descriptive task in data

mining to provide a synopsis- based representation of data. It makes many tasks such as

pre-processing, analysis and management of data easier and faster by reducing the size

of data, thus overcoming the space, transmission and time limitations.

1.1 Background

Although summarization can be performed in various ways, the aim of this thesis is to

introduce and develop new big data summarization algorithms and frameworks using a

variety of machine learning techniques (e.g. dimensionality reduction, clustering) and

1



CHAPTER 1. INTRODUCTION

statistical distributions to lessen the limitations of traditional big data summarization

approaches, especially in the context of streaming data. The focus is on the development

of new summarization frameworks compatible with much more complex data such as

positional data (e.g. GPS coordinates), big two-Dimensional arrays (e.g. large medical

images) or distributed streaming data (e.g. sensor data) which can be used for different

objectives such as those listed below.

• Approximate Query Processing: Today, most queries need to be answered on-

line. Processing vast amounts of data which are produced continuously is not

efficient and practical with traditional data processing techniques. Therefore, data

summarization is an efficient approach to quickly process queries at the expense of

having only approximate answers. Sampling, histograms and sketches are exam-

ples of summarization algorithms that can be used to answer the query estimation

problem [8].

• Data Aggregation: In many parallel and distributed systems, calculating aggre-

gate statistics over the entire distributed data streams is required. Approximation

of frequency counts, quantiles and heavy hitters are examples of such applications

which can be resolved by using summarization techniques such as histograms or

sketches [9].

• Telecommunication Applications: Recent advances in information technology

such as tele-medicine and tele-radiology require storage and transmission of huge

amounts of data. The rate of data growth is much faster than the rate of growth

of technologies. As a result, transmission and storage of these large data are

problematic. Data compression is a solution to reduce the size of data and thus

communication costs. Compression techniques discover patterns and redundancy

in the data and transform original data into a compact version. Summarization

and sketching techniques such as dimensionality reduction can be used to extract

these patterns from data to build a compact version of that data.

• Data Mining Applications: In some predictive analysis and machine learning

algorithms such as concept drift detection, statistical properties of data such

as mean or variance are enough to predict and detect changes over time. This

means it does not need to have all and actual data points to detect changes and

temporal synopses are adequate to track the behavior of the stream. Summarization

techniques such as clustering can be useful to detect concept drift effectively [9].

2



1.1. BACKGROUND

In this thesis, we also consider different aspects when dealing with big data, in

order to devise and develop those algorithms that are suitable for the specific cases

encountered.Volume of the data is the first and obvious important characteristic to deal

with when summarizing big data compared to conventional data summarization, as this

requires substantial changes in the architecture of storage systems. Another important

characteristic of big data is Velocity. This requirement leads to high demand for online

processing of data where rapid processing is required to deal with data flows. Variety
is the third characteristic, where different data types such as numerical data (one-

Dimensional values) and images (two-Dimensional arrays) are produced from various

sources of big data such as sensors, telemedicine applications and mobile phones. These

three "Vs" (Volume, Velocity and Variety) are the core characteristics of big data which we

take into account when designing data summarization algorithms. In this thesis we cover

these aspects and new concerns of big data by proposing new summarization/mining

frameworks, then test and evaluate our algorithms on various synthetic and real data

sets.

The design and development of a summarization algorithm depends on the type of

data and the application being used. For instance, a summarization algorithm for an

aggregation problem might be different from summarization algorithm that is used for a

compression problem. In this thesis we aim to design summarization algorithms that

are multi-purpose and applicable to a variety of data streams considering their efficiency

issues of time and space constraints. There are various methods for constructing a

summary but we study only three of them, listed below, with the focus on reducing

communication costs, time and space.

• Dimensionality Reduction: Dimensionality reduction techniques reduce the

number of random variables by discovering a set of principal variables. Some of di-

mension reduction techniques linearly or non-linearly transform high dimensional

data to a space with fewer dimensions. For example, Principal Component Analysis

(PCA) is one of the main linear reduction techniques that transforms data from a

higher dimensional space to a lower dimension space by maximizing variance of

data in lower dimension space and decorelation of data.

3



CHAPTER 1. INTRODUCTION

• Micro-Clustering: Micro-clustering is a stream mining technique which can be

used for constructing summaries. Micro-clustering consists of two phases: online

and offline. In the online phase, a summary of data is collected and stored in a data

structure. This summary is used for further mining analysis in the offline phase.

Micro-clustering can be used for both single and multi-dimensional data.

• Histograms: Histograms are another technique of summarizing data. A histogram

maintains frequency counts of items within specific intervals. There are different

types of histograms. One way of representing a histogram is by discretizing data

into equal width partitions (i.e. buckets), and storing the frequency of occurrence

of each data item within these buckets. Equi-width histograms can be easily used

to answer range queries as the only requirement is defining user-specified inter-

vals/buckets. However, this type of histogram may inject inaccuracy in answering

range queries. The reason is that by dividing a range into equi-width partitions

and assigning data points unequally across different buckets, if these buckets

contain the range boundary of a query, it causes an inaccurate query estimation.

Thus a solution to this problem is to uniformly divide data into equi-height/depth

buckets. In this case, each range encompasses approximately an equal number of

data points. Construction of equi-depth histograms is the same as construction of

quantiles in data streams where equi-depth buckets determine different quantiles

in the data.

1.2 Motivation

We have designed and developed new summarization/approximation algorithms using

the above summarization techniques and taking into account the following application

requirements.

• Offline vs. online

• Single stream vs. multiple stream

• Centralized vs. decentralized (aggregation)

In Offline summarization, the whole data set is available and data can be accessed

many times, while in online summarization the entire data set is not available and data
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can only be scanned once. Many studies have investigated offline summarization through

clustering while a few more recent works have concentrated on online clustering.

On the other hand, with advances in data collection and generation technologies,

we are faced with environments that are equipped with multiple distributed computing
nodes that generate multiple streams compared to generating a single stream such as

sensor networks. Therefore many systems use a centralized model for clustering multiple

streams while some use decentralized (distributed) stream clustering.

Most of the literature focuses on processing a single stream in a centralized fashion.

However, centralized mining has some limitations over the distributed one including:

long response times, possible bottlenecks, and excessive power consumption due to

excessive data communication (since all streaming data need to be transmitted to a

central site in order to be processed). Hence, more effective distributed online mining

algorithms are needed.

1.3 Research Questions and Contributions

The main research questions that are addressed in this thesis are as follows.

1. How to summarize big volume 2D-array data to overcome limitations of
conventional storage and transmission approaches?

Conventional storage and transmission of large 2D-arrays such as medical im-

ages can be very expensive and time consuming. We reduce the limitations of

conventional storage and transmission by answering this research question as

follows.

• We have proposed a novel framework called Memory-Assisted Compression

(MAC) technique. The rationale behind MAC is learning source statistics at

some intermediate entities, and then leveraging the memorized context to

reduce redundancy of the universal compression of final length sequences.

Hence, the communication overhead to send the sequence from sender to

receiver is reduced if memorized context (i.e. summarized data) is available to

the encoder and the decoder.

• We improve the proposed MAC framework in which redundancy across images

(2D-arrays) is extracted to represent data in a more compact (i.e. summarized)

way, by using a more effective factorization matrix.
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2. How to summarize and maintain multiple data streams through cluster-
ing technique in centralized and decentralized manner to deal with high
demands of online processing?

Answering this research question covers the velocity aspect of big data which aims

to minimise the response time.

• First, we propose a centralized concurrent multi-stream clustering algorithm

that relies on an index data structure for storing and maintaining a compact

view of the current clustering (online phase).

• We then extend this algorithm to a distributed one where a centralized con-

tinuous clustering is run over the union of online clusters received from all

local sites in a central location.

3. How to efficiently merge and maintain multidimensional local summaries
in the form of histograms in distributed environments?

• We have proposed a new framework that enables one to merge and maintain

local summaries in a global index structure. The centralized index maintains

a compact summary over all summaries from all local sites.

• We have proposed a new method using an index structure to maintain statis-

tical distributions (i.e. a histogram) instead of just maintaining actual data

points.

More specifically, we outline our main contributions in this PhD thesis.

1. Although many works have addressed offline summarization of big data, there

are still some gaps that can be explored by new summarization algorithms, which

can then be adapted to online and may be enhanced to be compatible with the

distributed model. We designed and developed an offline compression (summariza-

tion) algorithm by reducing entropy of large volume of 2D-arrays (i.e. large raw

medical images) with respect to its application in filmless imaging technology (such

as telemedicine). We have first shown that significant amounts of correlation and

redundancy exist across different large medical images. Such a correlation can be

utilized to achieve better compression, and consequently less storage and fewer

communication overheads on the network. We proposed a novel MAC technique

as a learning-based universal coding. This can be used to complement any exist-

ing algorithm to further eliminate redundancies across images. The approach is
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motivated by the fact that often in medical applications, large numbers of corre-

lated images from the same family are available as training data for learning the

dependencies and deriving appropriate reference models. Such models can then

be used for compression of any new image from the same family. We further im-

proved the performance of the algorithm by taking advantage of some other matrix

factorization techniques and adding an extra layer in the proposed framework.

2. Many works have focused on online single stream summarization, so called micro-

clustering. However, less work has been done on multiple stream clustering. There-

fore, we propose a new concurrent multiple-streams clustering algorithm in a

centralized model. The algorithm is based on a well-known micro-clustering tech-

niques (ClusTree) [13] in the literature which includes two phases: online and

offline. We captured the summary statistics of multiple data streams in an online

phase. Then we maintained statistical information about the data locality in terms

of micro-clusters in a parallel index data structure for further offline clustering.

In the online phase, this index maintains cluster feature tuples instead of storing

all incoming objects. We also extended the centralized ClusTree into a distributed

one. Although some distributed clustering have been studied in the literature, the

lack of being near real-time of these works motivated us to proposed a new online

distributed clustering algorithm which not only reduces the communication cost

but also reduces processing time of clustering distributed data.

3. Multidimensional data indexing structures have been utilized in centralized data

bases and data mining communities. Although index structures are good tools

to represent summaries of data distributions as histograms, quantiles and data

clusters, a lack of their extension and usage is noticeable in distributed settings and

parallel processing. Therefore, it is of interest to develop new practical algorithms

that can benefit from using index data structures in these environments. In this

thesis, we studied a two-fold project. First, how to keep quantiles and histograms

in the union of distributed summaries in multidimensional spaces. Second, how

to keep online distributed tracking of a multidimensional function in the union

of the entire data, where function is an index tree. We have introduced a new

practical framework capable of maintaining quantiles over union of distributed

multidimensional data stream summaries. In our framework, we keep distributed

data summaries in index structures. We merge index trees to discover quantiles in

the entire distributed data. Merging index trees means that, given two index trees
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on two data sets, there is a method to merge them into a global index tree while

preserving error and size of index structure. We use kd-tree, an index structure,

to represent overall quantiles in a homogeneous distributed multidimensional

space. The proposed framework constructs a global approximate kd-tree over the

union of distributed summaries. Our method incrementally updates the global kd-

tree. Experimental results provided evidence on the performance of the proposed

method when it has been utilized in parallel and distributed settings in terms

of communication costs, error rate and the practicality of our algorithm. We also

proposed a new method to create a data structure which stores and maintains

clusters of data in entire distribution. Our method is adjustable to be used in

a streaming scenario. It is a good tool for use in a load balancing algorithm to

optimize resource use, maximize throughput, minimize response time and avoid

overload of any single resource.
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1.5 Thesis Overview

The rest of this thesis is organized as follows. In Chapter 2 we broadly review related

works on the most important summarization techniques in the literature. In Chapter

3 we propose a medical image summarization framework using dimensional reduction

techniques with the focus on data volume. In Chapter 4 our contribution on speed of

summarization using clustering in centralized and decentralized platforms is presented.

The focus of Chapter 5 is on merging distributed summaries in the form of a histogram.

Finally Chapter 6 summarises the contributions of this research thesis and includes

potential future research directions.
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LITERATURE REVIEW

In the current digital era, the massive progress and development of internet and

online world technologies such as big and powerful data servers has meant we

face huge volumes of information and data daily from many different resources

and services which were not available to human kind just a few decades ago. This data

comes from different online resources and services which are established to serve the

customers. Services and resources such as Sensor Networks, Cloud Storages and Social

Networks produce “big data” and there is also a need to manage and reuse that data or

(some analytical aspects of it). Although this massive volume of data can be really useful

for people and corporations, it could also cause problems. Therefore big data has its own

deficiencies as well. They need big storage, and this volume makes operations such as

analytical operations, process operations and retrieval operations really difficult and

hugely time-consuming. One way to resolve these difficult problems is to have big data

summarized so they need less storage and much less time to be processed and retrieved.

The summarized data will then be in “compact format” and still be an informative version

of the entire data.
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2.1 Introduction

The aim of this chapter is to provide an overall view of different data summarization

techniques [9] found in the literature, including clustering, sampling, compression, his-

tograms, wavelets and micro-cluster with respect to their applications in a variety of

fields such as data mining. However the focus here will be the selection of those tech-

niques that are suitable for big data. Some aspects then need careful attention when

dealing with big data, so this chapter helps to select relevant techniques. The Volume of

the data is the first and obvious important characteristic to deal with when summarizing

big data compared to conventional data summarization, as this requires substantial

changes in the architecture of storage systems. Another important characteristic of

big data is Velocity. This requirement leads to highly demand for on line processing

of data where rapid processing is required to deal with data flows. Variety is a third

characteristic, where different data types such as text, image and video are produced

from various sources such as sensors and mobile phones. These three “V”s (Volume,

Velocity and Variety) are the core characteristics of big data [10] which must be taken

into account when selecting data summarization techniques.

Summarization can be performed in various ways. We have selected here the following

summarization techniques that are applicable for big data.

• Clustering is an unsupervised summarization technique that aims to gather

similar objects into groups or “clusters”. The similarity among objects can be

determined through different metrics, such as distance. Clustering algorithms can

be categorized into different models such as hierarchical, partitioning, density-

based and grid-based.

• Sampling is another summarization technique that provides a concise and still

informative representation of the entire data set. A sample is representative

of a larger group (population) which preserves the same characteristics of the

population and a study is made of the sample instead of the whole population.

There are two main categories of sampling techniques, namely probability-based

and nonprobability-based: either provides an efficient way to summarize big data.

• Compression is a well-known technique that represents data in a compact way

to save time and space. Lossless and lossy are two different compression methods

which are broadly used in different areas such as video and image coding. We will
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explain a compression method based on a minimum description length principle

and its applications for data summarization in this chapter.

• Wavelets can be considered as a summarization technique that is mostly used in

image and query processing applications. Different wavelet transformations such

as (Haar) and dimensional wavelets are used to transform data from one domain to

another. We will show in this chapter how wavelet transformations can be applied

to summarize data.

• Histogram is a method used to represent a large volume of data in a compact

manner so that it can be considered as a data reduction or summarization technique.

In fact, data distribution can be shown in a synopsis structure through histograms.

Accordingly, we will discuss some of the various types of histograms but we will

not elaborate on them further.

• Micro-clustering is a method to construct a synopsis model of data stream

that considers evolving behavior of data streams. In this chapter, we will explain

more details about micro-clustering as another summarization technique for data

streams.

2.2 Chapter Organization

The roadmap of this chapter is as follows. Details about some of the well-known data

summarization techniques available in the literature will be discussed in order. Each

technique will be explained and then a number of research directions that are conducted

on each technique will be briefly reviewed. Finally, Section 2.4 concludes this chapter.

2.3 Big Data Summarization Techniques

2.3.1 Clustering algorithms

One of the most used techniques having the purpose of data summarization is clustering.

This is an unsupervised process of collecting similar data objects in a group, where data

objects within the same cluster are more similar to each other than to objects in other

clusters. The goal of clustering is to group similar objects together to simplify further

processing such as data mining, summarization and analysis.
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To cluster data points, the following questions need to be addressed. What are the

differences in the cluster data points? What are the similarity metrics that can be used to

cluster data points in the same group? How are these similarities measured? What types

of data can be used in different clusters? How are the discovered clusters evaluated? Is it

possible to cluster all data points of the entire data sets? Do the clusters have the same

shapes? How many clusters are required to present data objects? And, last but not least,

how large could a data set be to cluster its data points?

In answering these questions, one needs to classify clustering algorithms into differ-

ent categories. Amongst those that could relate to big data, one can find Hierarchical,

Partitional, Density-based and Grid-based algorithms. We also note that in clustering

data points, some issues such as requirements of clustering algorithms should be consid-

ered. Some examples include scalability, dealing with different type of attributes, finding

arbitrary shape clusters, the ability to cope with outliers and noise, considering high

dimensional data sets, interpretability and usability.

To better understand clustering algorithms, we will first identify different types

of data and then explain a preliminary principle of a clustering algorithm, which is a

proximity measure, a common phrase to represent similarity s(i, j) and dissimilarity

d(i, j) measure between two data points, two clusters or a data point and a cluster.

• Data Type In order to secure universal interpretation of data, data has been

categorized into two scales of measurement: qualitative and quantitative. The

former includes nominal scales and ordinal scales. The latter includes interval

and ratio scales. In addition to these scales, other words describing types of data

include categorical, numerical, binary, continuous and discrete.

• Similarity/Dissimilarity Measures Based on the type of data, various similarity

or dissimilarity measures can be defined. Therefore, some similarity measures are

briefly reviewed. One of the most-used similarities metric is distance. There are

many distance measures which are mostly used in clustering algorithms, such

as Minkowski , Manhattan or City block, Euclidean and Mahalanobis which are

described below.
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Minkowski distance For two numerical points in the form of xi = (xi1, xi2, · · · , xil) and

x j = (x j1, x j2, · · · , x j1), Minkowski distance or Lp norm is calculated as shown in Equation

3.8.

(2.1) D i j =
[
Σd

l=1|xil − x j l|
1
n

]n

An example of application of Minkowski distance can be found in [10].

Euclidean distance Euclidean distance or L2 norm is a commonly used measure of

distance in clustering algorithms such as [11] to find similar numerical objects and

tend to find hyperspherical clusters. It is a particular instance of Minkowski at n = 2. It

measures the distance between two points of xi = (xi1, xi2, · · · , xi1) andx j = (x j1, x j2, · · · , x j1)

as shown in Equation 2.2.

(2.2) D i j =
[
Σd

l=1|xil − x j l|
1
2

]2

K-means, CURE and BIRCH algorithms are examples of clustering algorithms that

measure similarities between data points based on closeness via the Euclidean distance

measure.

Manhattan / City block distance Considering Minkowski at n = 1 for two numerical

points of xi = (xi1, xi2, · · · , xi1) and x j = (x j1, x j2, · · · , x j1) gives a Manhattan or City block

distance or L1 norm as in [12] as Equation 2.3.

(2.3) D i j =
[
Σd

l=1|xil − x j l|
]

Manhattan or Ciwqty block distance normally involves finding hyper-rectangular

clusters.

Mahalanobis distance Mahalanobis distance considers the correlation between vari-

ables or the variance-covariance matrix. Hyper-ellipsoidal clusters can be discovered

through applying Mahalanobis distance which is formulated in Equation 2.4.

(2.4) D i j = (xi − x j)TS−1(xi − x j)
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where S is the within cluster covariance matrix. Examples of Mahalanobis distance

can be found in [13], [14].

There are also different similarity and dissimilarity measures for categorical data.

The simple matching distance proposed in [15] is one of the well-known ones that measure

dissimilarity between categorical data. Let x and y be two categorical data points. The

simple matching distance between x and y is computed as depicted in Equation 2.5.

(2.5) δ(x, y)=
{

0 i f x = y
1 i f x 6= y

Equation 2.6 calculates dissimilarity metric based on the simple matching distance

for two categorical data points of x and y with l attributes.

(2.6) dsim =Σl
j=1δ(xi, yi)

Note that there are many more similarity/dissimilarity measures in the literature.

However, due to the lack of space, we have only explained the most common ones and

listed some of them in the following.

Some other dissimilarity measures for numerical data are: Mean character differ-

ence [16], index of association [17], Canberra metric and Coefficient of divergence [18],

and Czekanowski coefficien [19]. Some matching coefficients measures for nominal data

are: Russell and Ra [20], simple matching [21], Jaccord [22], Rogers-Tanimoto [23] and

Kulczynski [24]. There are also some similarity measures for binary data such as Jaccord,

Dice, Pearson, Sokal-Sneatha/b/c/d, Yule and Ochiai. Some of these are summarized

in [25]. The other metric that considers similarity between groups of objects is linkage

criterion or connectivity between them.

After presenting some of the concepts related to data clustering, we will consider

some of the most prominent clustering algorithms found in the literature. The rest of

this section focuses on clusterings of very large data sets; therefore we will only describe

those clustering algorithms that can be applied to very large data sets with the aim of

summarization.
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2.3.1.1 Hierarchical clustering

Hierarchical clustering, also called Connectivity-based clustering, is one of the classical

approaches. It creates clusters in the form of a tree in which each cluster is represented

as a node. The main idea is that the structure is based on a proximity measure, where

the nearby objects are clustered into a group. Therefore, distance between objects plays

a pivotal role in the clustering of the data objects.

Tree-based hierarchical clustering algorithms can be of two types:

1. Bottom up (Divisive) or

2. Top down (Agglomerative).

In the Divisive approach, the clustering process starts from its root in such as way

that the entire data set is considered as a large cluster in root; later it iteratively splits

data into partitions, where it terminates at leaves level. There are two good examples

of divisive clustering algorithms: MONA and DIANA. These are detailed in [26]; some

applications of those algorithms are given in [27].

In the Agglomerative approach, each data point is considered as a single cluster at

the leaf level, and then every two closest clusters based on proximity measures will be

merged to achieve a single cluster at the root tree.

Although a broad range of agglomerative hierarchical clustering algorithms are fund

in the literature, such as single linkage clustering [28], complete linkage clustering [29],

group average clustering [30] and the centroid method [30], only some of them can be

applied to very large data sets which is the focus of this chapter. The prominent reason

that the above clustering algorithms are not selected to cluster large data sets is their

quadratic computational complexity which is a function of number of data points. As

there are several deficiencies with hierarchical clustering algorithms, new algorithms

were proposed to cover their shortcomings, such as the high degree of sensitivity to noise

and outliers, incapability of correcting previous misclassification and unclear termination

criteria. It should be noted that highlighting defects of hierarchical clustering algorithms

does not contravene their important benefits, such as handling any forms of similarity or

distance, covering different types of attribute and not requiring knowing the number
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of clusters in advance. Considering all the pros and cons of hierarchical clustering al-

gorithms, this has led to describing some other hierarchical clustering algorithms that

could be applied on large data sets, such as BIRCH, CURE and ROCK.

BIRCH [31] employs a tree structure which is called CF Tree (Clustering Feature Tree).

This tree is a height-balanced one and consists of leaf nodes and intermediate nodes

where each of them has certain entries. The number of entries is constrained by two

branching factors, noted as B and L. The B factor is a maximum number of entries for

each intermediate node, and the factor L represents the maximum number of entries

for each leaf node. Each entry of intermediate node is in the form of [CFi,Childi], in

which CFi is a summary information consisting a 3-tuple < N,LS,SS >, where N is

the number of data points in a cluster, LS is the linear sum, SS is the square sum of

the N data points in a cluster and Childi is a pointer to its ith child node. Entries of

the leaf nodes are also in the form of [CFi]. The number of leaf entries is controlled by

a threshold T which is set to 0 by default. The height of tree is also defined by T. The

larger T leads to the smaller tree.

This algorithm is a local one since it does not scan all the data points once and it

starts with sub-clustering of leaf entries via closeness metric. Five alternative metrics are

used to measure closeness of clusters: centroid Euclidian distance; centroid Manhattan

distance; average inter-cluster distance; average intra-cluster distance, and variance

increase distance. It clusters dense area as a single cluster and removes sparse area as

an outlier. BIRCH starts by building a CF tree dynamically and incrementally based on

available memory and adjustable threshold of T. Each entry is inserted to the CF tree

based on the closest child node metric in leaves. If the number of entries of a leaf node

does not exceed L, a new entry is inserted to this leaf node; otherwise the leaf node is

divided and this division will be continued in ascend trend in the CF tree until a node,

whether leaf or intermediate node, is found that has the capacity to add more entries.

If this trend presumes up to the root, the root of CF tree will be split and therefore the

height of tree will be increased by one.

Since a CF tree is built based on an agglomerative algorithm (which is a bottom

up approach as previously explained) a new cluster in an upper level of CF-tree is

constructed through merging two sub-clusters in a lower level of the CF Tree. In order to

do that, the Additivity theorem is used to merge two clusters. Based on this Additivity

theorem, CF vectors of two clusters are computed as below if two clusters are merged.
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(2.7) CFm = CF1 +CF2 = (N1 +N2,LS1 +LS2,SS1 +SS2)

where CFm in Equation 2.7 is a clustering feature of newly merged cluster. The insertion

operation in CF Tree is similar to B+-tree and also an Additivity Theorem is used to

build a CF Tree.

BIRCH's main goal is to minimize running time, memory and data scans. It also

makes clustering decisions without scanning the whole data; the group dense areas is a

single cluster and sparse areas as outliers are handled by removing them. Hence, it can

handle outliers. Despite BIRCH's advantage, it has some deficiencies. One of the major

problems of BIRCH is that it cannot perform well in the face of non-spherical shape

clusters since a boundary of a cluster is controlled by the notion of radius or diameter. As

mentioned earlier, BIRCH clusters data points by using clustering features of the original

data instead of using the whole data and consequently it causes a reduction in storage

space and frequent I/O operations. Further, its computational complexity of O(N) means

that for it to be used to cluster very large data sets its time and memory constraint must

be explicit. Several extensions of BIRCH were proposed, which we have briefly described

here. A clustering algorithm is proposed [32] where its pre-clustering phase is similar

to BIRCH. In this way, the whole data set is scanned to find the dense areas which are

then clustered by applying a hierarchical clustering algorithm and making a CF tree.

In contrast with traditional clustering algorithms (which can deal with one of those

attribute types), this algorithm can handle both continuous and categorical attributes.

Therefore, the clustering feature CF has been changed to CF j = (N j,SA j,S2
A j, NB j),

where N j shows the number of data spots in cluster C j , SA j is the sum of consecutive

features, S2
A j is the square sum of consecutive features of N j data spots, and NB j is a

d-dimensional vector representing the value of categorical attributes and distance of pair

of clusters is measured by a log-likelihood function.

BIRCH is generalized in [33] into a wider framework, called BIRCH∗, in distance

spaces. This framework is based on two algorithms named BUBBLE and BUBBLE-FM.

The parameters of CF vector in BIRCH∗ are a sum of the squared distance of a data

point to other data points, the centroid of the cluster which is determined based on

minimum squared distance and the radius r of the cluster which are components to build

the CF-Tree. BIRCH has been extended in many more studies such as [34], [35], [36]

and [37].

19



CHAPTER 2. LITERATURE REVIEW

CURE (Clustering Using REpresentatives) [34] is another hierarchical clustering

algorithm. Unlike BIRCH, CURE is robust against outliers and can deal with arbitrary-

shape clusters. The handling of arbitrary shape clusters is due to the fact that each

cluster is represented by a set of representative points instead of a single centroid or

all-points. Therefore, it can find non-convex shape clusters. Furthermore, this set of

representatives is shrunk towards a centroid through an adjustable parameter ∝= [0,1]
to deal with outliers. Shrinkage causes outliers come closer to the centroid of the clus-

ter to avoid wrong clustering. CURE is designed to apply to large data sets by using

random sampling and partitioning. First, a sample of the data set is chosen randomly,

and then this sample is partitioned to K equal partitions. To reduce time complexity,

these partitions are pre-clustered like the pre-clustering phase of BIRCH, and then an

agglomerative hierarchical clustering is applied to each pre-cluster partition. At the

end of the process, a label is assigned to each data points based on its distance from

representatives. CURE applies two data structures in its algorithm, namely a kd-tree

and a heap-tree. CURE stores its representatives in the kd-tree and clusters are stored

in the heap-tree. The time complexity of CURE is O(N2
sample) which depends on the

number of sampling data and the number of partitions.

ROCK (RObust Clustering using linKs) [35] is an agglomerative hierarchical clus-

tering algorithm that groups categorical data points through non-metric measures. The

two metrics that measure either Euclidian distance in hierarchical clustering algorithms

or a criterion function (such as square error) in a partition-clustering algorithm cannot

properly measure similarity for categorical data points. Therefore, two similarities met-

rics were introduced in ROCK to enable accurate merging as well as clustering of data

points. These metrics are: sim(pi, p j) to consider neighbors of a point and link (pi, p j) to

define the number of common neighbors between two points pi and p j. The similarity

measure is defined as shown in Equation 2.8.

(2.8) Sim(T1,T2)= |T1 ∩T2|
T1 ∪T2

where |Ti| is the number of items in the transaction Ti and Sim(T1,T2) ≥ θ; 0 É θ É 1.

Data points are considered as transactions in a market basket. If no similarity is found

between transactions, then θ = 0; meaning that any pair of transactions can be neighbors

of each other. If θ = 1, only identical transactions can be considered as neighbors. Thus,

it is important to properly define θ, which is a user-specified parameter based on desired
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closeness. The number of links between a pair of points also indicates the probability

whether or not data points are presented in the same cluster. The larger the link is,

the more probable it will be that two points belong to the same cluster. Using links

allows ROCK to be robust. It is important to note that ROCK clusters data points in a

similar way that CURE does, but the difference is that ROCKS uses links and different

similarity measures instead of distance measure. It can also handle outliers. Finally,

ROCK uses random sampling and labeling techniques, which makes it a good approach

to deal with very large data sets.

Table 2.1 provides a summary of characteristics of these three well-known algorithms,

namely BIRCH, CURE and ROCK. Our investigation regarding such clustering ap-

proaches for big data can be summarized as follows. BIRCH is suitable for large data

sets where finding spherical shape clusters in a linear time is required. CURE can be

used to search arbitrary-shape clusters of numeric data in a large data set. CURE is

robust against outliers. Furthermore, CURE can fit within available memory since a

random sample of a large data set is chosen to perform clustering. ROCK will tackle the

presence of categorical data in large data sets.

Table 2.1: Characteristics of BIRCH, CURE and ROCK clustering algorithms

Algorithm Type of
data

Cluster
shape

Time complexity Space complex-
ity

BIRCH Numerical Spherical O(N) -

CURE Numerical Arbitrary O(N2
sample log Nsample) O(Nsample)

ROCK Categorical - O(N2
sample log Nsample+

N2
sample +kNsample)

O(minn2,nmmma)

2.3.1.2 Partitioning Clustering

In partitioning clustering algorithms, a data set is partitioned into k partitions with n

objects within each partition using a predefined objective function. Minimizing square

error function is as an objective function which is computed as shown in Equation 2.9.

(2.9) E =ΣΣ‖p−mi‖2

where p is a data point in a cluster and mi is the mean of the cluster. As the centroid-

based algorithm considers all possible partitions, this is not practical for large data sets

due to its high computational complexity. Hierarchical clustering algorithms cannot undo
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in their clustering phases, meaning that if two clusters are merged, it is not possible to

obtain the two original clusters (existing before the merge operation) by splitting the

merged cluster. Therefore, a few heuristic methods are used to deal with this issue, such

as k-means and k-medoids. In partitioning algorithms, it is possible to move an object

from one cluster to another to improve the clustering quality conversely hierarchical

clustering algorithms. However, if a point is near to the center of another cluster, it maybe

cause an overlapping problem. Here we summarize some of the well-known partitioning

algorithms and we briefly explain how they deal with very large data sets.

K-Means [38], [37] is probably one of the best known partitioning algorithms. It divides

data objects into k partitions in such a way that each object is assigned to the nearest

cluster center. This operation is continued until all data objects have been visited; then

the centroid is recalculated to achieve better clustering. The number of clusters (namely

k), cluster initialization and distance metric are user-specified parameters, in which

selection of k is the most challengeable task. Therefore, K-means is a heuristic algorithm

and is run several times to find better partitions with the smallest squared error since

it aims to minimize the within-cluster sum of square. K-means is a greedy algorithm

with time complexity of O(TKN), where N is the number of objects, K is the number of

clusters and T is the number of iterations. T and K can be ignored since they are negligi-

ble in comparison with N. Therefore, a K-means algorithm is scalable and suits large

data sets because of its linear complexity. However, the numbers of clusters need to be

defined in advance: K-means has limitations when dealing with outliers and discovering

a non-convex cluster's shape.

K-means is also not suitable for categorical data and usually terminates at a local

optimum. K-means utilizes the Euclidean distance so spherical clusters are found in

this way. However, it is based on Mahalanobis distance to discover hyper-ellipsoidal

clusters [39] with a higher computational cost. Several extensions of K-means were

later proposed to deal various aspects, such as cluster size, merge and split operations.

ISODATA (Iterative Self-Organizing Data Analysis Technique) and FORGY as proposed

in [40] and [36] respectively are some examples which were proposed in the field of

pattern recognition. In [40] and then [41] some changes in K-means are made in terms

of type of clustering (hard, in which each object belongs to just one cluster, in contrast to

soft, in which each object can belong to multiple clusters). This is called Fuzzy c-means.

Another approach is proposed in [42] to make Fuzzy c-means and K-means faster through

data reduction by replacing group examples with their centroids before clustering. Bisect-
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ing K-means [43] is another example, which divides data recursively into two clusters at

each phase.

Another interesting extension of K-means is presented in [44], which applies kd-tree

to discover the closest cluster centers. In [45], x-means is proposed to define k using

Akaike Informatio Criterion (AIC) or Bayesian Information Criterion (BIC). Finally,

Kernel K-means [46] and Kmedoid [47] are two other extensions of K-means.

CLARA (Clustering LARge Applications) [47] deals with the deficiencies of the

above clustering algorithms using PAM (Partitioning Around Medoid) algorithm [47],

which has a time complexity of O(k(n− k)2), where k is the number of medoid objects

and n is the number of non-medoid objects. Despite the attempt to fix the limitations of

clustering algorithms, PAM is not an appropriate algorithm to be used with large data

sets because of its time complexity. PAM is a medoid-based clustering algorithm. Medoid

is a data point located roughly in the center of a cluster. PAM starts by finding k medoids

randomly as representatives of each cluster and form k clusters. Then through the use of

a brute force approach, it finds the best k medoids between all pairs of the entire data

set to perfectly cluster k partitions. Obviously this is the reason for its high complexity.

CLARA benefits from the PAM algorithm by applying it to a random sample of the data

set instead of the whole set. CLARA takes multiple samples from the data set and then

applies PAM on each sample to find the best k medoid among the sampled data. After

that, CLARA attempts to discover the most similar data points to each k medoid from

the entire data set to form k clusters. However, there is no guarantee that CLARA can

find the best k medoids during the sampling process and also does not achieve the best

clustering. As mentioned, the problem with PAM is that it stores all pair-wise distances

between objects: this is space consuming and is not an option to apply to large data sets.

However CLARA does not consider the whole dissimilarity matrix through sampling,

which leads to achieving linear complexity in terms of time and space. So CLARA can be

applied to large data sets.

CLARANS (Clustering LargeApplications based upon Randomized Search) [48]
is an improved version of CLARA in terms of quality and scalability. This can be applied

to large and high dimensional data sets since it uses a randomized search to cluster

data points. CLARANS is also suitable to find polygon objects. The clustering process

in CLARANS is similar to a search process in a graph. Each node in the graph is a

representative of a set of k medoids. Two nodes are neighbors if their set of medoids
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differs by one. The algorithm starts with a random node and max-neighbors are checked

in a random way to find a better partition. If the neighbors provide a better partition,

this process resumes with a new node; otherwise, the search stops by finding a local

minimum. This iteration continues to find several local optimums, and the “best” local

optimum is considered to be a clustering output. CLARANS and CLARA are similar in

terms of sampling. However, there is a difference between them when choosing samples

from a data set. Although CLARANS does sampling for a set of neighbors of a node and

does not consider all neighbors of a node, it does not restrict a search to a localized area.

This means that CLARA draws a sample from the whole data set and then works on

the selected sample, while CALARANS draws a sample of neighbors and dynamically

changes this sample and so works on all data sets not just on a particular sample of

the entire data set. Since CLARANS considers the local area at each step, it can detect

outliers more precisely than CLARA and is more resistant to dealing with increasing

dimensionality.

Table 2.2: Summaries of some of the characteristics of K-means, CLARA and CALARANS

Algorithm Type of
data

Cluster
shape

Time complexity Space complex-
ity

K-means Numerical Spherical O(NKd) O(N +k)

CLARA Numerical Arbitrary O(k(40 + k)2 + k(N −
k))+

-

CLARANS Numerical Arbitrary Quadratic -

Table 2.2 summarises some features of K-medoids, CLARA and CLARANS in terms

of complexity, data type, and cluster shape. These three partitional clustering algorithms

can be applied to large numerical data sets. However, K-means is appropriate to find

clusters of a spherical shape, while CLARA and CLARANS can find any arbitrary shape

clusters. For clustering large data sets, CLARANS demonstrates better quality and

efficiency than CLARA in discovering clusters, but fails to enable clustering in a very

large data set because of its quadratic time complexity.

2.3.1.3 Density-Based Clustering Algorithms

In Density-based algorithms, clusters are created based on highly dense areas over the

remainder areas and the sparse areas are classified as noise or border areas. In this

way, they can deal with outliers and non-convex shape clusters. Some of the most-used
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density-based algorithms for large and high dimensional data sets are DBSCAN, DB-

CLASD, GDBSCAN, DENCLUE and OPTICS, which are briefly explained next.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [49]

defines clusters using the concept of density reachability. Simply, a point q is directly

density-reachable from a point p if this is not farther away than a given distance. eps

and the minimum number of points (MinPts) are critical factors for DBSCAN to gener-

ate a cluster. This algorithm starts with a random or arbitrary point, and if sufficient

neighbors are surrounded within the range of eps-neighborhood of a selected node, a

cluster is then formed. Otherwise, the point is considered as noise. However, a rejected

point (noise) may be reconsidered as a part of a cluster if it meets specific conditions. If

a point is found to be in a dense part of a cluster, its eps-neighborhood is also part of

that cluster. Hence, all points that are found within the eps-neighborhood are added, as

are their own-neighborhoods when they are also dense. This process continues until the

density-connected cluster is completely found. Then a new non-visited point is retrieved

and processed, leading to the discovery of a further cluster or noise.

DBCLASD(Distribution Based Clustering of Large Spatial Databases) [50] is

an incremental density-based clustering algorithm that uses a uniform distribution of

data points in a cluster. Nearest neighbor distance is a key parameter through which

clusters are formed. This algorithm builds clusters incrementally, meaning that it does

not require the whole dataset to be loaded into the memory and it processes each data

point on time. It is also called online clustering. Arbitrary shape clusters are discovered

in this algorithm and it does not need any input parameter. Because of this, it is called

an independent user-specified parameters algorithm. However, the problem is that it is

an order-dependent algorithm.

GDBSCAN (Generalized Density Based Spatial Clustering of Applications with
Noise) [51] is a generalized version of DBSCAN. Two definitions are changed in this

algorithm. First, it changes the definition of neighborhood by a symmetric and reflexive

binary predicate. This means that any binary predicate which is symmetric and reflexive

can define a neighborhood such as intersect predicate to identify a neighborhood in a

polygon. The second change, to obtain cardinality of a neighborhood, uses other mea-

sures such as non-spatial attributes instead of directly enumerating data objects of a

neighborhood's object.
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DENCLUE (DENsity-based CLUstEring) [52] is based on the idea that every data

point has an impact within its neighborhood, which is mathematically modeled through

influence function. In addition, the sum of influence functions are computed to obtain

density attractors that are local maxima of the overall density function to define clusters.

DENCLUE is robust against noise and outliers. It can handle arbitrary shape clusters in

a high dimensional data set. It is faster than DBSCAN since it uses grid cells and just

keeps information of grid cells in a tree-structure access. In spite of all these advanta-

geous, DENCLUE needs to choose the density parameter and noise threshold carefully

since they have a remarkable impact on the clustering quality.

OPTICS (Ordering Points To Identify the Clustering Structure) [53] is an algo-

rithm for finding density-based clusters in spatial data. The rationale behind OPTICS is

similar to DBSCAN, but it addresses one of DBSCAN's major weaknesses: the detection

of meaningful clusters in a variable density data set. To do so, the points of the database

are (linearly) ordered such that points which are spatially closest become neighbors in

the ordering. Additionally, a special distance is stored for each point that represents the

density that needs to be accepted for a cluster in order to have both points belong to the

same cluster. This is represented as a dendogram.

Table 2.3: A comparative study of the various clustering algorithms.

Algorithm Type of
data

Cluster
shape

Time complexity

DBSCAN Numerical Arbitrary O(N log N)

DBCLASD - Arbitrary Roughly 3 times of DBSCAN

GDBSCAN - - O(n∗runtimeof aneighborhoodquery)

DENCLUE Numerical Arbitrary O(N log N)

OPTICS Numerical Arbitrary O(N log N)

Table 2.3 summarizes some the features of the above density-based clustering algo-

rithms. As seen, they can be applied to large data sets including numerical data. All of

them are capable of finding arbitrary-shaped clusters.
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2.3.1.4 Grid-Based Clustering Algorithms

Grid-based clustering algorithms generate a finite number of cells by quantizing data

space and making a grid structure to perform the clustering process on it. Since these

methods are dependent on the number of cells in each dimension and not on the number

of data objects, their processing time is very fast. STING, CLIQUE, GRIDCLUS, Wave

Cluster, FC and OptiGrid are examples of well-known grid-based clustering methods

applicable in large and high dimensional data sets.

The main idea behind grid-based clustering methods is taken from [54] and [55] and

can be summarized as follows:

1. “Creating a grid structure, i.e., partitioning the data space into a finite number of

non-overlapping cells;

2. Calculating the cell density for each cell;

3. Sorting the cells according to their densities;

4. Identifying cluster centers, and;

5. Traversing of neighbor cells”

Also mentioned in [56], some of the main characteristics of the grid-based methods are

as follows: (1) no distance computations; (2) clustering is performed on summarized

data points; (3) shapes are limited to union of grid-cells, and (4) the complexity of the

algorithm is usually O( number of populated-grid-cells).

• STING (Statistical Information Grid-based clustering) [57] decomposes the spatial

data into rectangular cells and is represented by a hierarchical tree. Like BIRCH,

STING makes data summaries in this way so statistical information such as mean,

maximum and minimum values, standard variation and distribution type are

stored in each cell. STING is a query-independent method since grid-cells store

statistical information as summary information which is independent of the query.

Incremental updating and parallelization are suitable for this grid structure. In

addition, Time complexity of STING is O(K), where K is the number of grid cells

at the lowest level. Despite all advantage of STING, its performance depends on

the granularity of the bottom layer of grid structure. Moreover, created clusters

are enclosed horizontally or vertically, not diagonally, which affects the quality of

clustering.

27



CHAPTER 2. LITERATURE REVIEW

• WAVECLUSTER [58] is originated from signal processing. It transforms spatial

data into a frequency domain to find a dense area in the frequency domain. In

this way, different clusters with different resolutions and scales are obtained. The

computational complexity of wavelet transformation is O (N), where N is the

number of objects in the data space. WaveCluster can handle outliers and works

very well with high dimensional spatial data. It is able to find arbitrary shape

clusters. Moreover, it does not need to know the number of clusters in advance.

• GRIDCLUS [59] is used on the space surrounding the data values instead of the

data by taking benefits from a multidimensional data grid. A neighbor search

algorithm is applied to cluster blocks organizing patterns. This algorithm consists

of five main steps: (1) insertion of points into the grid structure, (2) calculation

of density indices, (3) sorting the blocks with respect to their density indices ,(4)

identification of cluster centers, and (5) traversal of neighbor blocks.

• FC [60] is a self-similar clustering algorithm in which self-similarity is measured

by applying the concept of fractal dimensions through the Hausdorff dimension.

FC incrementally adds points to the cluster and after clustering, there is no radical

change in the cluster's fractal dimension. Since the space is partitioned into the

cells of a grid, it is counted as a grid-based clustering algorithm. FC scans the

data once and it is a suitable clustering algorithm for large data sets and high

dimensional ones. It can handle noise and can also discover clusters of arbitrary

shapes.

• OptiGrid [61] uses a grid clustering algorithm that is applied to high dimensional

data sets. It runs in the way that the whole data set is recursively partitioned into

different subsets to find optimal grid partitioning. “Optimal” grid partitioning is

achieved by finding a good cutting plane for each cluster recursively through a set

of contracting projections.

• CLIQUE (Clustering In QUEst) is proposed in [62] in which subspaces of k-

dimensional data set are defined to find their dense areas to present a cluster

in k-dimensional data space. It identifies subspaces of a high dimensional data

space to achieve better clustering than the original space. To find dense regions in

a subspace, each dimension is divided into equal intervals. A dense area is found

when the number of data points in this area exceeds a defined threshold. Also, a

cluster in a subspace is a maximal set of connected dense units. Therefore, after
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identifying subspaces containing clusters, it finds dense areas and connected dense

areas in all subspaces of interest, and then through the MDL principle, clustering

is terminated. CLIQUE automatically identifies subspaces; it is not sensitive to the

size of input and the number of dimensions and can scale linearly. However, it is a

simple method that causes loss accuracy in the clustering (as shown in Table 2.4).

Table 2.4: Comparisons of time complexity and applicability of clustering algorithms for

high dimensional data.

Clustering
Algorithms
for large data
sets

Capability to
apply in high
dimensional
data

Time complexity

Wave Cluster No O(N)

STING - O(numberof cellsatthebottomlayer)

FC Yes O(N)

CLIQUE Yes Linear with the number of objects and

quadratic with the number of dimen-

sions

OptiGrid Yes Between O(Nd) and O(N log N)

To conclude this section on clustering algorithms, the reader may refer to some other

interesting studies [63], [64], [65]. This section, however, has focused on analyzing some

specific algorithms that can be used for very large data sets.

2.3.2 Sampling

The definition of sampling taken from the Merriam Webster dictionary is, “the act,

process or technique of selecting a representative part of a population for the purpose

of determining parameters or characteristics of the whole population.” Based on this

definition, sampling can be considered as a summarization technique that can reduce

time and space by observing only a part of the whole data set but which remains

informative, instead of considering the entire data set.

With the advent of digital technology, many data storage systems bear a huge volume

of data that need to be processed and analyzed to meet users 'requirements. However,

considering this huge amount of data demands a lot of time and cost. So in order to

tackle these issues, sampling techniques have been widely applied in many research

29



CHAPTER 2. LITERATURE REVIEW

areas such as data mining, data management, query optimization, approximate query

answering, statistics estimation and data stream processing which meet the purposes

of summarization. Therefore, before explaining different sampling techniques, for the

reader to better understand sampling techniques, some preliminary descriptions are now

provided.

• What is a sample? A sample is representative of a larger group (population) which

preserves the same characteristics of the population and a study is conducted on

the sample instead of on the whole population.

• What is population? Population is a large group of data from which the sample is

taken for study.

• What is a frame? Sampling is performed on a special set of the population: this is

called a frame.

• What is the aim of sampling? Generalization of an induction derived from a data

collection (sample) to the population is the main goal of sampling.

• What is sampling error? Since statistical characteristics of a population are il-

lustrated by a sample, one expects to encounter a sampling error, which is the

difference between the sample and the population or, in the other words, from

statistics and optimization study, statistical error is the difference between the

observed value (sample) and the unobserved value (population).

• What is sampling bias? Sampling with unequal probability of being selected as

individual data points (sample) from a data set (population) is indicated as bias

sampling which is a non-random sampling.

With these explanations, let us consider the different sampling methods. There are

various sampling techniques that meet different aims of a wide range of applications.

However, most use the following steps to take samples from a data set.

• Define the population (N) to be sampled.

• Determine the sample size (n).

• Establish controls for bias and error.

• Select the sample.
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There are, some factors that need to be considered when in selecting a sampling

technique. These include degree of accuracy, research objectives, resources, time frame,

knowledge of population, research scope and statistical analysis requirements.

This section reviews some of the primary sampling techniques and their extensions,

looking back at their summarization aspect. To avoid confusion, we will use the terms

data set and population interchangeably throughout this section. In general, sampling

techniques are categorized into two main groups of probability-based and non-probability-

based sampling. Sampling algorithms that give an equal chance of being selected to

all data points are considered as probability or unbiased sampling. Biased sampling

algorithms, on the other hand, consider data points with different probabilities of the

literature on probability and non-probability sampling techniques, the most common

methods of probability-based sampling are simple random sampling, systematic sam-

pling, stratified sampling, and clustering sampling. The most common non-probability

sampling techniques are accidental sampling, quota sampling,snowball and purposive

sampling. All these techniques are described below.

2.3.2.1 Probability Sampling

Simple random sampling [66] is one of the basic sampling techniques in which the

probability of being chosen for each individual data point as a sample is as equal as other

data points in the data set. Simply, every data point has an equal chance to be selected

as a sample. The data points are numbered from 1 to n from which a sample including

some random number is chosen. Simple random sampling can be performed in two ways:

with and without replacement. In the former, every time a data is drawn from the data

set, this is replaced to the data set and may be re-selected with the same probability in

the next round. In the latter meaning, every data point can be selected only once: after

being selected, it is removed from the data set and is not considered any more.

The advantage of random sampling is that it is really easy to perform with minimum

insight from the data set in advance. However, it needs to have a list of all the population.

There is a broad study of random sampling for various applications in the literature. We

briefly review some of them in this section. In the context of large, very large or big data

sets, analyzing and processing such large data takes time and sometimes it is not possible

to store the whole data set such as a data stream. Therefore, to accelerate performance

of these tasks, random sampling (which does not require pre-knowledge of data) can be

helpful in this way to efficiently process and analyses data and be performed on a small

part of the entire data (sample) which is still informative and accurate. An approximate
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answer can be obtained more rapidly instead of considering the massive volume of data.

Therefore, sampling can be considered as a good summarization technique for big data.

Random Sampling with Reservoir [67] solves the issue of selecting a sample size of

m without replacement, randomly from a data set of size N (N elements), where N is

not known in advance. It is an extension of random sampling that is one of the classical

uniform schemes, and is also an infrastructure for many uniform sampling methods such

as concise sampling, dynamic inverse sampling, chain sampling and distinct sampling.

In the sampling algorithm, a reservoir maintains a fixed size, uniform and random

sample of k that is drawn during a sequential pass through the data set. This means

that the first n data points are added to a reservoir. Then, by arriving n+1th data point,

one of the existing data points in the reservoir is randomly chosen to be deleted and

therefore makes space for new data points in the reservoir, since the size of the reservoir

is fixed and it is required to keep it constant. The unbiased reservoir random sampling

is performed with average CPU time of O(n(1+ log N
n )).

In [68], the authors also proposed an online algorithm to choose a sequential ran-

dom sample of n from a data set of size N with minimum memory requirements. A

sampling method is described [69] to summarize data traffic in vehicle-to-vehicle (V2V)

space. Previous sampling methods (such as sliding Window, Reservoir Sampling and

Exponentially-biased reservoir sampling) consider incoming traffic flows that are increas-

ingly ordered based on data arrivals; therefore there was a limitation in this context.

In fact, they investigated the case the data traffic in disorder because of transmission

delays and multiple sources. They extended the early sampling method and effected some

changes to make them compatible with disordered data streams. They also proposed

another sampling method, called Polynomially Biased Reservoir Sampling (PBRS), which

is applicable for multi-dimensional sampling tasks. In this way, a huge volume of traffic

data can be summarized to be considered as a data stream and used this summary to

predict upcoming traffic data and its conditions.

The reservoir sampling method is improved within DSS (distance-based sampling)

algorithm [70] for transactional data stream to cover the deficiency of low performance

of the reservoir in dealing with a small sample. They enhanced accuracy of reservoir

sampling by using and comparing Euclidean distance function and re-ranking steps in

an arriving new transaction to decide whether or not to include the sample.
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Acceptance/Rejective sampling is based on the Bernoulli design, where every data

point can be included in the sample. It is subjected to an independent Bernoulli trial

that has an outcome that could be Success (1) or Failure (0). Every data point can be

randomly included in the sample. Therefore, if the probability of success is shown by

p, the probability of failure is q = 1− p. Given n independent Bernoulli trials, then the

probability of m success is mathematically shown as follows, which is called Binomial

distribution.

(2.10) P(m)=
(

n
m

)
Pmq(n−m)

In Acceptance/Rejective sampling [71], a candidate is obtained where acceptance or

rejection of candidate depends on meeting some user-specified conditions. If it meets

these conditions, it is accepted for inclusion in the sample; otherwise, it is rejected and

the next candidate will be selected in turn for assessment to meet the conditions.

Chain sampling and priority sampling are two extensions of reservoir sampling

[72]. The problem is how to select a sample from a moving window of recent data. The

chain sampling deals with expired data in this way: a constant size sample of k is

taken from window size of W. Whenever new data i arrives, its chance to be taken as

sample is 1
min(n,w) and if so, then an index from domain of (i+1, · · · , i+n) is a candidate

to be swapped with i, when ith data point is expired and this process of finding a

substitute for a newly-arrived item is continued like a chain. This approach is applied on

sequence-based windows with space complexity of O(k logn).

They also considered the case where the window size is not constant and is time stamp-

based. A priority between 0 and 1 is allocated to newly-arrived data points and the

highest priority will be chosen to be included in the sample. The space complexity of

a priority algorithm is also not more than O(k logn) without any prior knowledge of size n.

Biased Reservoir Sampling Reservoir sampling is an unbiased sampling algorithm,

where data points have equal chances of being selected as a sample. This unbiased

sampling approach may have some deficiency in coping with evolving data streams.

Indeed, after some time, parts of a sample may be less related and therefore become

“useless” because of evolution of the data stream. Then, since recent history of evolving

data streams are considered more than the rest of the data stream, the probability of

their appearance in the sample should be changed and they do not have the same prob-
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ability over the other parts of data streams for sampling. A biased reservoir sampling

is proposed in [73] and employs a memory-less bias functions to use a replacement

algorithm in the occurrence of stream evolution.

Random Pairing As mentioned earlier, the Reservoir sampling method cannot deal

with expired data. This means that reservoir sampling can handle only updates and

insertions, but not deletions. To deal with this issue, a new sampling method is proposed

in [74], called Random Pairing (RP), to cope with deletions in a data set with stable size.

In this way, they add new data points to the sample to keep the size of sample constant

when a deletion occurs in the sample. They also considered growing data sets whose size

increase over time and proposed a resizing algorithm to control the samples growth over

time.

Concise and Counting Sampling These are uniform random sampling algorithms

[75]. Concise sampling is similar to the reservoir sampling having this difference: the

values which appear frequently in the sample are displayed as a couple of <value, count>

to save more space. This approach inserts a new data point to the sample with a prob-

ability of 1/T. If a newly-arrived item has been visited earlier in the sample, then the

count increases. By exceeding predefined sample size bound, the new bound T ′ is defined

such that T ′ > T, and the deletion of each data point with p(T/T ′) and insertion of subse-

quent data points to the sample with p(1/T ′) is performed to achieve uniform sampling

with lower overhead. Counting sampling [75] is an alteration of concise sampling with

different treatment to deal with exceeding the predefined threshold of the sample size. It

is more accurate than concise sampling. Later, Counting sampling was extended in [76]

through applying a tracking counter as an estimator to count and discover the high

frequency item set, sum and average and employing Bernoulli samples over evolving

multisets.

Weighted Random Sampling (WRS) [77]. Unlike uniform random sampling, where

each data point has an equal chance of being selected, data points in WRS do not have

the same probability. Therefore, data points are weighted and they are selected based

on their assigned weights. For example, WRS can be applied in a data stream that is

considered big data, to take a sample from the recent data streams since it is based on

weighting different parts of data streams. It is possible to choose a part of data streams

which has high weight according to recent data streams. There are various extensions of
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WRS in the literature, such as [78] and [79].

Congressional sampling method [38] is composed of biased and unbiased sampling

techniques which are called senate and house respectively. Data are divided into groups

and then a uniform sampling is performed on each group (house) and a biased sampling

(senate) is applied on the entire data set and then the two taken samples are combined.

They applied their proposed approach on group-by approximate query to enhance accu-

racy of group by query. Generating fast approximate answers to complex queries in very

large data warehouses can be achieved through pre-computed summaries of samples,

instead of considering the whole data warehouses that are very large and take too long

to find answers.

2.3.2.2 Systematic Sampling

Assume one wants to choose n samples from a data set with N data points. First,

systematic sampling [66] computes an interval so that K = N/n, where K is the size of

the interval. Then a random starting point is selected. Thereafter, the starting point and

K th data point from the starting point are picked as the first and second samples. This

process continues to pick every K th data point based on the predefined interval until

n data points are selected as samples. For example, for a data set with 20 data points

and 4 samples, the interval will be 20/4= 5. Therefore, a starting point will be selected

randomly from the first interval [1, 5]. Suppose that the third data point is chosen as the

starting point. Thereafter, every 5th data point is picked as a sample. So, 3, 8, 13 and 18

are chosen as the sample set. It should be noted that inappropriate selection of intervals

may cause that some patterns in the data to remain hidden.

An advantage of systematic sampling method is in the simplicity of sample selection

as well as its accuracy in comparison with random sampling. However, the chance of being

chosen for all data points is not equal and depends on the starting point and interval.

Systematic sampling can prepare enough samples if there is no pattern in the data.

It is a good option for web query analysis where fixed interval sampling is performed.

Some studies have concentrated their efforts to improve systematic sampling. Linear

systematic sampling in [80] and circular systematic sampling in [81] are also considered.

In [82], a modified, balanced circular systematic sampling when N = nk is suggested.

Another modification of systematic sampling, called FCFSSS (First Come First Served

following Systematic Sampling) [83], is proposed. This works based on conventional

systematic sampling with the difference being that it takes than one sample each time.
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2.3.2.3 Stratified Sampling

Stratified random sampling [66] divides the population into L non-overlapping sub-

populations called strata. A sample is then taken from each stratum individually and if

random sampling is employed in drawing the sample from each stratum, the method is

called stratified random sampling. The size of a sample is usually computed in different

ways for each stratum. One way is proportional to the size of the stratum, called optimal

allocation, aiming to maximize precision with minimum cost.

(2.11) ns = n∗[(NS ∗σS/sqrt(cs)]/[Σ(Ni ∗σi)/sqrt(ci)]

where ns is the sample size for stratum s, n is total sample size, Ns is the population

size for stratum s, σs is the standard deviation of stratum s, and cs is the direct cost to

sample an individual element from stratum s.

Another method is the Neyman allocation, where the size of the sample for each

stratum is defined based on the stratum size and its standard deviation with the aim of

maximizing precision with a given fixed sample size, which is defined as

(2.12) ns = n∗(NS ∗σS)/[Σ(Ni ∗σi)]

where ns is the sample size for stratum s, n is total sample size, Ns is the population

size for stratum s, σs is the standard deviation of stratum s.

Although categorizing and identifying proper strata is not easy and analysing results

is complicated in stratified sampling, it covers the population better than simple random

sampling. Stratifying a sample is easy and helpful to better analyse data for each group

with different characteristics. Accuracy of stratified sampling can be regarded. Stratified

sampling has drawn many observations and has been extended in many studies. Some

of these studies are cited accordingly.

• In a heterogeneous data stream, stratified sampling could be a good option to take

a sample from every sub-stream with different statistical properties. In this way, a

data stream is clustered as strata and then a random sample is taken from each

obtained homogeneous cluster or strata. In [84], an adaptive size reservoir sampling

method is proposed to regulate the size of reservoir since (as mentioned earlier)

the size of reservoir in conventional reservoir sampling is constant. Therefore, they

proposed the method to maintain the constant size of reservoir in some situations
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where the size of reservoir varies. They then extended their proposed solution to

adaptive multi-reservoir sampling.

• In [85], an adaptive stratified reservoir sampling (ASRS) is offered in which two

issues of optimal size determination of sub-samples of each sub-stream and uni-

formity maintenance of each sub-sample is addressed. They considered the first

issue by applying power allocation from [86] and for the second issue, they em-

ployed an alteration of their previously-proposed adaptive-size reservoir sampling

technique [84].

• In [87], a sampling algorithm is illustrated and called strata which is based on the

stratified sampling with the aim of drawing a sample to minimize the workload

error and is applicable to approximately answering aggregate queries.

• A recursive stratified sampling method is presented in [88] to apply association rule

and differential rule mining on the deep web. They draw a testable sample from

the deep web to discover rules. Then, a learning phase is established to find data

distribution and their relationship. At the end, the recursive stratified sampling is

executed on the deep web. Their approach outperforms simple random sampling in

terms of accuracy and cost.

2.3.2.4 Clustering Sampling

In the cluster sampling method, the population is grouped into mutually exclusive and

collectively exhaustive clusters, and later some clusters, not individual points, are picked

through random sampling. There are two kinds of clustering sampling: single-stage

and multi-stage. If clustering sampling is a single-stage, all data points of all selected

clusters are seen as samples. In the case of multi-stage kind, a random sampling method

is employed to select the data points from each chosen clusters in each stage. If clusters

are similar, the sampling error will be reduced. If the clusters are very different, the

sampling error gets larger so cluster sampling is not a suitable method in that situation.

It is worth noting that in stratified sampling, an individual data point is drawn from

each stratum as a sample but in cluster sampling, a cluster is selected and then treated

as a sample. Stratified sampling aims to increase accuracy while cluster sampling aims

to reduce costs with respect to boosting efficiency of sampling. The prominent advantage

of cluster sampling method over other methods is that it is cheap but at the expense of a

higher sampling error.
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Other Improvements and Applications of Probability Sampling Techniques
Many studies have been made within the scope of random sampling techniques with

different applications, some of which are now briefly reviewed.

In [89], the random sampling method was improved by taking advantage of generat-

ing a decision tree from a data set. In fact, the decision tree presents a knowledgeable

structure of a data set which may be very large. However, random sampling is a way to

summarize the data set but it may not present the general picture of the whole data set

very well through the samples taken. Therefore, they took advantage of both methods of

random sampling and decision tree to present a better picture of the entire data set in a

concise way. A method for online maintenance of an arbitrary sample size is investigated

in [90], in which a sample is drawn through random sampling without replacement, by

applying a suggested geometric file at the cost of O(ω× log |B|/|B|) random disk head

movements for the newly sampled record. In [91], a sampling method is proposed to take

a representative sample from a relational database considering data correlation. They

named their new sampling method as CoDs (Chains of Dependencies-based sampling)

through which a link of dependencies between data is extracted by considering foreign

key constraints. They employed histograms in order to simply depict these relationships

in distributed data, then they analyzed these discovered dependencies to take the sam-

pling. In [92], a sampling framework for parallel data mining was suggested. They aimed

to mine useful information from a large data base by finding frequent item sets and

sequential patterns. To achieve their purpose, they employed a pattern-growth algorithm

which is categorized as a divide-and-conquer algorithm since it projects and segments a

data base based on discovered patterns. Then they tried to balance distribution of work

load of mining tasks across processors. For parallel data mining, they needed to estimate

time mining of different tasks to achieve load balance, which they addressed by proposing

a selective sampling. They tested their parallel mining algorithm on a selective sample to

estimate the required time for each task and also to identify large items.Their proposed

selective sampling takes a sample from frequent items set by casting off a fraction of the

most and the least frequent items and not considering the last m ending items of each

sequence and also infrequent ones. There are some studies on sampling for approximate

query answering applications such as [93]. Other research considers maintenance of

dynamic data streams such as [94]. Discovery of association rules through sampling has

been investigated in many studies by [95], [96], [97] in which sampling approaches for

database files are reviewed.
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2.3.2.5 Non-Probabilistic Sampling

A few approaches relating to non-probabilistic sampling are listed as follows.

• Accidental sampling [98], also called convenience or opportunity sampling, takes

those data points from a data set as a sample that are more available or close

to hand. Therefore, the sample taken through this approach might not be a good

representative of the entire data set.

• Quota sampling [92] is a non-random sampling in which a data set or population

is divided into mutually exclusive groups. Then, through a judgment, samples

are drawn from each group satisfying a pre-determined proportion. In fact, quota

sampling is the non-probability case of stratified sampling. Quota sampling can

be evoked in some cases including when the time factor is more important than

accuracy, when budget is limited or when a sampling frame is not accessible.

• In purposive sampling [66], samples are taken from a specified population. It

means that the research focuses on sampling from a particular population. [99] is

an example of applying purposive sampling in social networks for the purpose of

recruitment.

• In snowball sampling, a data point or group of data points which are sampled

provide more data points to be sampled. Snowball sampling is useful in data mining

social networks, such as [100].

2.3.3 Compressive Summarization

Data compression represents data using fewer bits than are in the raw data itself,

through which resource usage such as storage space or transmission capacity is reduced.

This is categorized into lossless and lossy techniques. In the former, compression is

achieved by removing statistical redundancy and original data is retrieved after decom-

pression, while in lossy compression, compression is obtained by excluding inessential

data and recovering original data is impossible. Since much redundant data and similar

patterns in data can be extracted in compression, this is considered to be a summariza-

tion technique that can reduce the size of data and present a compact version that is

still informative and accurate. In other words, compression reduces the data size to save

space and communication costs, and to provide fast data transfer. Meanwhile, summa-

rization tries to give a compact version of the entire data to be analyzed. Therefore, this
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compact version can be obtained through compression techniques. Since compression

is considered to be as a data reduction technique in the context of data mining, much

research has focused on applying compression as a summarization technique in big data

sets. Although there is a broad range of studies on data compression such as video coding,

image coding, audio coding and text coding, we briefly consider the compression of event

sequences based on Minimum Description Length (MDL) considering summarization

aspects.

First, we consider the definition of MDL and then we review some studies focusing

on compression of event sequences based on MDL.

Minimum Description Length (MDL) traces back to the Occam's Razor principle.

This principle declares that among competing hypotheses, the hypothesis with the

least number of assumptions should be picked, from which it follows that simplicity

generally causes correctness. MDL [101] formalizes this principle principle so the best

hypothesis for a given set of data is the one that can achieve the best compressed data.

Rissanen [102] stated that the rationale behind MDL is finding regularities in the visited

data and the prosperity of detecting these regularities is evaluated through the length

with which the data can be explained. The MDL principle is “a relatively recent method

for inductive inference. The fundamental idea behind the MDL principle is that any

regularity in a given set of data can be used to compress the data, i.e. to describe it using

fewer symbols to describe the data literally.” [103]. sequences are massively generated

through monitoring systems and user activities

We shall next describe an event sequence and then explore some studies that have

designed a compression method based on MDL for the event sequences. Compression of

event sequences based on MDL is discussed in this chapter because event sequences are

massively generated through monitoring systems and user activities such as network

traffic and logging systems. To easily analyse these event sequences, a summarized

version of this large volume of data can be considered.

Event sequences are produced by monitoring user/system activities such as logging

systems and network traffic data. In order to handle and have a general picture of the

entire system behavior, some research attempts focus on finding comprehensive and

short summaries of the entire event sequence. Studies have presented a local picture of

a system's behavior. In general, there are two points of view:
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• local structure, and

• global structure.

It is also noted that in data analyses, event summaries have some properties such as

brevity and accuracy, global statement of data, local pattern recognition, and parameter

free.

A good solution to find short and accurate summaries based on the MDL principle

is described in [104]. This meets the aforementioned properties. The authors proposed

a summarization method, in which findings are an optimal segmentation and local

models are derived from MDL principles, as an optimization problem. Each sequence

is segmented into n intervals where events with similar frequencies are grouped to-

gether. Also, the probability of occurrence of different event types at each timestamp

is independent of the probability of occurrence of other event types and their segment.

This means that different event types can appear simultaneously. The authors tried to

segment an interval of event sequence into contiguous and non-overlay intervals. After

segmentation, a local model is computed as the one that can best describe data with

fewer bits in each segment. Two dynamic programming solutions were applied to find the

minimum total cost through a greedy algorithm, and the proposed segmentation method

reduces the compression ratio and also achieves the minimum overall description length

in polynomial time.

An extension of [104] is proposed in [105] by considering overlapping segments,

segments separated by gaps and presenting an event summarizer tool. However this

extended approach has some limitations. Firstly, the segmentation approach does not

consider the relationship between different models, and this is not a good option for

predicting future patterns. Moreover, it stores the same copies of models in an occurrence

of long event sequences: having many duplicated models leads to a low compression

ratio.

An event summarization method using MDL and the Hidden Markov Model (HMM)

is given in [106]: this captures both the global and local view of a system. An HMM

is learnt to portray the global relationships among the segments. An event sequence

is divided into disjoint segments based on the frequency changes of the events and

then modeled each segment in a way that overall description has being the minimum

length. Two types of models were considered: independent (Mind) and dependent (Mdep).

In the former, each segment is isolated from other segments. Conversely in the latter,

segments are correlated. Two different costs were considered to compute the final cost
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of encoding an event sequence: (1) the cost of encoding segmentation, and (2) the cost

of encoding event occurrences. The quality of summarization is evaluated through an

objective function. The problem of this method is that only the intra-correlation among

event types of adjacent segments is considered and the temporal information between

event types in a segment is not taken into account. They thus benefitted from the concept

of a machine state with the knowledge that system behavior within each state was stable.

To address the limitations of the methods suggested in [106], [107], Natural Event

Summarization (NES) was designed where inter-arrival histograms are used to exploit

pairwise temporal correlations among events. By applying disjoint histograms and using

MDL to encode histograms, event sequences are summarized. The temporal patterns of

the events, which can be periodic or correlation, are discovered through histograms and

then by employing multi-resolution characteristics of wavelet transformation, the size of

discovered histograms is shortened and the summary is visualized by an Event Relation-

ship Network (ERN). However, there are different possibilities of drawing histograms to

present correlation or periodic patterns between events, and employing MDL paves the

way to choose the most suitable histograms to explain an event sequence. Inter-arrival

histograms are applied to find correlations amongst event types. These histograms fa-

cilitate discovery of periodic and correlation patterns to describe temporal dynamics

of event sequences. Therefore, in this way they depict a histogram graph presenting a

relationship among event types. Then the histogram graph is encoded through finding

the shortest path from it. The Dijkstra algorithm is used to find the shortest path in a

polynomial time O(|D|2). To speed up the summarization process, the histogram graph

is pruned by employing a wavelet transformation relying on multi-resolution analysis

(MRA).

Contrasting with previous work, inter-arrival histograms are used as they can define

various boundaries of the segmentations of different event types. Thus pattern discovery

becomes more efficient and produces better summarization. After discovering patterns

in a sequence, the summarization results are provided through ERN.

Pattern mining has attracted much attention in the field of data mining. Finding a

small set of patterns is of particular concern as the characteristics of a large data base

could be presented in a small set of patterns instead of the whole discovered patterns.

This becomes an aspect of summarization-compression.

Two kinds of long pattern mining approaches are considered in the literature: max-

imal item sets [108], [109] and closed item sets [110]. The former is considered to

be a lossy compression, while the latter is seen as a lossless compression. In [111], an
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algorithm called Clo_episode is offered to pick a closed episode effectively through

pruning methods and minimal occurrence. Furthermore, some studies benefit from the

MDL principle to find short, beneficial and high quality sets of patterns to summarize

and compress data. These are now briefly reviewed. A two-phase MDL-based code table

mining approach is investigated in [112], called as KRIMP, in which a set of frequent

items is discovered. Then a pattern is selected from this set to improve the compression

ratio. In [113], a new version of KRIMP considered classification, where the issue of

having large frequent items set is verified at a low threshold by using specific heuristic

methods. A set of item sets, which compresses the database in a lossless and good manner,

is mined. The value of compression is determined by employing the MDL principle. They

achieved a set of frequent item sets with four orders of magnitude shorter than the

entire frequent item sets. Experimental results are extended in [114] for evaluating

other methods, and they proposed STREAMKRIMP in [115] as an extension of KRIMP

to discover changes in data streams. An alternative pattern mining of [112] is proposed

in [116] as one-pass approach, called SLIM. In contrast to KRIMP that finds the pattern

set from a chosen set of candidates, SLIM finds the best pattern set from data. In [117],

an event summarization algorithm is proposed in which serial episodes are discovered,

and a set of patterns is mined instead of individual patterns. They used MDL to choose

the best set of patterns that can describe a short and accurate summary of a database of

events. Sequential data are encoded through a set of patterns and employ two algorithms:

SQS-Candidates search (to choose an appropriate set of patterns from a set of candi-

dates) and SQS-Search (to find the appropriate set of patterns from a database). They

showed that event sequences can be summarized through finding a set of patterns which

are short and non-redundant. Finally, GoKRIMP [118] improves KRIMP by using two

heuristic methods to compress sequential patterns. There are other studies on mining

compressing sequential patterns such as [119].

2.3.4 Wavelets

Generally speaking, these transformations are mathematical functions (that project Set

X to Set Y) to make the “work” easier with the transformed set instead of the original one.

There are different, well-known transformations, such as Fourier transform and wavelet

transform that can be applied to a set of large data. In the context of summarization, a

wavelet transformation is mostly used to transform data and then make it possible to

construct a compact representation of the data in a transformed domain. As a wavelet

transformation can truncate the wavelet transformed data through saving the strongest
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wavelet coefficient and setting the other coefficients to zero, a compact version of data can

be achieved. This section provides the required background on transformation techniques

and then describes the wavelet transformations as a tool to build a summarized version

of massive data sets to achieve fast approximate answers.

From signal processing, the purpose of transformation is access to information in

signal that is not easily attainable from the original signal [120]. Many studies have

focused on the application of various transformations in different fields. One of the

most famous transformations is Fourier Transform (FT) [121]. FT can plot a frequency-

amplitude curve, meaning that spectrum frequency of a signal can be observed in a signal

by FT. However, FT is unable to present time when the spectrum frequency becomes

visible in the signal. Therefore, FT is a good choice in applications where “time” is

not an important factor, such as a stationary signal. A stationary signal is one whose

frequency does not change over time. Conversely, a non-stationary signal is one in which

the frequency is varied over time. Hence, other transformations through which time

resolution of frequency is observable were required.

Wavelet transformation allows the time-frequency of a signal to be represented

simultaneously. We first explain briefly what wavelet transformation is and then review

some studies that have applied wavelet transformations in their works, considering the

aspect of summarization for big data.

The definition of wavelet is a small wave and the wavelet transform is the process of

converting a signal into a series of wavelets through which signals can be stored more

efficiently than FT. As mentioned, FT only considers the frequency of signals, namely

frequency content and its amount are shown through FT, whereas time-frequency of

signals can be represented simultaneously by wavelet transforms. Therefore, a wavelet

decomposition is considered to be another compression technique that can be used to

create a summary of large data sets. In fact, wavelet decomposition is a mathematical

tool that is widely used in compression fields especially for image compression.

The rationale behind a wavelet is that a data vector V is transformed to a numerically

different vector of wavelet coefficients. The higher coefficients which have most compact

energy will be retained and the others will be set to zero, thus achieving compressed data.

In other words, wavelet transform provides a time-frequency representation of signal

by decomposing a signal into a set of basis functions (wavelets) which are orthonormal.

Wavelets are produced from a mother wavelet by dilation and shifting [120].

(2.13) ψa,b(t)= 1p
a
Ψ(

t−b
a

)
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where “a” denotes scaling parameter and “b” denotes shifting parameter.

Figure 2.1: Examples of Haar and Daubechies Wavelets (source [1])

DWT is a wavelet transform which is mostly used in data mining applications. The

properties of wavelet help data mining to present data efficiently. These properties could

be considered such as hierarchical decomposition, multiresolution decomposition, van-

ishing moment, linear complexity, and decorrelated coefficients. The Haar wavelet [122]

(1D and 2D), Daubechies [123] and multi-resolution transform are the most popular

transforms derived from DWT as seen in Figure 2.1. DWT decomposes a signal with

length of L into high and low frequency parts by applying low and high pass filters and

down and up sampling.

Simply speaking, a Haar wavelet also works in this manner that the first signal is

halved and an average of each pair of samples is computed. Then the difference between

the average and the sample is calculated and the first half is replaced with the average

and the second half is replaced with the difference as detail coefficients. This process

continues till full decomposition is achieved. For example suppose that we have a 1D

signal as [9 7 3 5]. The Haar wavelet transform is calculated as follows.

The first half is (9 + 7)/2 = 8 and the second half is (3 + 5)/2 = 4 so that we have [8 4].

Then, (8 + 4)/2 = 6 and (8 - 4)/2 = 2 so we get [6 2]. On the other hand, we have (9 - 7)/2 =

1 and (3 - 5)/2 = -1. Therefore, the Haar wavelet decomposition of signal [9 7 3 5] is [6 2 1

-1], where 1 and -1 are detail coefficients in order to reconstruct the original signal.

Having explained wavelet transform, we now provide an overview of the major

studies that take advantage of wavelets in data mining applications with the aim of

summarization and making a data synopsis. We will not explain each method, but a
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general view is given about the various techniques and their applications with the

purpose of data reduction and data summarization.

In large scale decision support systems (DSS), query processing plays an important

role. Sometimes, answers to queries do not need to be exact but approximate and rapid

answers will satisfy a user 's requirements. Therefore, many studies have focused on

proposing some data reduction mechanism to achieve compact sets of data to give

approximate answers to the queries from these synopsis sets which results in achieving

fast, approximate answers. Some of the proposed methods rely on wavelet based methods

to attain these compact sets.

In [124], probabilistic wavelet decomposition is proposed to find precise approximate

answers to queries. Since, approximate answers provided by wavelet decomposition

differ widely, there is no guarantee that the obtained answer is accurate. Therefore, in

contrast to conventional wavelet transform, each coefficient is allocated a probability that

shows its importance to preserve it for reconstruction. In [125], a Haar-wavelet based

histogram creates a synopsis of data to obtain accurate selectivity estimations for query

optimization. In [126], optimality of the heuristic method in [125] is also demonstrated.

A synopsis OLAP data cube is proposed in [127]: it applies multi-resolution wavelet

decomposition. They retained a compact set of wavelet coefficients over a data cube

for the approximate range sum queries considering space limitations. An extension

of that work regarding approximate query answering through wavelet can be found

in [128]. In [129], a general wavelet technique is presented to calculate a small space

representation for data streams. In [130], a new method to create wavelet synopses is

proposed, called hierarchically compressed wavelet synopses (HCWS). To build optimal

HCWS, a dynamic programming algorithm is presented to minimize the sum squared

error considering space limitations, and consequently increasing accuracy of the created

synopses.

The Haar wavelet decomposition can be used to minimize mean squared error and

other metrics such as relative errors in data value reconstruction. However, the main

purpose of the Haar wavelet is to minimize mean square error. In [131], [132] the

authors showed that these wavelet based synopsis approaches of different measures

may reduce the accuracy of approximate answering. Thus, they presented an idea of

extended wavelet coefficient and proposed new algorithms for creating extended wavelet

considering storage limitations and multi measure data (sum square and relative error

norms). An extension of this work can also be found in [133]. The study in [134] presents

some algorithms to create unrestricted wavelet synopses to achieve an “optimal” solution.
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A dynamic maintenance of wavelet-based histograms for data streams is considered

in [135] because if underlying data distribution is changed then maintaining accuracy of

histogram is not easy. Sampling and probabilistic counting are used in this approach.

In [136], the authors presented the first known streaming algorithms based on Group-

Count Sketch (GCS) wavelet synopsis for both one and multi-dimensional data, satisfying

polylogarithmic space usage, logarithmic update times and polylogarithmic query times

for computing the top wavelet coefficients from the GCS. In [137], wavelet synopses are

built for static and streaming massive data by using a greedy algorithm for maximum

error metrics. U-HWT algorithm is suggested in [138] to deal with uncertain data streams

through applying Haar wavelet decomposition. The accuracy of the proposed algorithm

was demonstrated via experiments and it was shown that a compact uncertain data

stream can approximate the raw data stream. There is another study about compact

representation of uncertain time series through hierarchical wavelet decomposition

in [139]. Also in [140], the authors considered the issue of constructing data summaries

through wavelet histogram in Map-Reduce. Haar wavelet-based synopses on probabilistic

data are investigated in [141] through applying dynamic programming. There are many

more studies about constructing synopses through wavelet decomposition, and the reader

can find some important ones in [142], [141].

2.3.5 Histograms

Histograms are a method used to represent a large volume of data in a compact manner

so they can be considered to be a data reduction or summarization technique. In fact, data

distribution can be shown in a synopsis structure through histograms. Mathematically

speaking, a histogram is a function xi that represents how much data are within the

disjoint ranges (bins/buckets) and represents the frequencies of data falling whitin these

ranges. This function can be shown graphically. The function xi satisfies the following

condition,

(2.14) Y =Σn
i=1X i

where Y is the total data and n is the total number of buckets or bins. Depending on

the type of data attribute, histograms can be depicted. If an attribute is nominal, then a

pole or vertical bar is displayed for each value of data. If the attribute is numerical, then

data is divided into buckets in which they are disjoint subsets of data. In other words,

data is divided into successive disjoint sub-ranges. For instance, a data attribute value
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within a range of 5 - 45 can be partitioned into 8 equal sub-ranges, as shown in Figure 2.2.

Each sub-range is plotted with a bucket or bin in which the width of the bucket is the

size of sub-range and the height of the bucket indicates the frequency of observed item

within the sub-range.

Figure 2.2: An example of a Histogram based on frequency and data value

There are different types of histograms. Some of the popular are categorized as follows.

• Equi-sum [138], also known as Equal-width histogram, categorizes continuous

ranges of attribute values into N equal intervals (buckets). The width of intervals is

calculated based on the maximum (Max) and minimum (Min) values of the attribute

as follows: W = (Max−Min)/N. Equal-width histograms have been employed in

many commercial systems. However, they are not suitable for skewed data.

• Equal-depth (frequency) histogram , also known as an Equi-height histogram,

is similar to Equal-width but with equal frequency in each bucket. In other words,

the range is divided into N intervals with approximately constant frequency for

each bucket, This provides which is a good option for range queries with low skew

data distribution but is not a proper option for commercial systems since bucket

boundaries computation is expensive [143], [144].

• V-optimal histogram categorizes the continuous set of frequencies into a set

of buckets to achieve minimum variance of the entire frequency approximation.
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Simply speaking, V-optimal considers all types of histogram for a given number of

buckets and picks the one with the least variance [145].

• V-Optimal-End-Biased histogram [145] groups the highest and lowest frequen-

cies into individual buckets while the other frequencies are located in a single

bucket. The advantage of V-optimal over Equi-depth and Equi-width is that it can

give a better approximation of original data with fewer errors. However, updating

a V-optimal histogram is not as easy as the others: sometimes it is necessary to

change the whole histogram and rebuild it.

• In MaxDiff histogram [146], data are first sorted and then the margin of each

bucket is computed considering adjacent values. The margins of buckets are deter-

mined where the difference between neighbor values is Maximum.

• Spline histogram [147] groups attribute values into contiguous buckets in which

the width of the bucket can be varied. Data distribution in buckets is not uniform

and is presented as a spline function instead of a flat value.

Note that these histogram methods are considered to be one-dimensional summariza-

tion techniques. There are also some multi-dimensional histograms, of which a few keep

a one-dimensional histogram for each dimension based on the attribute value indepen-

dence assumption (AVI) [148]. In others, the data is divided into d-dimensional buckets

such as GENHIST [149]. Many studies have been conducted to apply histograms with

the aim of fast approximate query answering, of which an example can be found in [150].

2.3.6 Micro-Clustering

Mining data streams has attracted much attention in recent years. Specific characteris-

tics of data streams such as being infinite and in real time lead them to be processed

as they arrive from different sources such as sensor networks and mobile devices. The

clustering of data streams is studied in this separate section of summarization methods

because micro-clustering techniques deal with real time summarization of data. One of

the early works in this area is described in [151]. Many studies considered one-pass clus-

tering over an entire data stream as not therefore being on user-defined time slices. Also,

since a data stream is infinite, it is impossible to store the whole data streams because of

memory limitations, so it would be beneficial to store a compact representation of data

streams. Therefore, a two-phase micro-clustering algorithm was investigated in [151]

for infinite and evolving data streams. The algorithm has two phases relating to online
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and offline situations. The summary statistics of data are collected in an online phase

and a clustering algorithm is then performed on these summary data. The proposed

algorithm, called CluStream, enables micro-clusters to store summary statistics in a

pyramidal time frame. The summary statistics are obtained as a temporal extension of

the cluster feature vector of BIRCH [31]. They added timestamps to the feature vector as

(
−−−−→
CF2x,

−−−−→
CF1x,CF2t,CF1t,n),where

−−−−→
CF2x and

−−−−→
CF1x are the same as SS and LS in CF

in BIRCH and CF2t and CF1t are the sum of squares of timestamps Ti1 · · ·Tin and the

sum of timestamps Ti1 · · ·Tin , respectively.

The pyramidal time frame is used to store micro-clusters that are captured at specific

instants and are called snapshots in order to answer the queries of user over different

time horizons. K-means is used to perform clustering in the offline mode.

After CluStream, other micro-clustering algorithms over data streams were proposed.

Some of these studies considered micro-clustering frameworks based on a density feature.

A density-based micro-clustering algorithm for a data stream, called DenStream, is

proposed [152]. Like CluStream, this has two online and offline components. It made

some changes in the concept of density that was used in DBSCAN by weighting areas of

points in the neighborhood. The proposed algorithm can find arbitrary-shaped clusters

and outliers by using p-micro-cluster, core-micro-cluster and outlier micro-cluster. They

also applied a pruning strategy with the purpose of emerging new clusters.

Another instance of two phase components is investigated in [153] and they proposed

D-Stream. A grid is built for each input data point in the online component. Then

arbitrary-shaped clusters are formed based on the grid density in the offline component.

In [154], SDStream was another online-offline framework based on CluStream. Since

the framework focuses on the most recent data, so sliding windows model [155] is used.

SDStream finds arbitrary-shape clusters as does Denstream. Therefore, they modified

and used the core micro-cluster and outlier micro-cluster which are recorded as an

Exponential Histogram of Cluster Feature (EHCF) in main memory. Micro-clusters

are discovered and removed through the value of t in Temporal Cluster Feature (TCF).

Clustering of discovered potential micro-clusters through DBSCAN in online mode is

performed in offline mode. rDenStream is suggested in [156], considering the concept of

outlier retrospect. It is a developed version of Denstream with three phases. rDenStream

is a good option for applications with large numbers of outliers since it stores rejected

outliers in an outside temporary memory in order to allow them to be included in the

clustering process with the aim of increasing accuracy of clustering. This phase is called

retrospect as a third phase of this algorithm. The other two phases are the same as
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DenStream. It is obvious that by adding the third phase to process the historical buffer,

the time complexity and memory usage will be increased in comparison with DenStream

which are also demonstrated through experimental results. However, its performance is

better than DenStream. In [157], C-DenStream is studied as a density-based clustering

algorithm for a data stream based on DenStream. They suggested their algorithm based

on the concept of static semi-supervised through and domain information in order to

achieve highly satisfactory results. Still more studies related to clustering data streams

are mentioned in the literature, such as AclueStream [158], OPClueStream [159] and

ClusTree [160]. Two extensive surveys on clustering data stream can also be found

in [161] and [162]. More detailed micro-clustering of data stream is available in [140].

2.4 Summary

In this chapter, we have described the concept of summarization. We also presented some

of the important applications of summarization techniques to illustrate the urgent need

for big data summarization in future. We provided an overview of some of the well-known

summarization techniques that could be useful for big data. Specifically, clustering,

sampling, compression, wavelets, histograms and micro-cluster were discussed in details.

In the next chapter, we investigate how compression-summarization techniques can

be used in e-medical applications to extract patterns and summaries across a stream of

images, where many similarities exist, to reduce storage and communication costs.
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3
SUMMARIZATION OF TWO-DIMENSIONAL ARRAYS

Every day a large number of two-Dimensional arrays (i.e. matrices) is produced

by graphical software such as Adobe photo-shop, video games, medical imag-

ing, robotics and automation, economics and geology, to represent their cor-

related/uncorrelated data in a tabular format. Among all these applications, medical

applications such as tele-medicine and tele-radiology are among the most significant

sources of generating voluminous two-Dimensional arrays (e.g. digital images), and many

challenges are associated with storage, retrieval and transmission of this amount of data

due to the practical limitations in communication bandwidth and constraints on time

and space. One way to tackle these limitations is to summarize data with the help of

dimensionality reduction and compression techniques.

In this chapter, we investigate and propose solutions to summarize and compact

these voluminous digital images, particularly x-ray images, to lessen the aforementioned

limitations. We have proposed two new compression-summarization frameworks to more

efficiently compact large medical images. Many similarities exist among a stream of

medical images. We extract these similarities using some machine-learning techniques to

improve performance of compression techniques as one of the methods of summarization.

More importantly, in computer-assisted diagnoses, the loss of any part of the information

contained in the data can be detrimental. Therefore, lossless image compression is the

method of choice for our approaches.
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3.1 Introduction

As medical imaging facilities move towards film-less imaging technology, conventional

storage and transmission of large-scale raw medical image datasets can be very expensive

and time-consuming. Lossless compression schemes play a crucial role in numerous med-

ical applications especially with the growth of e-health services provided online. Among

the most important applications are storage, retrieval and transmission of large volumes

of medical data which should be handled fast, without distortion, and over band-limited

channels. In this chapter, we start by showing that signicant amounts of correlation and

redundancy exist across different medical images. Such inter-image correlations can be

utilized to achieve better compression-summarization, and consequently less storage and

less communication overhead on the network. We propose here a novel memory-assisted

compression-summarization technique which can be used to complement any existing

algorithm to further eliminate redundancies across images. We introduce the concept

of learning-based coding by using source statistics to reduce redundancy of universal

coders. In particular, we show the power of the proposed framework by combining simple

Principal Component Analysis (PCA), as a learning stage, with existing lossless compres-

sion techniques. The proposed memory-assisted compression-summarization allows each

image to be processed independently from other images, and hence allows individual

image access and transmission. We targeted our work to medical digital images for the

following reasons.

1. The vital and crucial role of e-health applications in life today.

2. A publicly available X-ray image data set.

3. A voluminous number of X-ray images as 2dimensional-arrays.

The goal of this chapter is, firstly, to develop practical machine learning algorithms

that can first exploit both intra- and inter-image redundancies for a dictionary of medical

images. Secondly, we require that the algorithms allow individual (random) access to

images. In other words, when a retrieval request for an individual image is received,

the proposed algorithms should be able to retrieve the requested image without de-

compressing the whole database. We argue that the compression problem discussed

above can effectively be solved using the recently-developed “memory-assisted com-

pression” technique developed by the authors [163]. As such we discuss the adaptation

of well-known compression algorithms in the literature to this concept of memory-

assisted compression-summarization framework, which can be formulated as a two
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phase compression-summarization scheme. The first phase is learning, in which the

algorithm runs over a subset of images in the database, and extracts the commonalities

shared among all the images. Such information is stored and used in the next phase; the

memory-assisted compression. We note that, in several applications, the subset of the

images in the first phase is readily available. As one example, in telemedicine applica-

tions, where medical images are taken every day and transmitted over the network, the

images from the previous day can serve as the memory for the next day.

Our focus here is mostly on the second phase, i.e. the memory-assisted compression.

In the second phase, for compression of every image in the database, the common

information stored in the memory as data summaries is used to eliminate the inter-image

redundancy and only the residue is fed to traditional lossless compression algorithms.

We reiterate here that the proposed two-phase structures enable individual access to

all the images without the need to decompress the whole database and at the same

time, all the dependencies present among the images are used for efficient compression.

Indeed, we propose a novel memory-assisted compression technique, as a learning-based

universal coding, which can be used to complement any existing algorithm to further

eliminate redundancies across images. The approach is motivated by the fact that, in

medical applications, massive amounts of correlated images from the same family are

often available as training data for learning the dependencies and deriving appropriate

reference models. Such models can then be used for compression of any new image from

the same family.

We applied dimensionality reduction techniques, particularly Principal Component

Analysis (PCA) and Non-negative Matrix Factorization (NMF) on a set of images from

training data to form the required reference models. The proposed memory-assisted

compression algorithms allow each image to be processed independently of other images,

and hence allow individual image access and transmission.

3.2 Chapter Organization

The rest of this chapter is organized as follows. In Section 3.3, we briefly review some of

the related works relevant to our approach. Sections 3.4 describes required preliminaries

of our proposed algorithms. Section 3.5 describes the problem and introduces the basic

extraction algorithms using two well-known dimensionality reduction algorithms from

machine learning techniques, PCA and NMF. Section 3.6 discusses the proposed single-
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level and multi-level algorithms. Then, Section 3.7 discusses our experimental results.

Finally, Section 3.8 has some concluding remarks.

3.3 Related Work

Most of the literature on medical image compression focuses on reducing redundancy

within a single image [164]. However, only a limited body of research has considered the

possibility of extracting commonalities (similarities and correlation) among a set of im-

ages [165]. Indeed, some studies have shown that extracting cross-image redundancy can

significantly improve performance of traditional lossless compression techniques [166].

In this section, we first review some of published research on lossless image compression

based on individual medical images. Then we briefly review a few studies that focus on

extracting redundancies across a set of images.

3.3.1 Redundancy extraction within a single image

MacMahon et al. [167] proposed a form of adaptive blockCosine Transform coding, in

which considerable compression of digital radiographs with minimal degradation of

image quality is allowed. Their results obtained for chest radiological images showed

a compression ratio as high as 25:1. Ekstrand [168] presented a lossless compression

algorithm based on Context Tree Weighting (CTW). The algorithm performs optimally

in terms of redundancy for a wide range of data sources including medical gray scale

images. The results show enhanced performance compared to JPEG, JBIG, and CALIC.

Asraf et al. [169] proposed a novel hybrid lossy and lossless compression method using

neural networks, vector quantization, and Huffman coding. The method was tested on CT

(Computerized Tomography) images achieving a compression ratio of 5 to 10. A lossless

medical image compression method was presented by Kil et al. [170]. Their method

was based on redundancy analysis and segmentation of image into Variable Block Size

(VBS) in order to extract similarities and smoothness of blocks. It was reported that the

technique outperforms Huffman, JPEG-LL and lossless JPEG2000 by 10- 40%. Ghrare

et al. [171] introduced a lossless image coding algorithm based on pixel redundancy

reduction and using 2 matrices of gray-scale and binary. The algorithm achieved a

maximum compression ratio of 4. Miaou et al. [172] proposed an image compression

technique which combines JPEG-LS and interframe coding with motion vectors showing
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a better outcome than JPEG-LS alone. They tested their algorithm with six capsule

endoscope image sequences and improved the average compression by 13.3% and 26.3%

over JPEG-LS and JPEG-2000, respectively.

3.3.2 Redundancy extraction across a stream of images

The compression algorithms that exploit correlation within a set of similar images are

named Set Redundancy Compression (SRC) [166], and are categorized into four types:

1. Min-Max differential method (MMD)

2. Min-Max predictive method (MMP)

3. Centroid method (CM)

4. Multilevel centroid method (MCM)

In the MMD algorithm, two images are generated from a set of similar images to

extract redundancy. One image is called maximum and the other called minimum. The

former is created by searching the maximum pixel values among pixels of similar images

in the same position. Correspondingly, the latter is created by searching for the minimum

pixel values in the same position across the set of similar images. Then the original

image is subtracted from min and max images and MMD scans the image in a raster

order and saves the smallest difference value for each pixel position.

In the MMP method, max and min images are used for discretization of the original

image. Min and max images define the smallest and largest values for all images in

the set for every pixel in position i as lower bound and upper bound. Then the interval

between these two bounds is divided into N levels. Every pixel in position i of each image

will be represented as a level L i. MMP uses neighboring pixel levels to predict the value

of a pixel i since levels of neighboring pixels are mostly with high probability and are

close to each other.

The CM method takes the average of all similar images in a set to calculate the dif-

ference image. The histogram of difference image should be like a Laplacian distribution

where all pixel values are close to zero. The MCM method uses the same technique as

CM but multiple times. At each level it calculates the average image of difference images

from the previous level.

In summary, all SRC algorithms extract “interimage redundancy” [173] from a set of

images, then compress the residues from the same set of images. However, our proposed
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MAC techniques, in contrast, learn the common pattern (a.k.a. prototype or model im-

ages) from the training set, then use these to compress unseen images from the testing

set. Therefore, the ability to memorize the commonalities and exploit these to compress

unseen images is a unique feature of the proposed MAC techniques [164].

3.4 Preliminaries

In this section, we explain two machine-learning algorithms as techniques of dimension-

ality reduction, PCA and NMF, that we used in our framework to extract commonalities

across a set of similar images.

3.4.1 Principal Component Analysis (PCA)

PCA [174] is a statistical approach used to find an orthogonal transformation to decorre-

late random variables. The PCA technique has been extensively used in diverse signal

and image processing applications. It was originally introduced as a dimension reduction

technique. The technique starts with a set of observation vectors of dimension N. For

images, the columns are concatenated into a large vector of size N (number of pixels).

Let M be the number of observations in the training set:

(3.1) Xi = [p1, · · · ,pN]T,i= 1, · · · ,M

From these observations, the mean vector and covariance matrix are estimated:

(3.2) m= 1
M
ΣM

i (xi)

(3.3) C= 1
M
ΣM

i (xi−m)(xi−m)T

Let the mean-centered observations be represented by:

(3.4) wi = xi−m, i = 1,2, · · · , M.

The goal is to find a subspace whose basis vectors correspond to the maximum-

variance directions in the orthogonal space.
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Let W represent this linear transformation that maps the original N-dimensional

space onto a K-dimensional feature subspace, where normally K ¿ N. The columns of

W are the eigenvectors, e i, of the covariance matrix C. The eigenvectors are obtained

using eigen-decomposition of C, λi e i = Ce i and λi is the eigenvalue associated with e i.

For a given observation vector xi, the transformation results in a new vector yi given

by: yi =WT(xi −m). As the first few eigenvalues represent most energy in the data, we

usually select K to be much smaller than N. The original observation vectors can then be

reconstructed using the inverse transform. x̂i =WT +m.

3.4.2 Non-negative Matrix Factorization (NMF)

Technically, NMF [175] is an unsupervised dimensionality reduction technique which

identifies a set of non-negative components of an object and converts a data matrix into

the product of two smaller matrices. In its simplest form, NMF works as follows.

Assuming that an image database is represented by matrix Vn×m, where each column

is a vectorised image containing n non-negative elements (i.e. pixel values), and m is the

number of images in the set. NMF factorizes V into two matrices Wn×r and Hr×m, where

r is usually smaller than both n and m. More formally:

(3.5) Vi j ≈ (WH)i j =
r∑

k=1
WikHk j, subject toW,H≥ 0

where the columns of W are the basis images of size n, and each column of H is a

coefficient vector representing one of the m images.

To calculate the basis and coefficient matrices, both W and H are traditionally

initialized by random positive numbers. Then their elements are iteratively fine-tuned

according to the following assignments:

Wik ←Wik
(VHT)ik

(VHHT)ik
(3.6)

Hk j ←Hk j
(WTV)k j

(WTWH)k j
(3.7)

Note that any column of W can serve as a basis image. In this study, we only use

the first column as the template image reflecting the similarities of all images in the

training set. Actually, similarly to PCA, the energy contained in the first basis image

represents a large percentage of the total energy. Assuming that the images of training

and testing sets are strongly similar, as in Figures 3.1a and 3.1b, we expect that this

first basis image can also capture most of the redundancy in the testing set (see Figures

3.1e and 3.1f).
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(a) Sample Image T1 (b) Sample Image T2

(c) PCA-driven M0 (d) PCA-driven M1

(e) NMF-driven M0 (f) NMF-driven M1

Figure 3.1: Random sample X-ray images (a, b), PCA-driven template images (c, d) and
NMF-driven (e, f) template images.
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3.5 Problem Setup

The main rationale behind memory-assisted compression is learning source statistics at

some intermediate entities, then leveraging the memorized context to reduce redundancy

of the universal compression of finite length sequences. To the best of our knowledge, this

is the first attempt to use cross-image correlation in medical image compression. Indeed,

we propose to apply the concept of memorization with medical image sequences. The

basic problem setup in a telemedicine application is displayed in Figure 3.2. The source

contains a set of correlated medical images (e.g. Chest X-ray images) at the server node S

(e.g. the central hospital) that need to be encoded and transmitted to the destination node

(e.g. remote hospital) D through the network. We further assume that Hospital D has

already memorized a database of previously transmitted images in its database which is

also shared with S. In the absence of memorization, traditional compression techniques

can still be applied to transmit the sequence of images from S to D. Here, we argue

that the communication overhead to send the images from S to D can be substantially

reduced if memorized context is available to the encoder and the decoder.

We present two different scenarios to compare results of traditional lossless image

compression algorithms with our proposed memory-assisted compression algorithms.

1. First, we apply traditional but state-of-the-art logarithms to a set of medical

images. In this scenario,redundancy is only considered within a single image for

encoding and decoding it. The problem is that every single image is encoded without

considering other images in the same set leading to a low compression ratio and

additional overheads.

2. Second, we apply our memory-assisted compression algorithm using either PCA or

NMF within the same set of images. In this case, the encoder and decoder have

access to the memorized context for compression of new unknown images. We show

that we can obtain a significant improvement in compression ratio for lossless

medical images over state-of-the-art algorithms used in the previous studies.

3.6 The Memory-Assisted Compression Frameworks

In this section we discuss and describe our proposed single level and multiple level

compression frameworks in further detail.
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3.6.1 Single level memory-assisted framework

Consider a basic scenario in which a set of X-ray images is available at node S, and node

D requests one of the images, as shown in Figure 3.2. This scenario can be an abstraction

of a transmission problem or a storage and retrieval problem. Our benchmark is the case

in which each image is compressed individually and sent to D. Then, at node D, each

compressed image is decompressed independently. In the proposed method, the outcome

of the learning phase, called M, of memory-assisted compression is available at both S

and D. Then, using M, just the residuals of other test images are encoded at node S and

decoded at node D. The proposed memory-assisted lossless compression method consists

of two main phases :

1. Learning(memorization), and

2. Memory-assisted Compression (testing).

Train Set 

Test Set 

Encoder Decoder 

+ 

D - S 

Dimensionality Reduction 

Memorized 

(First Eigenface) 

Figure 3.2: The proposed single-level memory-assisted compression algorithm.

The main question now is how can we consider and model the memorization concept

from a set of gray-scale medical images?

The simple answer comes from the Karhunen Loeve transform (KLT) [176]. KLT is

shown to be the optimal orthogonal transform through which the energy (information)

contained in the signal is compacted. Indeed, with KLT, most energy is redistributed

over a small number of components, simply called eigenimages. These eigenimages are

obtained from the decomposition of the estimated covariance matrix. For our experiments,
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we simply use the PCA transformation matrix as described in section 3.4.1 to decorrelate

the images and remove inter-image redundancy.

For our experimental setup, the PCA procedure discussed above was first applied

to the training set of images. Once the training stage is completed, we move to the

coding stage. In this stage, test images are first projected over the PCA space. Using the

reduced PCA space, the test images are reconstructed. These reconstructed images are

close approximations of the original images. An error image is obtained by subtracting

the reconstruction image from the original test image. It is simple to show that the

pixel values of such an error image are uniformly distributed. As such, we can compress

error images in an optimized way using the traditional CTW, JP-LS, CALIC and bzip2

algorithms. This means that we only need to send the feature vectors as well as the new

compressed error images to the receiver. At the receiver, we first reconstruct the image

projection then add to it the decompressed error image. To evaluate the performance

of the proposed approach, we considered two scenarios and four generic compression

techniques. The compression techniques considered are: the CTW, JPEG-LS, CALIC and

bzip2 algorithms. The two scenarios are explained below.

• Scenario 1 (Comp): It denotes the case of using the CTW, bzip2, JPEG-LS, and

CALIC algorithms directly on the test set.

• Scenario 2 (PCAComp): Here, PCA is applied to a train set of images. Then, for

testing, the images are first projected and reconstructed using the PCA. Second,

the residual images are encoded using the CTW, bzip2, JPEG-LS, and CALIC algo-

rithms. At the receiver, the images are reconstructed using the decoded residuals

added to the PCA-reconstructed images.

In the next section, we discuss how we extended our MAC framework [164] by

improving its template extraction algorithm and adding an extra learning level. More

specifically, we substituted Principal Component Analysis (PCA) with Non-negative

Matrix Factorization (NMF). Although there are more constraints on NMF, the algorithm

better captures the similarities and hence enhances the compression rate. We also

extended our single level MAC framework to a multilevel framework. At the expense of

a linear increase in computational complexity, the multilevel framework outperforms

substantially its single level counterpart. We studied the sensitivity of the proposed

technique to the sizes of the training and testing datasets as well.
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3.6.2 Multilevel memory-assisted framework

In our previous MAC framework [164], we used a simple PCA algorithm [177] for

determining the projection basis. Technically, PCA transforms the data from the original

coordinate system into a new one such that the first coordinate (a.k.a. first component)

contains the largest variance of the data, the second coordinate contains the second

highest variation, etc. [177]. Despite its simplicity and effectiveness, a PCA application

is sometimes limited by a number of assumptions, including:

1. Linearity in the combination of basis vectors;

2. Importance of directions with the largest variance,

3. Orthogonality of principal components

In addition, the eigenvalue decomposition of the covariance (or correlation) matrix

for large size datasets (especially with large images) is usually a tedious task. Moreover,

the performance of the decomposition may drop when the images are noisy or sparse (as

in different biomedical imaging modalities).

To lessen some of the aforementioned difficulties, we propose a new MAC framework

as shown in Figure 3.3 in which Non-negative Matrix Factorization (NMF) [165] is used

for the template extraction phase. Technically, NMF is an unsupervised dimensionality

reduction technique which identifies a set of non-negative components of an object and

converts a data matrix into the product of two smaller matrices. Similarly to PCA, the

energy contained in the first basis image represents a large percentage of the total energy.

Assuming that the images of training and testing sets are strongly similar,as shown in

Figures 3.1a and 3.1b, we expect that this first basis image can also capture most of the

redundancy in the testing set (see Figures 3.1e and 3.1f).

A bold advantage of NMF over PCA is that it can be simply implemented using

iterative algorithms. This means a balance (or a compromise) between accuracy of the

approximation and speed of the algorithm can easily be achieved. Another advantage

that makes NMF more applicable to our scenarios is that NMF can be seen as a parts-

based representation. Unlike PCA, NMF representation is based on a positive-based

combination of the basis images which can be seen as “true” template images.

The second framework introduces the concept of multilevel feature extraction to the

MAC framework. Before explaining the details of the proposed multilevel framework,

let us briefly review the existing (i.e. single-level) MAC algorithm, originally proposed

in [164].
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In a basic sender/receiver scenario, we assume that a set of “similar” images T =
{T1,T2,T3, · · · ,T|T |} is available to the sender. This set of images can be used as the

training set. The similarities within the training set are captured using an eigenvalue

eigenvector decomposition of the estimated covariance matrix. Either the eigenimages of

PCA (see [164]) or basis images of NMF (see Section 3.4.2) can be used to represent the

whole training datasets.

Before any compression, the reconstructed image from PCA or NMF is subtracted

from the images that need to be compressed (so-called testing images). More formally:

(3.8) Ri = Ii −M

where Ri, Ii and M are the i-th residue image, the i-th image to be compressed, and

the reconstructed template image, respectively. Now, the sender compresses the residue

Ri (instead of the original image Ii), using any arbitrary lossless compression tool. Then,

it sends the compressed residue Ŕi to the receiver. At the other end, the receiver needs

to decompress each Ŕi to retrieve corresponding Ri, using the same lossless algorithm.

Then the template image M is added to each Ri to reconstruct all the original images

Ii ’s. Clearly, the more images to compress, the higher the improvement this method can

achieve.

The main steps of a multilevel MAC framework are very similar to the components of

the single-level MAC framework. The key difference between these two models is that in

the multilevel framework, the residue images from the previous levels are treated as the

next level "‘original" images. In other words, assume that M0 is the reconstructed image

learned from T (similar to M in single-level MAC). This means V in Equation 3.5 should

be constructed based on T . Then, the first set of residue images is defined as follows:

(3.9) R1
i = Ii −M0

At every level, the basis image M j (∀ j > 0) is obtained from R j = {R j
1,R j

2, · · · ,R j
|I |},

which is simply the set of all residue images computed at that level. This means for the

calculation of M j, the R j should be used to form V in Equation 3.5. The residue images

at the j-th level ( j > 0) can simply be computed as:

(3.10) R j
i =R j−1

i −M j−1

In the multilevel MAC framework, the sender only compresses the residue images

from the last level (i.e. Rl). Then it sends these along with all template images (i.e., M js).

Figure 3.3 illustrates the different steps of the proposed multilevel MAC framework.
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Note that adding any extra level yields to two contradicting objectives: On one

hand, each extra level reduces the energy of the last residue images and improves the

compression ratio. On the other hand, each level produces one more template image

which should be transferred (once per set). Consequently, to achieve the best result, the

number of levels should be carefully chosen.

In brief, the proposed NMF-based multilevel MAC encoder works as follows.

1. Learn similarities across a set of training images T by applying NMF. Store the

resulting template into M0 (see Section 3.4.2).

2. Get the input test image set I = {I1,I2,I3, · · · ,I|I |}.

3. Obtain residue-set R1 by subtracting M1 from I (see Equation 3.9).

4. Apply NMF on the residue-set from the previous level (R j−1) to obtain M j.

5. Calculate R j according to Equation 3.10.

6. Repeat Steps 4 and 5 until final residue-set (R l) is computed. Then go to the next

step.

7. Store M = {M1,M2,M3, · · · ,Ml}.

8. Apply any lossless compression algorithm on R l to obtain Ŕ.

In order to reconstruct the original image set (I ), the following steps must be taken.

1. Apply a decompression algorithm, which matches the compression technique that

is applied in Step (8), on Ŕ to obtain R l .

2. Add M j to each image of R j to yield R j−1.

3. Repeat step 2 until R1 is calculated. Then go to the next step.

4. Add M0 to each image of R1 to obtain I .
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Figure 3.3: The proposed Multilevel memory-assisted compression algorithm.

3.7 Experimental Results

In this section, we will discuss our experimental results of the single level and multiple

level frameworks respectively. Due to limited computation resources, we present results

only for one and two levels (i.e. for multilevel frameworks we adopt only 2 levels) For

lossy compression, we usually use the RMSE and a measure of performance, but for

lossless coding, compression efficiency is usually measured using a compression ratio.

Computational complexity is another factor that determines the efficiency of the method.

This can be the number of CPU cycles, number of hardware gates, or memory bandwidth,

etc. These are usually application dependent.
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In our work, we focused mainly on the compression ratio defined as the compressed

image size Scomp over the original image size So, i.e.

(3.11) CR= scomp

So

The CR represents the number of bits the scheme uses to represent each bit in the

uncompressed image. We calculated the CR for various compression schemes discussed in

Section 3.6.1. We also examined the performance of single and multilevel PCA-based and

NMF-based MAC methods. We also included the well-known Context Tree Weighting

(CTW) [178] technique as the non-memory-assisted baseline in the experiments on

multiple level frameworks. Since the superiority of the MAC technique (i.e. single level

framework) over traditional lossless compression algorithms has been shown in the

first set of our experiments in Figure 3.5, there was no need to compare the new MAC

framework (i.e. multiple level framework) to the traditional methods. Note that in all

MAC techniques, the same implementation of CTW is used to provide a fair comparison.

To study the sensitivity of the algorithms to the training and testing dataset sizes,

three different sizes (i.e. 10, 20, 30) and (i.e. 5, 10, 15) were examined for both training

and testing sets for single level framework, and further comparison of single and multiple

level frameworks respectively. Therefore, each method is run nine times, in total. Note

that for all cases, training and testing sets are completely exclusive.

The image database used is the JRST database which can be downloaded from [179].

It contains 154 nodule and non-nodule 8-bit Chest X-ray images with matrix size of

2048x2048 pixels. We selected a subset containing 20 Chest X-ray images. 10 images

were selected as our training set while the other 10 images were used for testing the

algorithm. The experiments were repeated 10 times by randomly changing the 20 images.

In the single level framework, the CTW, CALIC, bzip2 and JPEG-LS algorithms were

applied on the test set as our benchmark lossless image compression algorithms. We

display in Figure 3.4 the histograms of two typical images before and after applying PCA.

The entropy for the original image (Figure 3.4 (a)) was 4.83 and decreased to 2.35 for the

image after PCA decorrelation. We also show the histograms of the first eigen image and

residue image (i.e. residue of raw image after performing PCA) as shown in Figures (3.4

(b)) and (3.4 (c)) respectively, which clearly proves the maximum variance that such an

image can model.
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(a) Raw image

(b)1st eigenimage

(c) Residual image

Figure 3.4: Histograms of a raw image, first eigenimage, and single image after PCA
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Figure 3.5 displays a compression ratio for different lossless image compression

algorithms using both the Comp and the PCAComp scenarios. The compression ratios

(CR) for CALIC, CTW, bzip2, JPEG-LS were 0.18, 0.19, 0.24, 0.27, respectively. After

applying our memory-assisted algorithm, the compression ratio was improved by 17.79%,

27.67%, 14.90% and 14.84%, respectively. As can be seen, similar trends are observed

on the compression ratios of the CTW, CALIC and JPEG-LS algorithms. The CALIC, in

particular, achieved a slightly better CR than the others.

Figure 3.5: Compression ratio (CR) for traditional and memory-assisted algorithms with
different compression techniques.

We also considered a number of other experiments on different sets of training

images with various sizes for a single level framework. Figure (3.6) presents the average

compression ratio on three different sets of training images including 10, 20 and 30 chest

X-ray images. As can be seen, there is only a minor improvement in compression ratio

when we increase the size of the training set (number of images) from 10 to 30 images.

The highest compression efficiency is achieved for the CALIC and the JPLS algo-

rithms when used with the proposed PCAComp algorithm. By applying PCA on top

of CALIC and JPEG-LS, we obtained gains of 16.97% and 14.55%, respectively. These

reported gains are for training sets of 10 images. The same trend can be observed for the

image set of 20 and 30.
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Figure 3.6: Average compression ratio (CR) of memory-assisted compression algorithms
for different training set sizes of 10, 20, and 30.

To further analyze the energy compaction property of PCA, we display in Figure

(3.7) the compression ratios (CR) of memory-assisted techniques for CTW and CALIC

using a different number of eigenimages. As expected, few PCA components are indeed

important in the reconstruction. Actually, our experiments showed that more than 97%

of the total energy is contained in the first 5 eigenvalues (i.e.
Σ5

i=1
ΣM

i λi
> 0.95).

PCA-CTW 

PCA-CALIC 

Figure 3.7: Average compression ratio (CR) of memory-assisted compression algorithms
for different number of eigenfaces.
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(a) PCA-driven R1
1

(b) PCA-driven R2
1

(c) NMF-driven R1
1 (d) NMF-driven R2

1

Figure 3.8: Histograms of residue images of a randomly chosen X-ray image. Template
images are computed either by single-level/two-level PCA (a,b) or by single-level/two-level
NMF-based template extraction (c,d).

We ran further experiments on the same set of data set to compare the results of a

multi-level framework over a single level framework.

Figure 3.8 illustrates the histograms of the residue images of a randomly selected X-

ray image. The residues in Figures 3.8a and 3.8b are computed using PCA, whilst Figures

3.8c and 3.8d are produced using NMF-driven templates. A comparison between the

histograms reveals that both modifications (NMF and multilevel) narrow the distribution

of pixel values and increase the number of pixels with zero value.

Table 3.1 shows the entropies of raw image, and image after PCA and NMF recon-

struction with different levels. The table demonstrates a decreasing entropy trend of

raw image after decorrelation by PCA, NMF for different levels. It can be clearly seen

that the entropy of raw image is substantially decreased by NMF compared to PCA. This

means the resulting residue images can be compressed much more efficiently.
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Table 3.1: Entropy Results

Entropy PCA NMF
Raw image 6.7569 6.7569

M1 6.2984 7.1897
M2 6.1086 6.2888
R l 6.1118 5.0064
R2 5.6630 5.0050

The experimental results of all algorithms with nine different training/testing set

sizes are depicted in Figure 3.9. The bar charts compare the algorithms according to

the compression ratio improvements over the memory-less CTW [178]. Each sub-figure

depicts the relative improvement of the algorithms when applied on a fixed number

of training images. In contrast, different groups of bars within a sub-figure show the

performance of the algorithms when the number of test images varies. Note that in all

figures, larger values for compression ratio improvement indicate better performance.

As Figure 3.9 confirms, all variants of MAC framework improve the no-memory-

assisted baseline by at least 39%. Among all the variations, single-level PCA and multi-

layer NMF (i.e. NMF 2) demonstrate the least and the most improvements, respectively.

Indeed, the best performance among all variations is the multi-layer NMF-based algo-

rithm with 15 train and 15 test images (62.25% improvement).

By comparing NMF variations with similar PCA ones, we see that NMF-based algo-

rithms are the preferred algorithms. On the other hand, comparisons between single

and two-level methods reveals that the multi-level learning significantly improves its

single-level parent.

Another observation worth mentioning here is the fact that is when the number

of training images is fixed, any increment in the number of testing images results in

improvement without exception. This effect is more visible when the number of training

images is moderate (see Figure 3.9.b). For small and large training sets (e.g., Figures 3.9.a

and 3.9.c), the effect of the testing set size is superficial. In general, growth in the size of

training set enhances the compression ratio. However, there is one exception. Comparing

PCA-based methods (both one and two-level) in Sub-figures 3.9.a and 3.9.b shows that

when the number of images in the testing set is not large enough, increasing the number

of training samples from 5 to 10 has an adverse effect on the compression ratio. This

phenomenon is unique to PCA-based MAC and is not seen in NMF-based techniques.

Comparing Figure 3.9.b with Figure 3.9.c confirms that this surprising phenomenon is
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just an exception and does not recur when the number of training samples increases

from 10 to 15 images.

(a) |T | = 5

(b) |T | = 10

(c) |T | = 15

Figure 3.9: Comparing PCA, NMF, two-level PCA, and two-level NMF MACs to CTW.
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3.8 Summary

We discussed new methods for lossless compression using the concept of memory-assisted

universal coding. The proposed approaches are well suited to compress large datasets

of medical images especially for recurrent usage. The algorithms consist of a learning

phase followed by a testing phase. In the learning phase, PCA or NMF is performed

on training images to extract a set of eigenimages which are used to reconstruct the

different test images. The reconstructed images are simply represented (coded) by low

dimensional feature vectors. The error (or residual) images are then compressed using

traditional lossless compression algorithms such as the CALIC, JPEG-LS, bzip2 and

CTW algorithms. Our experimental results using the JRST database showed that the

performance of traditional lossless algorithms can be improved by an average of 20%

using the proposed algorithms. The proposed concept of using memory to enhance the

performance of universal coders is expected to have a major impact in areas where

images exhibit high correlation such as satellite images.
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MULTIPLE DATA STREAM SUMMARIZATION

Advanced technologies, such as sensor networks, social networks and medical

applications produce data streams. New data streams are continually being

received and these can mean huge storage requirements with limited processing

time. It means that as data is produced, it needs to be mined immediately in a single

pass, to be able to answer client queries with minimum response times [180]. In addition,

memory for storing arriving data is limited; hence data should be represented as a

summary [181]. Even ignoring memory constraints, accessing and maintaining compact

data is still a challenge. Having an appropriate data structure is a precondition to being

able to accelerate the process of mining streaming data due to memory/disk limitations.

For example, Figure 4.1 illustrates that maintaining data summaries in a tree data

structure will minimize average and worst case times required for mining operations (e.g.

searching for a proper cluster to insert a new data object). Moreover, data structures that

can support dynamic updates as data arrives (insertions and deletions, e.g. insertion of

arriving data objects from stream into the data structure) are preferred [2].

In the previous chapter, our focus was on covering "Data Volume" in big data by

summarizing large medical images. In this chapter, the main focus is on "Data Velocity"

as another characteristic of big data in both centralized and decentralized models by

proposing summarization frameworks to deal with speed of multiple data streams.
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Figure 4.1: The R-tree Family structure (Source: [2])

4.1 Introduction

With advances in data collection and generation technologies, such as sensor networks,

we now have environments that are equipped with distributed computing nodes that

generate multiple streams rather than a single stream. Mining a single stream data is

challenging, so mining multiple data streams becomes even more challenging.

Clustering is a well-known data mining and summarization technique and is a

fundamental problem in many fields such as data mining, data bases and machine

learning. It is a powerful tool to get insight into data and discover the structure of

data by grouping a set of similar objects with each other. Some studies have focused

on clustering multiple streams in a centralized fashion, while others have focused on

clustering multiple streams in a distributed model [182], [183] as shown in Figure 4.2.

In many cases, collecting voluminous data from different nodes to a central location

is impractical because it creates heavy traffic over limited bandwidth channels. Even

ignoring bandwidth limitations and scalability, privacy issues may forbid gathering of

the entire data set in a centralized third party. Environmental sensor networks are an

example of this distributed setting in which centrally tracking data distribution over all

sites is desirable.

Although many parallel and distributed clustering algorithms have been introduced

for knowledge discovery in very large data bases [184], [185], scalability of data stream

mining algorithms has reached its limitations. Therefore, development of more parallel

(concurrent) and distributed mining algorithms is needed.
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Figure 4.2: Centralized architecture vs Distributed Architecture.

Moreover, many classical clustering algorithms are designed for static data sets while

ongoing clustering of massive data streams is highly desirable in modern distributed

and continuous data acquisition systems. Thus, the dynamic nature gives rise to a new

challenge; data should be able to find its path in the clustering structure and update

clustering without restarting the process. If the distribution of new data eventually

invalidates the previously computed clusters, the structure should reorganize. In the

case of distributed clustering, updating master clustering and its reorganization is even

more challenging.

There have not been enough studies on clustering multiple streams either in dis-

tributed or in centralized models with the focus on speeding up the process of clustering

using appropriate data structure. Therefore, we have proposed two new frameworks

using an index data structure from the R-tree family [186] to cluster multiple streams.

• Centralized multiple streams clustering framework, and

• Distributed multiple streams clustering framework.
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In both frameworks, we have extended a clustering algorithm from single stream

clustering to multiple stream clustering.

1. Centralized multiple stream clustering: We have extended the ClusTree algo-

rithm [4] by replacing its data structure and access method from single access to

multiple access and removing the buffer used as the anytime clustering feature.

More specifically, this framework reports on our project’s contribution to multiple

data stream clustering in a centralized fashion.

• Firstly, we substituted single access method with a multiple (concurrent)

access method within the maintenance index data structure. Although there

are some constraints on concurrent access to the index data structure, we

believe that the concurrent clustering speeds up the process of clustering

multiple streams, and creates more clusters at any given time.

• Secondly, we reduced the space complexity of the ClusTree algorithm by

removing its buffers at each entry.

• Finally, we introduced a new framework to cluster multiple streams (dis-

tributed streams) which can also be used for very fast single streaming data.

Through our improvements, we insert data objects to the proper micro-clusters

in near real time, through concurrent access. Indeed, the anytime property of the

ClusTree allows for interruption of the insertion process when a new data object

arrives. The buffered data object should wait until a new data object arrives, then

ride down the same subtree where the data object is buffered. Then, the new and

the buffered data objects can descend the tree. Additionally, waiting at the buffer's

entry may cause the buffered data object to become obsolete which consequently

affects the quality of clustering. We also extract intra-correlation aspects from

multiple streams through concurrent access to achieve high quality clusters.

2. Distributed multiple streams clustering: The focus is to reduce the limita-

tions of monitoring dynamic distributed stream clustering as described above by

introducing a new algorithm guaranteeing clustering almost as good as the best

centralized clustering at any time with the main objective of reducing communica-

tion costs. More specifically, we keep track of the continuously evolving distribution
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over all sites. Continuously tracking the underlying distribution of data leads to

better understanding the nature of data over time. In essence we study the problem

of tracking distributed clusters in evolving multi-dimensional data streams. Our

algorithm monitors changes in the local sites and sends updates to a central site

so that communication is only triggered between the central site and local sites

whenever quality of central clustering is degrading. In this way, we provide guaran-

tees on the continued quality of clustering. Although there have been few attempts

to cluster continuous distributed data streams, none of them have considered the

effect of using a proper data structure to store local summaries and as a factor of

accelerating clustering of distributed streams and simplifying their maintenance

(i.e. update of clustering). To the best of our knowledge, this is the first attempt to

introduce a distributed multidimensional stream clustering algorithm using local

index data structures to capture summaries over the entire data and reflects data

distribution continuously with an adaptive precision error in the central site.

The manifold objectives of this study are to minimize the communication cost of

clustering distributed data streams considering speed of processing data stream.

Indeed, data streams cannot be stored or processed in their entirety in a central

location and only a summarized form is stored. Data is summarized by means of

micro-clustering techniques; such techniques allow local sites to capture as much

information as their local storage permits in the form of cluster feature vectors and

to store them in a local tree index structure.

In summary, our main contributions in the second study are as follows.

• We extend ClusTree into a distributed framework DistClusTree.

• We propose adaptable solutions to select local micro-cluster summaries to be sent

to the central site. The central site then refines the quality of clustering according

to real-time network traffic and the degree of privacy required.

• We model the monitoring and maintenance of distributed clustering as online

tracking and extend a 1-to-1 multidimensional online tracking scheme into m-to-1

(m local sites with one central site).

• We demonstrate through extensive experiments the performance of our framework

in balancing communication costs and clustering quality.
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4.2 Chapter Organization

The rest of this chapter is organized as follows. Section 4.3 describes related work.

Section 4.4 describes required preliminaries of our proposed algorithms. Sections 4.5 and

4.6 introduce our proposed centralized and decentralized multiple streams clustering

frameworks, respectively. Section 4.7 discusses our experimental results. We conclude

the chapter in Section 4.8 with a summary of key discussions.

4.3 Related Work

We do not aim to review all stream clustering methods but focus on those that are

relevant to our research. We divide relevant works on stream clustering into centralized

and distributed clustering. We start with a brief introduction to centralized single stream

clustering, continue with a few related studies on single stream clustering and finish

with reference to a few distributed clustering algorithms.

4.3.1 Centralized Stream Clustering

Stream clustering approaches involve two phases: online and offline. The infinite proper-

ties of data stream and restricted memory make it impossible to store all incoming data.

Therefore, summary statistics of data are collected at the online phase, and then a clus-

tering algorithm is performed on obtained summaries at the offline phase. At the online

phase, micro-clusters are created to group and store summary information with similar

data locality, and these micro-clusters are accessed and maintained through a proper

data structure. Micro-clusters are stored on a disk at a given time for a snapshot of data

following a pyramidal time frame to be able to recall summary statistics from various

time horizons. This provides further insights into the data through offline clustering.

Most of the literature on clustering single data stream focuses on extending and

developing algorithms without considering the requirements of using a proper data

structure to speed up the process of assigning continuously arriving data points to

clusters.

BIRCH was introduced by [187] as a hierarchal clustering algorithm to handle

very large static data sets. It introduced Cluster Feature Vector (CFV) as a compact

representation of data which maintain in cluster feature tree (CFT). CFT allows the

data set to be scanned once and so incrementally and dynamically cluster incoming

multidimensional metric data points. BIRCH is used for clustering static data sets (whole
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data set) rather than evolving data. It considered the importance of having a proper data

structure to support efficient clustering of the data. ClueStream [188] introduced a micro-

clustering technique and added some additional information to the BIRCH algorithm

in order to adapt to continuously arriving data. This additional information is about

time stamps of arriving data streams. DenStream [189] was proposed on a density based

two-phase stream clustering algorithm. ClusTree [4] has been developed as the first,

anytime single stream clustering algorithm in which a data structure from the R-tree

family has been applied to maintain data summaries. That means it also considered the

importance of having a proper data structure as BIRCH algorithm to support efficient

clustering of the data. It was shown that the ClusTree performs better than other stream

clustering algorithms [190], [191], both in terms of speed and in purity of clustering.

The main characteristic of ClusTree over other micro-clustering algorithms is its

adaptability to the speed of streams in an online model. That is the reason we extended

the idea of ClusTree, making it applicable to multiple streams in both centralized and

decentralized models. Many of these two-phase clustering algorithms are reviewed

in [192] in terms of number of parameters, cluster shape, data structure, window model

and outlier detection.

4.3.2 Distributed Stream Clustering

All the aforementioned algorithms were designed and developed to cluster a single data

stream in a centralized fashion. However, with the new generation of distributed data

collection and multiple streams acquisition, it is desirable to introduce more parallel and

distributed stream mining algorithms to tackle scalability and efficiency limitations of

stream mining algorithms. Although many studies have been conducted on distributed

clustering algorithms in very large, static data sets [193], [194], few studies have been

reported on parallel and distributed stream clustering [183], [195], [196], [182], [197],

[198], [199], [200].

The general idea of distributed clustering is that each local site clusters its own data.

The local models are sent to a central site in either synchronous or asynchronous models;

this central site keeps track of up-to-date clustering over entire local models. In [201],

two types of continuous distributed clustering algorithms are proposed: local and global.

The algorithm is formulated based on k-center clustering algorithm. The main objective

in k-center is to minimize the maximum radius/diameter of the clusters. In their local

solutions, each local site builds and keeps its local model, and only updates are sent to the

central site. In their global algorithm, a global model is created iteratively in a central
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site by message passing between local sites and the global site. Then the global model is

sent to all local sites and in this way all sites have the same view of the clustering model.

Local sites insert their data points into the global clustering and continuously send their

updates to the central site. The central site decides whether it needs to recompute the

global model and sends the new clusters to the local sites. As in most of the distributed

clustering settings, distributed clustering results are compared with their centralized

counterpart. A distributed extension of the Expectation Maximization (EM) algorithm

called CluDistream has been proposed in [202]. The authors introduce a framework for

clustering distributed data streams in the presence of noisy and incomplete data. The

underlying distribution of data has been learnt by maximizing the likelihood of the data

clusters. Local sites monitor the current model until they can not describe a new chunk

of data. Then a clustering is performed to account for the changing data distribution. In

this way, they reduce communication costs by just sending updates from local sites to the

central site. In [203], a centralized density based clustering algorithm (DBSCAN) [204]

was extended to the distributed model. Each local site performs a clustering on its own

data and sends its representatives to the central site. Local representatives are grouped

with each other to represent the final clustering in the global site. The work shows that

the results of clustering in centralized and distributed model were significantly close

to each other. A few more studies have been carried out on global or local distributed

clustering algorithm, such as [205], [203]. Despite their underlying assumption to pe-

riodically trigger a communication in response to one-shot mining, they cannot satisfy

the requirements of continuous stream mining [203]. Some other works have addressed

clustering distributed data streams such as [205], [206] and a most recent survey on

distributed clustering of ubiquitous data streams is presented in [176] that summarizes

many of these methods. In [207], they approximated k-means clustering of distributed

data streams by summarizing local clusters and merged summaries in a tree-topology

way with bounded-error approximation.

None of the above algorithms enable either anytime concurrent clustering of multiple

streams to speed up the process of clustering or extract intra-inter correlations of multi-

ple streams to achieve high quality clusters. Nor do they consider the key role of using

appropriate data structure to maintain summaries in distributed model. Therefore, we

have proposed two new frameworks for clustering multiple data streams in centralized

and decentralized models to lessen these research gaps. We review ClusTree in more

detail in the next section since our proposed algorithms have been established based on

the idea of ClusTree.
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4.4 Preliminaries

In this section we explain in more detail ClusTree algorithm which is used in our

frameworks to cluster multiple data streams and R-tree data structure in which local

summaries are stored and maintained.

4.4.1 The ClusTree Algorithm

ClusTree [4] is an anytime stream clustering algorithm which groups similar data into

the same cluster based on the micro-clustering technique.

Figure 4.3 presents an overview of the micro-clustering techniques in which, firstly,

summaries of data are captured and maintained as micro-clusters and then represen-

tatives of micro-clusters are obtained to present broader views of clusters in data as

macro-clusters.

View of Micro-Cluster  View of Macro-Cluster  

Figure 4.3: Overview of micro-macro Clustering technique ( [3] ).

ClusTree uses two phases:online and offline. In the online phase, it stores N; number

of data objects, LS; their linear sum, and SS; their square sum in a cluster feature

tuple CF(N, LS, SS) as summary statistics of data. Storing these summaries instead

of raw data helps to save space which is one of the challenges of stream processing

algorithms. Clustree considers the age of the objects in order to give greater weighting

to more recent data. The CF tuples are enough to calculate mean, variance and other

required parameters for clustering. Then an index data structure from the R-tree family

is created to maintain CFs to speed up the process of accessing, inserting and updating

micro-clusters. The idea is to build a hierarchy of micro-clusters at different levels of

granularity.

Figure 4.4 illustrates at a high level the operation of the ClusTree. As shown, from

time to time micro-clusters are transfered to a disk to be kept for further offline processing.
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For example a data partition clustering like k-means or DBSCAN is performed on micro-

clusters to form final clustering in an offline phase.The outputs of the offline phase are

macro-clusters whose size is relatively small compared to the entire data stream.

Data Stream 

R-Tree to maintain  
statistics summary 

Data Abstraction Step 
(Micro-clustering) 

online phase 

Clustering Step 
(Macro-clustering) 

offline phase 

 ....  .... 

Time-to-Time 

Data Partition 

Figure 4.4: A general schema of ClusTree algorithm

In this way for an arriving data object, ClusTree descends the tree based on minimum

distance between CFs and the arrived data object, to insert the data object into the closest

micro-cluster at the leaf level within the given time. If a new data object arrives while the

current data object has yet to reach the leaf level to be inserted to a proper micro-cluster

within the given time, then its insertion process is interrupted. The interrupted object

is left in the buffer of an inner node; the tree is descended to find a path for the new

object. The buffered object has a chance to continue descending the hierarchy if it has

not been outdated up until a new data object arrives, when its path to descend the tree

is the same as the buffered object. Therefore, the buffered object descends the tree along

with the new object as a hitchhiker to be inserted into the most similar micro-cluster at

the leaf level. Using the buffer allows ClusTree to adapt with the speed of data stream to

insert data objects into the micro-clusters at any given time. Moreover, ClusTree deals

with high speed data streams by aggregating data objects at the top level of the tree,

then inserting aggregated objects into the proper micro-clusters.

Figure 4.5 shows the inner entry and leaf entry in a ClusTree. Each entry in an inner

node stores CF of objects and has a buffer to store CFs of interrupted objects which may
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be empty. Additionally, each entry keeps a pointer to its child. Entries to each leaf node

only store a CF of the object(s) it represents [4].

Figure 4.5: Inner node and leaf node structure in ClusTree (Source: [4])

Figure 4.6 shows the overall algorithmic scheme of the ClusTree algorithm. The

micro-clusters are stored at particular moments in the stream, which are referred to as

snapshots. The offline macro-clustering algorithm will use these finer level micro-clusters

to create higher level clusters over specific time horizons.

Figure 4.6: A snapshot of micro-clusters in the ClusTree

The ClusTree algorithm is proposed to cluster a single data stream with varying

inter-arrival times. We have proposed two new algorithms based on the ClusTree to

cluster multiple data streams concurrently and in a distributed manner. We explain our

proposed algorithms in detail in the next section.
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4.4.2 R-tree

R-tree is a tree data structure used for spatial data access. R-tree clusters multidi-

mensional data based on their proximity. It represents nearby data objects with their

minimum bounding boxes in different levels of the tree. The main goal of this data

structure is to group adjacent data objects and represent them with their Minimum

Bounding Rectangle (MBR) in the next higher level of the tree as shown in Figure 4.7.

Since all data objects fall within this MBR, a query can be answered if it intersects this

bounding rectangle. Aggregation of objects occurs at the higher levels of the tree while

the root represents aggregation of all data objects.

From a clustering point of view, descending the tree reduces within-cluster sum of

squares error. The within-cluster sum of squares measures the variability of the data

points within each cluster. Generally, a cluster that has a small sum of squares is more

compact than a cluster that has a large sum of squares. This translates to an increased

purity of clustering at the leaf level where data objects are indexed. This can also be seen

as an increasingly coarse approximation of the data set as we move to the top level of the

tree.
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Figure 4.7: R-tree: Data space partitioning by adjacency (source [5]).
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4.5 Centralized Multiple Streams Clustering

In this section we explain our proposed multi-stream clustering algorithm. First, we focus

on the centralized multi-stream clustering problem and then we discuss the proposed

concurrent clustering framework.

4.5.1 Anytime Concurrent Multi-Stream Clustering Framework

Data streams are continuously produced and need to be analyzed online. Moreover,

multi-stream applications demand higher anytime requirements due to streams arriving

at any time and with varying speeds. This continuously arriving data means huge

storage requirements. Therefore, online multi-stream clustering is a twofold problem

in terms of time and space complexity. Regarding space complexity, many studies (see

Section 4.3.1) have been conducted to represent distribution of data in a compact way.

The main idea is that instead of storing all incoming objects, summary statistics of data

objects will be stored to reduce the storage problem. Many techniques are proposed in

the literature to achieve summary of data. One of these techniques is called cluster

feature vector [208] which we use in our proposed algorithm to obtain summaries of data

objects. The other issue relates to accessing these summary statistics, which is crucial in

terms of time complexity. Therefore, choosing a proper data structure plays an important

role in maintaining and updating these summary statistics in memory. In fact, these

summaries are generated and maintained in a proper data structure in real time, and

then are stored on a disk for further and future analysis called offline processing. Hence,

to achieve “extreme” anytime clustering, we propose to extend the ClusTree structure to

a concurrent hierarchical tree structure to index more granular micro-clusters.

Figure 4.8 shows a general view of our proposed framework in which each stream

is assigned to one processor. All the processors have equal access to a shared memory.

The processors will create micro-clusters in memory in a parallel way through concur-

rency control. We expect to create more accurate micro-clusters with high granularity, in

contrast to serialized clustering of a single stream using the ClusTree. Granularity is

considered in terms of the number of micro-clusters. Intuitively, highly accurate clusters

will be created by extracting correlations among different data streams through concur-

rent clustering. Similar data objects from different data streams have more chances to

be grouped into the same cluster compared with local clustering of individual streams

with a decentralized model.
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Figure 4.8: Proposed concurrent clustering framework

Like many optimization problems using a search tree to obtain an optimal solution,

a tree of micro-clusters is created in which clustering data objects are started from the

root. The children of the root are obtained by splitting the root into small clusters. The

leaves of a tree represent micro-clusters in a given time interval. The goal of this paper

is to insert data objects concurrently into their closest micro-clusters; optimal leaves, by

using an index search tree. The cost of searching the tree and adding a data object to

the closest cluster is O(log(n)), where n is the number of elements in the tree. Using a

parallel algorithm with concurrency control seems to increase the level of granularity

and reduce the execution time of creating micro-clusters. To achieve this, each processor

can explore a set of subtrees to reach proper micro-clusters. However, a tree is created

during the exploration which means that subtrees are not assigned to each processor

in advance. Each processor will get the unexplored nodes from a Global Data Structure

(GDS) [209].

We propose to use a search tree that allows concurrent access to the GDS in the

context of a parallel machine with shared memory in order to create and maintain high

granularity micro-clusters. Each processor will process clustering operations on the GDS,

stored in the shared memory. The main difficulty is to keep the GDS consistent, and

to allow the maximum level of concurrency. In the shared memory model, the GDS is

stored in the shared memory which can be accessed by each processor. The higher the

access concurrency, the higher the granularity of clustering will be. The main issue is

the contention access to the data structure. Mutual exclusion is performed to provide

data consistency. We suggest using a concurrent index structure from the R-tree family

to create and maintain more micro-clusters with high accuracy from multiple streams.

The idea of creating micro-clusters at the leaf level means that the algorithm can

take a snapshot and send the results to any offline clustering as with the ClusTree

algorithm. However, it should be emphasized that ClusTree is applied on a single stream
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in a serialized model while our proposed algorithm is applied on multiple streams in

a parallel model. Figure 4.9 compares our proposed concurrent clustering of multiple

streams with the ClusTree algorithm.

As described in Section 4.4.1, ClusTree uses a buffer for each entry of each node to do

anytime clustering. As an example of anytime clustering of ClusTree, suppose that data

object 1 arrives at time stamp t. Meanwhile data object 1 is descending the tree to find

the proper micro-cluster. Data object 2 arrives at time stamp t+1. The insertion of data

object 1 is interrupted in the middle of its path in the tree, for example at level i which is

not the leaf level. Data object 1 is added to the buffer 's entry of node on level i. Then

data object 2 descends the tree. Data object 1 is waiting at the buffer to be picked up by

a new arriving data object. Data object 1 can be successfully inserted to an appropriate

micro-cluster, provided that data object 1 and the new arriving data object belong to the

same subtrees. Otherwise, data object 1 might be obsolete and deleted.

In our proposed concurrent clustering, as can be seen in Fig 4.9, arriving new data

objects do not interrupt the insertion process of the current data object, except when they

need to modify the same leaf node. In this situation, the leaf node will be write-locked

and just one of the data objects has access to this part of the shared memory. Therefore,

intuitively, data objects from multiple streams can descend the tree through different

subtrees. In this way, data objects have more opportunity to be added to the closest

micro-clusters in near real time.

Figure 4.9: Comparison of ClusTree (Left) and Proposed Concurrent Clustering (Right)

4.5.2 The Anytime Concurrent Clustering Algorithm

Our proposed clustering algorithm is based on using micro-clusters to present data distri-

bution in a compact way. Micro-clusters are broadly used in stream clustering to create
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and maintain a summary of the current clustering. A micro-cluster stores summary

statistics of data objects as a cluster feature tuple CF instead of storing all incoming

objects. A cluster feature tuple (N, LS, SS) has three components: N is the number of

represented objects, LS is the linear sum and SS is the squared sum of data objects.

Maintaining these summary statistics is enough to calculate mean, variance and other

parameters such as centroid and radius, as follows.

Centroid: −→x0 =

N∑
i=1

−→xi

N

Radius: R =


N∑

i=1

N∑
j=1

(−→xi −−→x j)

N



1
2

Each cluster feature represents a micro-cluster of similar data objects with the following

properties.

Additivity Property of CF: CF has the property of additivity which means if CF1=

(N1,LS1,SS1) and CF2=(N2,LS2,SS2) then CF=CF1 + CF2=(N1+N2,LS1+LS2,SS1+SS2).

Subtractive property of CF: CF has the subtractive property which means that if

CF=(N,LS,SS) and CF1=(N1,LS1,SS1) then CF -CF1=(N-N1,LS-LS1,SS-SS1).

These properties of cluster features are used when a cluster feature tuple requires

an update. For example, when two micro-clusters are merged, the cluster feature of the

merger is calculated using additivity property.

We extend the ClusTree algorithm into a parallel model in order to cluster multiple

streams concurrently. We propose the use of a concurrent index structure from the R-tree

family to maintain cluster features in a hierarchical structure. As in all such tree struc-

tures, internal nodes hold a set of entries between m and M (fanout) while the leaf nodes

similarly store a number of entries between l and L. Figure 4.10 shows the details of

internal node's entries and leaf node's entries of our proposed tree structure. An entry of

an internal node contains [CF (N, LS, SS), Child-ptr, LSN], where CF is a cluster feature

of data object (s), Child-ptr is a pointer to its child node and LSN is a logical sequence

number. CF is calculated for each dimension of the data object. For a d-dimensional data
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object, the linear square and sum square are calculated for all d-dimensions. An entry in

a leaf contains a cluster feature of data object(s), and LSN.

Figure 4.10: Internal node and leaf node structure of proposed concurrent clustering

The hierarchy of our concurrent clustering scheme is created like an R-tree except

that cluster features are stored instead of bounding rectangles. Incoming data objects

are clustered accordingly. First, we have to find the proper micro-cluster to insert an

arriving data object into. To achieve this, a data object descends the tree by starting

from the root. At each node, the distance between CF of the data object and CF of the

node's entries are calculated. The entry with the closest distance is selected. The selected

entry has a pointer to its child, so the data object descends the tree using the pointer.

The data object descends the tree towards the leaf level for a proper micro-cluster. When

descending the tree, the time stamp of the visiting node is updated.

As illustrated in Figure 4.10, both the node and its entries have certain capacities.

This means that before a data object is inserted to the closest entry at the leaf level,

the capacity of the closest entry is checked. Different scenarios occur. Firstly, the closest

entry (proper micro-cluster) has enough space for the data object. After an insertion,

the cluster feature of the entry will be updated through the additivity property of CF.

Secondly, the closest entry does not have enough space to insert the data object. In this

situation, the capacity of the node containing the closest entry is checked. If the node

has enough space, a new entry is created to insert the data object into. Then, a new entry

at the parent of the node should be created to point to the created new entry at the node.

Finally, if neither the closest entry nor its node has enough space for inserting a data

object, the node will be split. Splitting a node means a new node is created which needs

a parent to point to it. This splitting to create a parent entry could be continued at upper

levels of the tree until the root. If the root is split, then the height of the tree will be

increased by one.
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In our concurrent clustering, in order to recognize node splitting, we use a right-link

approach similar to the concurrent R-tree [186]. Suppose that the Data Object 1 from

Data Stream 1 and Data Object 2 from Data Stream 2 are concurrently descending the

tree to be inserted into their closest micro-clusters. Data Object 1 reaches leaf level and

is inserted into a closest entry of leaf node, but this insertion causes a split. Data Object

2 reaches the same leaf node and wants to be inserted into the split node. If the leaf node

has been split and Data Object 2 does not recognize this split, to be able to traverse this

dynamic tree correctly, likewise R-link-Tree, we modify the ClusTree into the concurrent

version by adding extra features.

First, Logical Sequence Number (LSN) (as shown in Fig 4.10) is assigned to each

node to recognize the split. Second, we link all nodes at each level of the tree using a link

list. Using LSN allows the split to be recognized and helps to decide how to traverse the

tree. Also, linking all nodes at each level of a tree enables movement to the right of a

split node.

Figure 4.11 presents an example where a node is split and the right-link along with

LSN is used to chain the split. One of the properties of the R-link-tree data structure

is order insensitivity. As can be seen in Fig 4.11, it is possible that node P1 is ordered

before node P2 (from left to right at each level) but because of a split, the child of P1, C4,

is visited after child of P2, C1.

Using a global counter, each node has its unique LSN. Every entry of each node and

its child's entries have the same LSN. In the occurrence of a split, a new right sibling

node will be created for the split node. The LSN of a split node is given to the new right

sibling and a new LSN is assigned to the split node. A data object descending the tree

recognizes the split by comparing LSN of a visiting (parent) node and its child node. If

LSN of the parent and its child is equal, no split has occurred; otherwise if LSN of the

child node is greater than its parent node, it means there is a split and the clustering

process moves to the right of the child node until it visits a node with the same LSN of

the parent node, showing the furthest right node split off the old node. The possibility of

moving right to the split node is provided by using a link-list of nodes at each level of the

hierarchy.
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Figure 4.11: Node split recognition using LSN and right-link

Algorithm 1 Clustering Algorithm

INPUT: D-dimensional data objects Oi,O j, ...
OUTPUT: Inserting data objects Oi,O j, ... into the closest micro-clusters

1: for all processors Pi,P j, ... do
2: ClosestMicrocluster = searchLeaf(root, O, root-lsn)
3: insert O on ClosestMicroCluster at leaf
4: if leaf was split then
5: expandParent(leaf,CF(leaf),LSN(leaf),right-sibling,CF(right-sibling), LSN(right-sibling))
6: else if CF of leaf changed then
7: updateParent(leaf, CF(leaf))
8: else
9: w-unlock(leaf)

10: end if
11: end for

For concurrency control, we use a lock-coupling technique in such a way that dur-

ing the process of traversing the tree, nodes are read-locked. Hence, data objects from

different streams can access the tree and descend the tree in parallel. The main issue

is at the time of inserting a data object into a micro-cluster, then updating the CF of

its parent at the upper level of the tree. To solve this problem like in a R-link-tree, we

use the write-lock; when a data object is being inserted into a leaf node, the leaf node is

locked. After an insertion, the CF of the node’s parent should be updated. Therefore, the

parent is locked and the leaf node is unlocked.

Our main proposed concurrent clustering algorithm (as shown in Algorithm 1) con-

sists of a search process to find the closest micro-cluster, updating the CF of the parents

after clustering, expanding the parents in the case of split child and installing a new

entry for this split at upper levels of the tree. The algorithm is the same as the concur-

rent R-tree algorithm [186] except that our purpose is to manage the micro-clusters. We
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explain each function in details as follows.

searchLeaf: The searchLeaf function is called at the beginning of the clustering algo-

rithm (1) to find the closest micro-cluster for a given data object at the leaf level. The

searchLeaf function starts the process of a search from the root. During the process

of searching the tree, if a visiting node is not a leaf, it is read-locked. Otherwise, it is

write-locked. For each node, the LSN of the visiting node is compared with the LSN of

its parent. If the LSN of the parent is smaller than the LSN of the visiting node, a split

has occurred. Therefore, the tree is traversed to the right of the visiting node (split node)

till finding a node with the LSN equals to the LSN of the parent guarantee to find the

closest entry even after a split. If the split node is at the leaf level, then the searchLeaf

function returns the closest entry as the closest micro-cluster to the clustering algorithm.

Otherwise, the process of search keeps descending the tree recursively from the child of

the closest entry and the visited node is read-unlocked.

expandParent: After finding the closest micro-cluster through the searchLeaf function,

the data object is inserted. If the insertion of the data object causes a split, then the

expandParent function is called. The expandParent function either installs a new entry

as the parent of the new created leaf (because of the split) at the top level of the split

leaf or finds an entry for the new created leaf in the parent of the split leaf node or its

right sibling. The former is a new split at the parent level of the split node. Therefore,

the expandParent function is recursively called up until the root is split or no further

split happens. During the process of expanding a parent, the child nod is write-locked

until the parent is accessed. Then, the child node is write-unlocked and the parent is

write-locked.

updateParent: Whenever a data object is inserted into the leaf node and its CFs are

updated, or CFs of a parent are updated because of a split, the updateParent function is

called to propagate these updates up to the parent's levels.

We propose to optimize the process of clustering by finding top-k closest micro-clusters.

This means that descending the tree by finding the closest entry among all entries of

visiting nodes does not guarantee arrival at the closest micro-cluster among all other

micro-clusters at leaf level. Therefore, to find a global optimum; the closest micro-cluster

among all micro-clusters, we use a stack data structure to keep track of the top-k closest
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entries to a data object. In order to maintain up-to-date clustering, we use a buffer in

each node, whenever a new data object arrives and descends the tree, the time stamp of

the visiting node is updated like ClusTree.

4.6 Distributed Streams Clustering-DistClusTree

In this section, we first describe the problem of continuous distributed clustering and

then we discuss our proposed solution.

Assume m sites are distributed in a network and each of them receives a stream of

data. Every site clusters its own unlimited data continuously. A central site q monitors

and clusters data over the union of all m local sites. Our interest is in devising a

method so that the local sites communicate with the central site in an efficient way,

finding summarized data but is still informative to be sent to the central site for global

clustering instead of sending the actual data points in order to reduce communication

costs and to preserve privacy. Naively, a communication can be triggered between local

sites and the central site every time new data objects arrive at each local site so as to

update clusters maintained at the central site. This poses an expensive communication

cost of O(n), where n is the number of data points at local sites.

In the DistClusTree framework, m local sites are distributed in a network and each

receives and incrementally clusters a continuous stream of data, possibly with an infi-

nite length. A master/central site instead clusters and maintains the union of the local

site data to produce the final global clustering result. We are particularly interested

in devising mechanisms that allow local sites to communicate with the central site

efficiently. Leveraging is a key approach to reduce communication costs and to preserve

privacy. Instead of sending the actual massive data, It summarizes the key points to

be sent to the central site for global clustering but keeps it informative. Moreover, a

communication can be triggered between local sites and the central site every time a new

data object arrives at each local site so as to update clusters maintained at the central

site. This poses an expensive communication rounds of O(n), where n is the total number

of arrived data points. Therefore, a plausible way to balance the communicate cost and

clustering quality is to trigger communication periodically and only send the selected

updated summaries/representatives to the central site. Our studies shows the choice of

proper local representatives has a significant impact on communication costs and central

clustering results. The representatives form a summary of local models at a given time
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snapshot. The summary is sent to the central site and continues to be locally updated as

new data points (stream snapshots) arrive.

In essence, DistClusTree consists of four stages, described in detail in the following

sections:

1. Continuous local clustering;

2. Extracting local representatives;

3. Distributed microcluster tracking; and

4. Maintaining global clusters.

4.6.1 Continuous local clustering

Every local site clusters its data incrementally with the ClusTree approach. Summaries

of data are collected as CFVs and maintained dynamically in an R tree. In this way,

micro-clusters are maintained in various levels of the tree and in different resolutions (i.e.

coarser micro-clusters are located in higher levels of the tree). Therefore, the root node

in the ClusTree contains the broadest view of all micro-clusters at the current snapshot,

while the leaf nodes include all the fine-grained micro-clusters. Such a hierarchically-

summarized organization is shown in Fig 4.12.

1 

1 

 

root node is a ball containing all created 

micro-clusters at the current snapshot  

Figure 4.12: The local ClusTree summary in DistClusTree (source [6])
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4.6.2 Extracting local representatives

To extract local representatives, we propose two simple but effective and adaptable

approaches:

1. Naive-DistClust

2. DistClust.

Naive-DistClust- Local representatives from different levels of the tree are extracted

regularly (i.e. at every ∆T time period) to be communicated to the central/global site.

This approach is adjustable based on the network traffic (i.e. the frequency of data

arrivals), degree of privacy, and required quality of central clustering. Depending on

traffic and required quality of clustering, local sites can send created micro-clusters at

different levels of the tree to the central site. For maximum quality, local sites should

send all created micro-clusters at their leaf level. While in a heavily loaded network (e.g.

at peak hours) more compressed trees (i.e. at most the root level) with some sacrifice of

clustering quality can be sent to the central site. This translates to reducing the overall

communication cost by sending more coarse local micro-clusters from higher levels of the

tree to the central site.

DistClust- A further way to reduce communication costs is for every tree node to send

only statistical summaries of its contained micro-clusters to the central site. For example,

in an R-tree only with 3-fan outs (i.e. the number of entries in each node where each

entry represents one summarized micro-cluster) at Level 1 (considering Level 0 as the

root level), we have 3 subtrees each containing 3 micro-clusters. This means we have 9

micro-clusters in total at Level 1. Instead of sending all nine entries to the central site,

we could choose to send only the median of the entries from each node, thereby reducing

communication cost to one-third. Next, we discuss in detail how local representatives

(i.e. the selected micro-clusters) are tracked and sent with an on-line tracking algorithm.

4.6.3 Distributed micro-cluster tracking

We first provide a brief introduction on online tracking and then illustrate how we formu-

late the global clustering in DistClusTree as an online tracking problem. In conventional

online tracking, a pair of observer and tracker communicates with each other. Observer

observes values of a function f over time and keeps the tracker informed of these values
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from time to time as shown in Figure 4.13. However, the determination of a strategy

that minimizes communication costs is the main issue in online tracking problems. A

naive solution is that the observer sends every observed value to the tracker. This leads

to a heavy communication. To minimize the communication cost, an error threshold is

generally introduced. This means observers only communicate with the tracker whenever

a value of f (tnow) exceeds a predefined error threshold ∆ from the last communicated

value f (tlast).

Observer S 

f(t) = Sequence of values 

Tracker T  

Approximate f(t) within 

error threshold of the 

value f(t) 

Figure 4.13: One-to-one online tracking.

We extend the multidimensional one-to-one online tracking framework presented

in [210] that only works when there is an observer and a tracker. It is not designed

for the distributed m-to-one communication where there are multiple observers and a

central tracker. The one-to-one online tracking algorithm divides the entire tracking

period into rounds and denotes Aopt as the offline optimal algorithm.

A round is started by initializing a set S = S0 which contains all possible points

that might be sent by Aopt in its last communication. In a while loop, a median of

S is calculated and sent to the tracker. If ‖ f (tnow)− f (tlast)‖ ≥ β∆, where β = 1/(1+ ε)
and ∆ represents the threshold error , then S is updated as S ← S∩Ball( f (tnow)),∆),

where f (tnow) is the center of Ball and ∆ is its radius in d-dimensional space. A round

is terminated when S becomes empty. The online tracking algorithm is represented in

Algorithm 2.

We model our clustering algorithm based on Algorithm 2. First, we show how we

can keep track of micro-clusters assuming there are one local site and one central site,

and then we extend our algorithm from one local site to multiple local sites as shown in
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Figure 4.16 (i.e. distributed) that they communicate with a central site in a synchronous

mode. We explain with the Definition 2 and Lemma 4 from [210] below to illustrate our

tracking model.

Algorithm 2 One round of d-dimensional tracking via volume-cutting (source [210])
1: Let P = Ball( f (tnow),β∆)
2: while (ωmax(p))≥ ε∆ do
3: Let g(tnow) be the centroid of P
4: send g(tnow) to tracker
5: Wait until‖ f (tnow)− g(tlast)‖ ≥β∆
6: S ← S∩Ball( f (tnow),∆)
7: end while

Definition 2 (Directional Width). For a set P of points in Rd, and a unit direction µ,

the directional widths of P in direction µ is ωµ(P)= maxp∈P
〈
µ, p

〉−minp∈P
〈
µ, p

〉
, where〈

µ, p
〉

is the standard inner product.

For simplicity, suppose a given set of points form a convex set P, and the centroid of

P is the intersection of hyperplanes that divide P into two equal parts. This convex set

has minimum and maximum directional width as ωmin(p), ωmax(p) , respectively.

Lemma 4. For any convex set P, if H is any supporting hyperplane of P at p ∈ ∂P, that

is, H contains p and P is contained in one of the two halfspaces bounded by H. Then

there is a ball B with radius β∆ such that H is tangent to B at p and B contains P as

shown in Figure4.14.

f(tnow) = Centroid of P Convex Set P 

Ball (f(tnow), 𝛽∆) 

𝛽∆= radius of ball 

Figure 4.14: Convex set P is covered by Ball( f (tnow,β∆).
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A local site acts as an observer that sends an approximation of created micro-clusters

to a central site at different time snapshots. Assume that error threshold ∆ is determined

based on the maximum distance between centroids of two clusters at two consecutive

snapshots of ti and ti+1, where Cti = f (tlast) and Cti+1 = f (tnow) are the centroids of the

previous and current root nodes.

According to [210], a convex set P in our local ClusTree is a set of micro-clusters taken

at snapshot tnow. Based on Lemma 4, a ball containing P is the root node at snapshot

tnow. Following this, we initialize P with the root node, and then centroid of the current

root (i.e. as a representative of all microclusters) is computed as g(tnow) and sent to the

tracker. In the next snapshot, if the absolute euclidean distance between the centroid of

the previous root node and the current root node is within the predefined error threshold,

then there is no communication. Otherwise, the intersection of two roots (two balls) is

computed. If the maximal directional width of this intersection is greater than β∆, then a

communication between local site and the central site is triggered and the centroid of the

intersection is sent to the central site. Otherwise, this round is finished and the next new

round is triggered. Different scenarios that may happen between the last communicated

root node and the new root node at two different snapshots of t1 and t2 are presented in

Figure4.15 (a-c).

No communication with 

central site 

root node at t1 root node at t2 

If distance between two 

centroids is within 𝛽∆ 

Centroids of roots at two continuous snapshots 

root node at t1 root node at t2 

If distance between two 

centroids is greater than 𝛽∆ 

 Communication on the 

centroid of intersection  
No intersection or maximal width of intersection 

less than𝛽∆, new round is triggered. 

root node at t1 root node at t2 

If distance between two 

centroids is greater than 𝛽∆ 

 Communication on the centroid of intersection  

(a) (b) (c) 

Figure 4.15: Different scenarios to trigger a communication between a local site and a
central site to update the global clustering.

4.6.4 Maintaining global clusters

For simplicity, we only enhance the tracking framework from 1-to-1 to m-to-1 sites in a

synchronous manner. Each local site keeps track of its local representatives in periodical
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time snapshots and if any threshold breaks at a local site, then this site simply sends

its updates to the central site along with all other updates from other local sites. As

depicted in Figure 4.16, local sites communicate with a central site if f1(t1)− f1(t2) are

within some error threshold. After sending updates to the central site, central site does

a global clustering using k-means over the union of all received micro-clusters from

local sites. Local sites incrementally send their updates to the central site to keep global

clusters updated. By receiving regular updates, the central site incrementally keeps

global clusters updated.

Global 
Clustering  

Remote 
Site 1 

Remote 
Site 2 

Remote 
Site m 

Micro-Clusters Micro-Clusters Micro-Clusters 

Data stream Data stream Data stream 

. . . . . . 

Central Site 

Figure 4.16: The global DistClusTree framework.

4.7 Experimental Results

We implemented DistClusTree under Massive Online Analysis (MOA) [211] and evalu-

ated the distributed algorithms based on a synthetic dataset. The dataset was generated

using Gaussian distribution with varying number of attributes and classes. Data points

were randomly and equally divided among sites and for the central clustering, we used

the union of the local points. Our experiments focused on clustering quality and the

communication costs of distributed clustering considering their dependency on different

parameters such as the number of sites, the accuracy ε, granularity of local representa-

tives and runtime of distributed clustering in comparison with centralized clustering. To
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assess our framework, we ran ClusTree on each local site and then collected all repre-

sentatives of local sites w.r.t the demanded granularity of local clusterings (i.e. different

levels of local trees) and then performed a global clustering on these representatives. We

executed all the experiments on the same machine and reported all the results as average

of 10 runs of our algorithms. We compared clustering quality of our distributed cluster-

ing (i.e. DistClusTree) against its centralized counterpart, i.e. ClusTree. As mentioned

in [203], different studies have evaluated their algorithms based on characteristics of

their distributed clustering algorithm in a variety of ways and most studies compare their

proposed distributed clustering algorithm against their centralized counterpart [176].

Therefore, we compared the result of our distributed clustering algorithms to a central

clustering of the n data points when all n data points are clustered using ClusTree in

local sites and applying k-means on top of the micro-clusters created at the leaf level of

the tree.

Clustering quality- We measured the quality of clustering by defining Mean Squared

Error (MSE), and also using within-cluster sum of squares error. As the baseline, firstly

we sent all micro-clusters created at the leaf level to the central site and applied k-means

to calculate cluster centroids. Secondly, we sent micro-clusters of each level of the local

trees and find cluster centroids for each level using k-means. To calculate MSE, we

take the average of euclidean distances between cluster centroids obtained from the

last level of the tree in ClusTree (i.e. centralized model) and every level of the local

trees (DistClust/Naive-DistClust). As can be seen in Figure 4.17b, MSE is reduced by

descending tree since micro-clusters with smaller within-cluster sum squared error

are located at the lower level of the tree which impacts on the quality of clustering in

the central site. We compared MSE of k = 5 centroids at different levels of the tree for

both DistClust and Naive-DistClust. In the latter, we sent all created micro-clusters

from different levels of trees while in DistClust we only sent a mean of micro-clusters

of each node of tree. That is why MSE between ClusTree and NaiveClust is less than

MSE between ClusTree and DistClust. The MSE difference between both distributed

algorithms gets higher at the lower levels of tree since granularity increases at the

bottom levels, and sending fewer micro-clusters impacts on calculating right centroids

and consequently on clustering quality.

We ran the experiments with three fan-outs at each node of R-tree as referring

to [212], 3 fan-outs is the best number of entries (number of micro-clusters at each node)

in terms of space and distance computation.
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(a) Clustering quality of different sites. (b) Clustering quality on different levels

Figure 4.17: Clustering quality comparison based on MSE. (a) Comparison of clustering
quality for increasing number of sites,1, 5, 10, 50. (b) Comparison of clustering quality of
Naive-DistClust and DisClust with ClusTree on different levels of tree, when number of
sites = 6 and number of entries = 3.

On the other hand, as can be seen in Figure 4.17b, MSE is reduced by descending

the tree. The reason is that purity of micro-clusters at lower levels of the tree is in-

creased which causes MSE to reduce between cluster centroids obtained from upper

and lower levels of the tree. We tested our framework for different numbers of sites:1,

5, 10, and 50. Although in all plots in Figure 4.17a MSE was reduced by descending

the tree, reducing the number of sites also reduces the quality of clustering because we

sent fewer micro-clusters: this impacts on the final quality of clustering at the central site.

Communication costs- We calculated communication costs in terms of the number of

transferred micro-clusters from each level of the tree as shown in Equation 4.1.

(4.1) communication ratio= compressed tree
uncompressed tree

×number of sites
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In our formula, communication ratio is calculated as the ratio of compressed tree

to uncompressed tree. An uncompressed tree is a full multi-way tree with a maximum

number of levels. The maximum number of levels is predefined by the user or local

memory limits. A compressed tree is a full multi-way tree with fewer levels compared

to the uncompressed one. The lowest communication ratio is the ratio of the minimum

number of levels (maximum compression, i.e. root level of tree) to the maximum number

of levels. The communication costs also depend on the number of entries in each node.

For instance, in a 3-way full tree, Level 0 which is the root level has 1 node, Level 1 has

3 nodes, Level 2 has 9 nodes and in general for n-multi-way tree, the number of nodes in

Level n is calculated as mn , where m represents number of ways in the tree.

We compared the communication costs of different levels of the tree for a different

number of entries at each node of the R-tree. In Figure 4.18a, we compare the communi-

cation cost for two different number of entries, 3 and 4 in our two proposed distributed

clustering algorithms. By sending the median of micro-clusters at each node in DistClust,

we reduced communication costs to 1/k, where k is the number of entries. We reduce

communication costs to one third with Distclust for the choice of three entries in all

levels of the tree. This reduction is obvious in the lower levels of the tree where more

granular micro-clusters are required.

(a)
(b)

Figure 4.18: (a) Effect of the number of entries on communication costs; (b) Communica-
tion costs of DistClustTree for a different number of sites when the number of entries
equals 3

Figure 4.18b represents the communication costs in terms of the number of micro-

clusters for 3, 50 and 100 sites. The number of entries in all three experiments has
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been set to 3 and the height of the tree is 11. It can be clearly seen that communication

costs depends on the number of sites and different levels of the tree. To have more

granular clusters we need to send micro-clusters at the lower level of the tree, causing

communication costs to increase exponentially. However, by sending representatives from

upper levels of trees we reduced communication costs significantly and still obtained

good quality clustering as demonstrated in the above experiments.

Effect of error threshold ∆- We evaluated the effect of varying the error threshold

on communication costs. Error threshold is the difference between the centroid of the

new micro-cluster at snapshot ti and that previously transmitted at snapshot ti−1. As

the error threshold is increased, the communication cost is decreased since we send

fewer updates to the central site by increasing euclidean difference between centroids of

previous and current snapshots. The communication cost at the lower levels of the tree

is greater than the upper levels of tree as shown in Figure 4.19 for L1 as root level and

Level 6. However, increasing the error threshold reduces the quality of clustering.

Figure 4.19: Effect of different ∆ values on
communication cost, levels 1 and 6, for 10
sites.

Figure 4.20: Runtime for central and dis-
tributed clustering with varying number of
sites.

Runtime- In Figure 4.20, the runtime of DistClusTree is shown. As the number of

sites increases, the distributed approach performs much better than a single clustering

algorithm applied to the complete data set of 200k data points.
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4.8 Summary

In this chapter, we proposed two multiple stream clustering algorithms using an indexing

tree in centralized and distributed models. Our proposed algorithms are based on one of

the well-known micro-clustering techniques, ClusTree [4].

In the former, we proposed a new, anytime, concurrent, multiple stream clustering

algorithm. We captured the summary statistics of multiple data streams concurrently in

the online phase. We proposed to maintain statistical information of the data locality

in micro-clusters at a dynamic, multiple access index data structure for further offline

clustering. In the online phase, the index data structure maintains summaries of data in

the format of cluster feature tuples (CF) instead of storing all incoming objects. Then, the

data structure was traversed through an index to insert new data objects concurrently

into their closest micro-clusters.

We also extended ClusTree into DistClusTree, a comprehensive distributed frame-

work for stream clustering. The framework leverages both spatial index summaries and

online tracking for balancing communication cost and clustering quality. We demon-

strated in experiments that DistClusTree efficiently produces clusters as good as its

centralized version. DistClusTree is able to reduce communication cost significantly and

it is easily configurable in practice according to the requested clustering quality.

In the next chapter, we will study the problem of merging summaries in distributed

settings. We will use index data structures to maintain histogram(s) (i.e. another sum-

marization technique) of distributed summaries. We will discuss how we resolve the

problem of non-mergeable summaries using cutting head techniques, i.e. deep generative

models.
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MERGEABLE SUMMARIES

H istograms provide a compact and effective approach to summarize large data

sets. They represent underlying data distribution by partitioning data into a

number of blocks or buckets, in a concise manner for the aim of data visualiza-

tion and analysis. The importance of histograms is highlighted by their wide applicability

in a variety of areas from image processing (e.g. in image enhancement), statistical and

scientific data analyses to database areas including query optimization, approximate

query answering and range query answering in spatial data bases.

In this chapter, we study the problem of merging and continuously maintaining a cen-

tralized histogram over the union of distributed summaries in multidimensional spaces.

We introduce a new, practical framework to build and maintain a multidimensional

histogram over continuous distributed data streams. At the center of our framework, we

use a dynamic index data structure to maintain a succinct approximation of the data

distribution of the underlying continuous data streams. Our framework is simple, and

easy to implement. Meanwhile, it is an efficient summarization algorithm which outputs

an approximate but up-to-date histogram over the aggregation of distributed multidi-

mensional data summaries on demand from the index data structure. Our framework is

capable of simultaneously representing a centralized histogram and local histograms.

Experimental results provide evidence of the performance of the proposed method when

it has been utilized in parallel and distributed settings in terms of communication cost,

error rate and the practicality of our algorithm.
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5.1 Introduction

Multidimensional index data structures organize data based on the principle of recursive

decomposition. They are good representatives of underlying data distributions. In the

context of spatial databases, index structures have been used to accommodate spatial

objects to answer different geometric queries such as point, range and nearest-neighbor.

In data mining, they have also been extended for tracking clusters. Despite the enormous

application of index structures in centralized applications and domains, research has

been rather limited in leveraging multi-dimensional indexing in distributed environ-

ments.

In a typical distributed scenario, we have m remote local sites and one central

site. Each local site stores its multidimensional data points with a multidimensional

index tree data structure capturing some distribution property such as clusters or medi-

ans/histograms. The central site needs to build a global index over the entire distributed

data: this creates a global distribution property. There are commonly two ways to achieve

this: i) local sites simply send all data points to the central site for global index con-

struction; ii) local sites only send indices as data summaries and the global index is

approximately built and maintained purely from local indices. Clearly, for i) communica-

tion cost is often unacceptable; for ii) as to the case of kd-tree index or similar, merging

local indices is often ineffective.

For tracking data clusters in both centralized and distributed settings, R-tree has

been extended in [212] and [213] and merge of local R-trees at a central site has been

straightforward [214]. However, for tracking median information in the form of kd-

trees [215], their merge and maintenance seem impossible as median instead describes

the order statistics. A main application of kd-tree is maintaining quantiles and intervals

of multi-dimensional equi-height histograms [216]. Quantiles are similar to equal-height

histograms where ranges are divided in a way that all buckets contain the same number

of values. As kd-tree eventually divides the space into partitions having equal numbers

of multidimensional data points.

In this chapter, we propose a framework called iDMS which synchronously constructs

and maintains global kd-tree from locally distributed summaries of streaming data.

In the proposed framework, we keep multidimensional histograms of local data in an

index tree structure. We use kd-tree as our index structure to maintain histograms from

all distributed sites in a central site. We merge summaries of local histograms (index

structures) to discover equal-height histograms or quantiles, over the entire approxi-
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mated distributed data at a central site. In fact, the proposed framework constructs a

centralized, approximated kd-tree over the union of distributed summaries. The proposed

method incrementally updates the centralized histogram (central kd-tree). Indeed, we

keep track of a multidimensional equal-height histogram, known as a quantile, in a

central site.

For this purpose and to overcome the above mentioned challenges from i) and ii), we

use two different probabilistic and deep generative models of Gaussian Mixture Model

(GMM) and Generative Adversarial Networks (GAN) to construct local summaries. We

leverage local GMMs [217] or GANs for building approximate global kd-tree that signifi-

cantly reduce communication costs and at the same time enable effective construction

and maintenance.

To the best of our knowledge, our work is the first attempt to introduce a novel

distributed framework that maintains the global kd-tree at the central site from the

locally received data summaries. As the way of exactly merging kd-trees is deemed to be

impossible due to their recursive structures along different dimensions, the prominent

characteristics of our iDMS framework are the efficient and effective implementation

and the extensibility to other multi-dimensional index structures and non-mergeable

summaries. The main contributions of this chapter are as follows.

1. We address the fundamental problem of maintaining a global kd-tree via a novel

distributed framework.

2. Within the framework, we propose GMM/GAN-based distributed and maintenance

algorithms that are succinct, effective and efficient.

3. We demonstrate the effectiveness and efficiency of the framework (in terms of

kd-tree approximation error and communication cost) through experiments on two

real data sets and against the baseline setting (i.e. all arrived local data points are

sent to the central site).

5.2 Chapter Organization

The rest of this paper is organized as follows. Section 5.3 reviews related work on

mergeable summaries and distributed online tracking. Section 5.4 describes required

preliminaries of our proposed algorithms. Our proposed framework are explained in

details in Section 5.5. Section 5.6 presents experimental results. Section 5.7 concludes

the chapter.
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5.3 Related Work

The aim of this work is to develop a new framework that aggregates kd-trees/histograms

into a single kd-tree/histogram. We review some of the works that carried out studies in

this context either as distributed functional monitoring or mergeable summaries.

Histograms have been widely used in many applications such as similarity searching

[218] and [219], approximate querying [220], [221] and [222] and data mining [223].

Most of the literature on histograms and quantiles merely considers summarizing uni-

variate data in a centralized model and a few of them considers uni-variate distributed

model [224], [225]. In addition, most studies focus on constructing histograms over static

data sets [226] and [227] where the entire data is available. There are fewer works on

constructing dynamic multidimensional histograms over continuous data streams [228]

and [216], especially in distributed environments where multiple streams are generated

by local sites. In many distributed and parallel application scenarios, the main issue

on building a multidimensional histogram over the union of entire data is to merge

distributed summaries (i.e. histograms of local sites) to retrieve a histogram over aggre-

gated data in an efficient way.

There has been theoretical research on mergeable summaries [229] (e.g. for heavy

hitters and quantiles) while little was known for merging multidimensional indices

such as kd-tree. Yi and Zhang [210] study the problem of online tracking for both one-

dimensional and multi-dimensional spaces, but they only consider the centralized setting.

For both cases, they provide bounded competitive ratios.

Studies have also been carried out in the context of distributed functional monitor-

ing [230], [231], [232]. There are multiple observers each monitors its inputs over a

function continuously and communications are triggered with a coordinator to send

their function outputs. The coordinator then calculates a function over the union of

all outputs received from observers. The main goal of this line of research is to reduce

communication costs.

Distributed streaming models have been studied in [224], [233], [234], and [235],

where the goal is to find an approximation of a global function over the union of all

distributed data streams seen so far. For the models with sliding windows [236], [237]

and [238] calculate an aggregation function over elements within a sliding window of a

predefined size. In [239], outlier detection in sensor networks has been studied. In their

proposed framework, sensor measurements of a sliding window are approximated using

some kernel density estimators. Recently in [234], the authors extended the problem of
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distributed online tracking from two party model to more complex topologies of chain,

broom and tree.

5.4 Preliminaries

5.4.1 Kd-tree

kd-tree is a generalization of binary search tree that recursively halves a space into two

equal partitions interleaving on each dimension until there are one or more data points

left at each leaf indexed partition. Step by step visualization of partitioning 2D-space

using a kd-tree is shown in Figure 5.1 (a1-a6). Furthermore, a tree representation of

kd-tree, Algorithm 3, is demonstrated in Figure 5.2.

(a1) (a2)

(a3) (a4)

(a5) (a6)

Figure 5.1: Visualization of Kd-tree space partitioning.

Assume P is a set of n data points in R2. The Kd-tree algorithm starts by sorting

data points on one of the dimensions e.g. X . Then, it finds a split point (i.e. median) on
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Algorithm 3 Kd-tree construction

INPUT: list of data points as pointlist, depth of tree, k=number of dimensions
OUTPUT: Kd-tree

1: axis:= depth mod k
2: sortedlist ← sort(pointl istaxis)
3: median ← median(sortedlist)
4: node ← create(node)
5: node ← median
6: node.le f tChild := kdtree(data points in pointList before median,depth+1)
7: node.rightChild := kdtree(data points in pointList after median,depth+1)

this dimension, and stores this middle point in the root level. Now space P is partitioned

into two halves, Pl and Pr as left and right subspace. In the next level, each of these

two half spaces are partitioned into two halves on the second dimension y. The splitting

points are stored in the second level of the tree in left and right children of the root

level respectively. Figure 5.2 shows a 2d-tree on two-dimensional data that recursively

partitions the left and right sub-trees on one dimension until only one data point is left

at each leaf.

𝒑𝟏 𝒑𝟐 

𝒑𝟒 
𝒑𝟑 

𝒑𝟓 𝒑𝟔 

𝒑𝟕 
𝒑𝟖 

  

  

  

    

    

X 

Y 

X 

𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒 𝒑𝟕 𝒑𝟖 𝒑𝟓 𝒑𝟔 

Figure 5.2: Example of a 2d-tree

5.4.2 Gaussian Mixture Model

In this section, we explain the GMM as one of the preliminaries of our work which has

been used as a component of our framework.
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A mixture model is a probabilistic model for representing the presence of sub-

populations within an overall population, without requiring that an observed data

set should identify the sub-population to which an individual observation belongs. For-

mally, a mixture model corresponds to the mixture distribution that represents the

probability distribution of observations in the overall population. However, while prob-

lems associated with "mixture distributions" relate to deriving the properties of the

overall population from those of the sub-populations, "mixture models" are used to make

statistical inferences about the properties of the sub-populations given only observations

on the pooled population, without sub-population identity information. The multivariate

Gaussian distribution of a cluster ci ∈ Rd as shown in Equation5.1 is parameterized by

its mean µi ∈ Rd and co-variance matrix Σi ∈ Rd×d and the probability of a data point x
given the cluster is:

(5.1) P(x|ci)= 1√
(2π)dΣi

e−
1
2 (x−µi)TΣ−1

i (x−µi)

For a Gaussian mixture of m clusters, the probability density function is represented

in Equation 5.2.

(5.2) P(x)=
m∑

i=1
wi pi(x|ci)

where wi is the weight of cluster ci in the mixture model. Given the data and its

prescribed number of clusters m, its GMMs can be represented as vectors of parameters

(wi,µi,Σi) for i = 1, · · · ,m and these cluster and parameters can be learned through

the well-known iterative Expectation Maximization (EM) algorithm similar to k-means

algorithm.

Examples of clustering using GMM have been shown in Figures 5.3.(a-d). As can be

seen, GMM discovers various number of clusters in a multidimensional space based on

a user-defined parameter setting. For example in Figure (5.3-b) by setting number of

components (i.e. number of clusters) to one, GMM is forced to find one cluster in data

while in Figures a, c and d the number of clusters has been set to 3 and 2 respectively.

However, it needs to be acknowledged that seed initialization and number of iterations

are two other important user-defined parameters in finding clusters through GMM.
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(a) (b)

(c) (d)

Figure 5.3: Examples of clustering using GMM.

5.4.3 Generative Adversarial Network

GAN is another technique of data approximation in our framework that we explain in

this section. The idea of a deep generative model is to take noise such as Gaussian noise

and inputs to the neural network to transform Gaussian noise to the desired distribution.

Indeed, the aim of generative models is learning data distribution to generate new data

points without having access to the actual data points. It is difficult to learn distribution

of data in a way to generate exactly the same data as the real data. However, using

neural networks data distribution can be learnt to reduce approximation error between

generated and real data.

Gaussian noise (ℎ) 

Generator 
 Network 

(  

Generated data 
 

Real data (x)  

Discriminator 
 Network 

 

Sigmoid function 

1 

0 

𝐷𝑟𝑒𝑎𝑙  

𝐷𝑠𝑦𝑛𝑡ℎ 

Figure 5.4: Generative Adversarial Network.

In this regard, Generative adversarial Networks (GAN) [7] as depicted in Figure

5.4 has been introduced based on the idea of minmax in game theory from Artificial

Intelligence (AI) to minimize the possible loss of worst case scenarios (maximum loss).
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GAN consists of two networks: Generator (G) and Discriminator (D). The main

objective is to find an equilibrium between these two networks. The idea is to transform

a random distribution such as Gaussian noise to the real distribution. G and D networks

are trained in an adversarial process as a two-players game (minmax theory).

The Generator network does its best to make generated data look like real data to

D and Discriminator tries to output 1 on real data and 0 on generated data. Generator

does its best to make synthetic inputs look like real inputs to Discriminator.

The objective of GAN as formulated in Equation 5.3, and in its simpler version 5.4,

is to estimate the probability of distinguishing between two distributions of Dv(x) and

Dv(Gu(h)), where Gu is minimizer and Dv is maximizer. In fact, as shown in Equation

5.4, the objective is to get a difference between two expectations. The Back-propagation

method is used to update and retrain the model. Backprop updates Discriminator to-

wards more 1s on real inputs and more 0s on synthetic data.

(5.3) minu∈U maxv∈V Ex∼Dreal [logDv(x)]+Eh∼Dh[log(1−Dv(Gu(h)))]

(5.4) minu∈U maxv∈V Ex∼Dreal [Dv(x)]−Eh[Dv(Gu(h)))]

where u and v are trainable parameters of generator and discriminator nets respec-

tively and h is Gaussian noise.

Simply speaking and as shown in Algorithm 4, with an assumption of using GAN

in image enhancement, GAN works as follows. A Gaussian noise is given to the GAN

network to generate some synthetic image data, then the actual image and generated

image (fake image) are given to another network called discriminator to estimate the

difference between the fake and real image using sigmoid function. In fact, the two

networks (G) and (D) compete against each other. The generator makes fake data to

pass to the discriminator. The discriminator sees the real data and predicts if the

received data from the generator is real or fake. By looking at the output of sigmoid

function, GAN enhances the synthetic/fake image and make it closer to the real image

by back-propagation and retrains the model until it converges as shown in Figure 5.5.

Hence, the discriminator can not distinguish any difference between real and fake

data. Thereby, generator will win the competition, such as in all two player games. The
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Algorithm 4 Minibatch stochastic gradient descent training of generative adversarial
nets. The number of steps to apply to the discriminator,k, is hyper-parameter.(Source
[7])

1: for number of training iterations do
2: for K steps do
3: Sample minibatch of m noise samples {h(1), · · · ,h(m)} from noise prior pg(h)
4: Sample minibatch of m examples {x(1), · · · , x(m)} from generating distribution pdata(x)

5: Update the discriminator by ascending its stochastic gradient:

(5.5)
h

θd

1
m

m∑
i=1

[logD(x(i))+ log(1−D(G(h(i))))]

6: end for
7: Sample minibatch of m noise samples {h(1), · · · ,h(m)} from noise prior pg(h).
8: update the generator by descending its stochastic gradient:

(5.6)
h

θg

1
m

m∑
i=1

log(1−D(G(h(i))))

9: end for

dotted black line in Figure 5.5 is real/actual data, the dashed blue line is discriminative

distribution and the green line is generative distribution. The discriminative distribution

distinguishes between black and green lines until it can not differentiate between these

two distributions as shown in the right plot of Figure 5.5, where GAN converges.

Figure 5.5: Iterations of Generative Adversarial Network (source [7]).
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5.4.4 Regression Model

In statistics, regression analysis is used to estimate the relationships among different

variables in a data set. Regression analysis finds a model among a dependent variable

and a set of independent variables. This model is defined as a linear or non-linear func-

tion to represent how changes in the independent variables influence the dependent

variable. In other words, regression analysis fits a curve on data points to discover a

correlation among different dimensions/attributes/columns within a data set which is

mostly used for prediction and forecasting.

In a regression equation (i.e. linear regression) for a given set of data points {yi, xi1, · · · , xim},

where i = 1 : n, dependent variable yi is a linear combination of one or a set of indepen-

dent variables of xi as shown in Equation 5.7.

(5.7) yi =β0 +β1xi1 +·· ·+βmxim +εi = X T
i β+εi, i = 1, · · · ,n.

The best fitted curve or line is the one that has minimum distances to data points.

One of the metrics to measure goodness of a fitted model is R-squared (R2).

R-squared or coefficient of determination measures closeness of data points to the

fitted regression curve/line. R2 represents how much percentage of the response variable

variation has been described by a regression model. Equation 5.8 shows the R-squared

formula.

(5.8) R2 = SSR
SST

= 1− SSE
SST

where SST =∑
(y− ȳ)2 is the sum of squares, SSR =∑

( ý− ¯́y)2 is the sum of regres-

sions, and SSE = ∑
(y− ý)2 is the sum of errors. ý is the estimation of y and ȳ is the

mean of y.

Simply speaking, R-squared is a fraction of the described variation over the total

variation that is always between 0 and 100%. 0 means that the model does not explain

any variation in data and 100 means that model perfectly explains all the variability in

the data around its mean. Therefore, usually the higher the R-squared, the better the

model fits data.
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5.5 The iDMS Framework

A Kd-tree can be viewed as representative of different granularity of equi-height his-

tograms at each different level. An equi-height histogram is a type of histogram in which

frequency of appearance of data points/items in all bins/buckets are equal; likewise,

uniform distribution is shown in Figure 5.6 ,while intervals are changing and need to be

continuously updated by arriving new data points in order to maintain the equi-height

histogram. In multidimensional space, building and maintaining an equi-height his-

togram is not an easy task with respect to its wide applicability such as in range queries

problems. Indeed, a kd-tree maintains and updates intervals of an equi-height histogram

in multidimensional space. For instance, at level 2 of Figure 5.2, all 4 partitions (i.e.

buckets/bins) have equal height of 2 (i.e. the number of data points at each partition)

like (P3,P4) at the left upper corner are the same as (P5, P6), (P1, P2), (P7, P8).

5 8 11 17 28 30 

5 
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Equi-height bins 

Figure 5.6: Example of 1d-equi-height histogram

To have an overall view of all local histograms in a central site, we also need to

build a global kd-tree by merging local kd-trees at the central site. To achieve this,

each local site needs to send its local kd-tree to the central site. Received kd-trees are

then aggregated or merged in the central site to build a global kd-tree. However, it is

impractical to merge even two general kd-trees. Therefore the apparent solution is by

having all data points transmitted to the central site. However, in a distributed setting

this causes unacceptable communication costs.

Instead, we tackle the problem from the perspective of data approximation techniques.

In order to construct the global tree from the union of local kd-trees while minimizing the

communication cost (or preserving privacy), the idea is to adopt either GMMs or GANS

as the unified fitting models and generative models of the local data distributions. GMMs

vectors with their learned parameters represent statistical summaries of the underlying

data distribution. GANs neural networks also learn the actual/real data distribution
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in order to reconstruct distributions that are very close to the actual distributions. The

reconstruction process for iDMS-GMM based or iDMS-GAN based simply progress as

follows.

iDMS-GMM/GAN Algorithms:

1. As shown in Algorithm 5, at a local site, for each chunk of incoming data, either its

GMMs are learned with prescribed cluster size or GAN learns distribution of the

chunk.

2. Local sites send the learned GMM vectors or trained GAN nets for each chunk

of data as local summaries to the central site instead of sending all arrived data

points in the stream.

3. As shown in Algorithm 6, at the central site, new data points are generated

from either the received GMM vectors/distribution summaries or GAN nets first

and the approximate global kd-tree is constructed or maintained from the gener-

ated/approximated data points from GMM vectors or GAN nets.

Algorithm 5 Data summarization at a local site

INPUT: Data points of a chunk of a local site
OUTPUT: Cluster feature vectors (CFVs) of a local site or trained GAN nets

1: if method = GMM then
2: numClusters, clusterSizes,means, covs ←GMM(datapoints)
3: for i := 1 to numClusters do
4: CFVi ← clusterSize i,meani,Covi
5: end for
6: else if method = GAN then
7: trainedGANnet ←GAN(datapoints)
8: else
9: no summarization and send all actual data points

10: end if
11: Send CFVi ’s or GANs to the central site.
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Algorithm 6 One round construction & maintenance of Kd-tree at central site

INPUT: Received CFVs/GAN nets from local sites
OUTPUT: Build or Update Kd-tree at the central site

1: if summary=CFV then
2: for CFV in CFV s do
3: generatedData ← multivariate(CFV )
4: end for
5: else
6: for GAN in GANs do
7: GaussianNoise ← generate(GaussianNoise)
8: generatedData ←GAN(GaussianNoise)
9: end for

10: end if
11: if CFVs/GANs are the first chunks then
12: Build kd-tree on Generated data
13: else
14: kd− tree ← insert(generatedData)
15: Rebalance kd-tree if necessary
16: end if

In our practical framework iDMS (as shown in Figure 5.7), by having distribution

properties as either GMM vectors enriched by the number of data points N in each

cluster or trained GAN nets at central site, a set of N random data points from this

distribution can be generated as an approximation of actual data points from local sites.

Specifically, in iDMS-GMM, every site sends the parameters of its distribution along with

the number of data points within each distribution to the central site. These statistical

summaries are represented as a vector of
−−−→
CFV = (µ,

∑
, N) , where µ is a d-dimensional

mean vector,
∑

is the associated co-variance matrix and N is the number of data points.

While in iDMS-GAN, only trained GAN networks are sent to the central site and in the

central site only random Gaussian noises are generated as inputs to the received GAN

nets in order to generate data that are very close to the actual data at local sites. It

should be noticed that GAN means only trained Generator nets are sent to the central

site and there is no need to send Discriminator networks.

Figure 5.7 displays the overview of the framework with fitting and generative models.

Statistical summaries are extracted from local kd-trees using distribution fitting models.

These summaries are sent to the central site as
−−−→
CFV vectors or Generative nets. In the

central site, either a generative model such as GMMs or trained Generative networks

are utilized for generating random data points drawn from the local kd-trees distribu-
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tions using
−−−→
CFV vectors or GANs. After the initial data generation, a global kd-tree is

constructed and maintained on top of the newly generated data.

In iDMS-GMM, similar to k-means that deciding the number of GMM clusters is

often a challenge. Figure 5.7 shows the varying cluster sizes (the number of sent vectors)

at local sites. For instance, if the cluster size is 3, then 3
−−−→
CFV vectors will be sent to the

central site. Deciding the proper number of clusters is helpful for the data generative

model to produce more accurate data points at the central site which eventually leads

to a better estimated global kd-tree. In iDMS-GAN also choosing the learning rate and

number of layers are effective in training a GAN network.
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First Chunk 

Fitting Model Fitting Model Fitting Model 
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Figure 5.7: Overview of iDMS framework
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5.6 Experimental Results

In this section, we report experimental studies on the proposed framework iDMS. We

evaluate iDMS in terms of the approximation quality of the constructed global kd-tree

from received GMM distribution vectors and GAN models, and the communication cost

in sending vectors and trained GAN networks as data summaries. We compare these

results from iDMS against a baseline distributed framework where all incoming data

points at local sites are sent to the central site, i.e. the central site has all data points to

construct the exact global kd-tree. We also compare differences between actual data and

generated data using GAN and GMM. We show the effect of number of clusters on data

approximation error when using GMM.

The framework is tested on two real data sets of California Housing Prices [240] and

Wine data [241].

• Housing data set has nine numerical attributes (dimensions/variables) and one

categorical attribute with 17000 instances (rows) and we only use 9 numeric

attributes.

• The other data set is a wine data set which has 12 numerical attributes and 3,919

instances.

The results are reported on chunk-size, bin-size, number of sites, number of clusters

and number of dimensions of data points (to be explained in detail later). Results re-

ported are on average numbers from 10 runs.

We are not aware of any work in the literature that merges and maintains a kd-tree

to maintain equi-height histograms in distributed streaming environment for further

comparison. Therefore, we compare results of GMM with GAN, and also each of them

with baseline where all data points are available in the central site.
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Figure 5.8: Scatter plots of original housing data on 9 dimensions.
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Figure 5.9: Scatter plots of generated housing data set using GMM on 9 dimensions.
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Figure 5.10: Scatter plots of generated housing data set using GAN on 9 dimensions.
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Figure 5.11: Histograms of generated GMM /GAN vs actual Housing data on 9 dimen-
sions. 126
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Figure 5.12: Scatter plots of original Wine data set on 12 dimensions.
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Figure 5.13: Scatter plots of generated Wine data set using GMM on 12 dimensions.
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Figure 5.14: Scatter plots of generated wine data set using GAN on 12 dimensions.
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Figure 5.15: Histograms of generated GMM /GAN vs actual data on 12 dimensions of
Wine data set. 130
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Approximation quality We plot pairwise correlations of attributes/dimensions of

actual, GMM and GAN generated data in Figures [5.8, 5.9, 5.10] and [5.12,5.13, 5.14],

for both house and wine data sets respectively.

As can be seen, in generated data using GAN, correlations between each pair of

dimensions/attributes have been preserved much better than GMM on both data sets.

However, relative relationships between dimensions/attributes of GAN generated hous-

ing are preserved much better than the wine data set. We believe that the reason for this

trend is because of high sparsity and density in the wine data set in addition to size of

data set in comparison with the housing data as plotted in Figures 5.12 and 5.14.

We also plot histograms of each dimension of house and wine data sets as shown in

Figures 5.11 and 5.15. Histograms of GAN are closer to the histograms of actual data

compared to histograms of GMM. GMM generates data within a normal distribution

while GAN learns actual distribution of data and generates data that are close to the

actual data.

We also use R2 error to measure closeness of generated data to a regression model

built on the actual data. We build a regression model on the entire actual data set to

evaluate how close the generated data are to the fitted regression model.

R-squared is the percentage of the response variable variation from a trained regres-

sion model. It varies between 0 and 100% in which 0% means that the model does not

capture any variability of the response data while 100% means that all the variability of

the data are captured by the model.

We measure R2 between the actual data sets and the trained regression models over

the entire data sets as a baseline. The obtained R2 errors are 87% and 77% for housing

and wine data sets respectively, which show the variability of these data sets. We then

generate several data sets from GMM by varying the number of clusters (nc) as shown

in Figure 5.18 and find that the closest generated data with 7 clusters to the regression

models have R2 values of 75% on housing data and 62% on wine data (an indication of

closeness where 100% is the perfect scenario) as shown in Figure 5.16.

We also generate data sets from GAN for 500 epochs and find that the generated data

sets have R2 values of 81% on housing and 69% on wine data set as shown in Figure

5.16. These results indicate that generated data using GAN are closer to the actual data

compared to generated data using GMM for both data sets.
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Figure 5.16: R2 errors of original, GAN and GMM of wine and house data sets.

We use the mean absolute relative error (MARE) in Equation 5.9 for calculating

the approximation error between medians of constructed kd-tree by generated data

using GAN and GMM with the best number of clusters and the constructed kd-tree with

original data.

(5.9) MARE = 1
M

M∑
i=1

∣∣∣∣mi −m′
i

mi

∣∣∣∣
MARE measures the average difference between median values mi in the exact kd-

tree and the corresponding medians m′
i in the approximate kd-tree built from GMMs or

GANs where M denotes the total number of medians.

Figures 5.17a and 5.17b display MARE values between constructed exact and approx-

imate global kd-trees for different bin (i.e.leaf) sizes of 256, 512, 1024 and chunk-sizes of

212, 211, 210 and 29 on housing and wine data sets. We chose this range of numbers to

be able to limit the size of kd-tree to our predefined bin-sizes. Chunk-size is the total

number of data points received at the central site and the exact kd-tree is purely built on

these. Bin-size represents the maximum number of data points each tree leaf contains

(i.e. the smallest partition size in space as bin/bucket in histograms).

Results show that increasing chunk-size considerably increases MARE irrespective of

the bin-sizes. These figures show that by increasing variability of data, GMM estimates

cluster distributions and not actual data. On the other hand, increasing leaf/bin size and

hence decreasing tree height reduces MARE. This is expected as kd-tree decomposition

propagates median error from root to leaves. Also, a larger leaf size translates to a larger

partition/sample size which leads to better estimated medians from GMMs through

generating a set of estimated data points that are closer to the actual data points.
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(a) MAREs between GMM and original data on
different chunk and bin-sizes of housing data.

(b) MAREs between GMM and original data on
different chunk and bin-sizes of wine data.

(c) MAREs comparison of GAN and GMM on dif-
ferent bin-sizes, chunk-size=29,housingdata.

(d) MAREs comparison of GAN and GMM on
different bin-sizes, chunk-size=29,winedata.

(e) MAREs comparison of GAN and GMM on
different chunk-sizes and bin-size=1024, housing
data.

(f) MAREs comparison of GAN and GMM on dif-
ferent chunk-sizes for bin-size=1024, wine data.

Figure 5.17: Comparison of constructed kd-tree using GMM or GAN generated data with
original data.
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From the above experiments we can conclude the best bin and chunk-sizes are 1024

and 29, respectively. Hence, we evaluate and compare results of constructed kd-tree built

on GMM and GAN data generated for chunk-size of 29 and bin-sizes of 256, 512 and

1024. Figures 5.17c and 5.17d show that MAREs of constructed kd-tree using GAN is

significantly less than GMM for different bin-sizes of 256, 512 and 1024 for both housing

and wine data sets.

We also compare results of constructed kd-tree using GMM and GAN for different

chunk-sizes of 212, 211, 210 and 29, when bin-size is 1024 as shown in Figures 5.17e

and 5.17f. As can be seen, these results also indicate that GAN generates data that are

closer to the actual data; therefore for both data sets with different distributions (i.e.

distribution of wine data is smoother and skewed compared to house data) GAN ends

with less MARE error than the GMM-based kd-tree. As stated earlier, GMM generates

normal distribution regardless of type of distribution- whether it is normal or skewed.

When data distribution is normal, median and mean are almost the same while skewness

in data distribution increases median and mean are getting further away from each

other.

Effect of the actual number of clusters on GMM data generation We test the

effect of varying number of clusters over several created data sets from GMM for both

housing and wine data sets. As Figure 5.18 shows, increasing the number of actual clus-

ters decreases R2 error of generated data to the actual data. This results in generating

closer data to the actual data.

Figure 5.18: Effect of varying number of clusters on GMM data generation.
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Accuracy and Loss of Discriminator vs Generator in GAN We implemented

GAN in keras [242] with ADAM optimizer, learning rate (lr) of 0.001 and the network of

3 layers.

Plots of Figure 5.19 show the variation of losses when Generator and Discriminator

networks are competing against each other to train GAN net at 500 and 600 epochs for

housing and wine datasets, respectively. As these plots depict, the generator loss in both

data sets is decreasing and the discriminator losses are increasing. That means that as

generators improve, that results in higher losses in discriminator. In both plots, after a

few steps/epochs of training, losses of generator and discriminator remain steady. This

loss plateau denotes that the GAN model has found some optimum and can not improve

further: the model has learned enough.

(a) Housing dataset.

(b) Wine dataset.

Figure 5.19: Plot showing the variation of losses while training the GAN using Adam
optimizer at different epochs for housing and wine datasets.
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Figure 5.20 is also another demonstration of improvements of GAN on 4 dimensions

of the housing dataset at different training epochs of 1, 300, and 500. As can be seen, as

the number of epochs increases, a random distribution at plot (a) becomes closer to the

original data (d).

(a) epoch 1.

(b) epoch 300.

(c) epoch 500.

(d) original data.

Figure 5.20: Scatter Plot of distribution of original housing data vs generated housing
data on 4 dimensions using GAN at different epochs of 1, 300 and 500.
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Communication cost We measured the communication cost in terms of the total

number of bytes transmitted by either iDMS-GMM or iDMS-GAN frameworks.

Figure 5.21 compares communication ratio of iDMS-GMM with iDMS-GAN based on

the baseline distributed model for housing data set with 9 dimensions and wine data

set with 12 dimensions while the number of local sites increase from 4 to 120. These

graphs show increasing trends for both iDMS-GMM and iDMS-GAN in both datasets.

The changes appear almost linear, but iDMS-GMM are happening at a slower rate than

iDMS-GAN. This is expected as in iDMS-GMM only small cluster feature vectors are sent

to the central site, while in case of iDMS-GAN, the trained networks are sent which might

be different in sizes in terms of number of their nodes, layers and activation functions.

In high dimensional spaces, communication costs may be affected by increasing number

of dimensions for both iDMS-GMM and iDMS-GAN.

(a) Wine dataset. (b) Housing dataset.

Figure 5.21: Comparison of communication ratio of iDMS-GMM and iDMS-GAN with the
basic distributed model for different number of sites on (a) wine data set and b) Housing
data set.

5.7 Summary

We proposed a novel practical framework iDMS that tracks and approximately merges kd-

trees leveraging Gaussian mixture models (GMMs) or GAN networks. We experimentally

evaluated the proposed framework and the results demonstrate its practicality with low

reconstruction error and communication cost while being efficient in comparison with

sending all data points to a central site. The results show that the approximation error of

data reconstruction in GAN is less than in case of GMM but at the expense of increasing
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communication cost in comparison to GMM. GMM is simpler but still needs to decide on

the number of clusters, GAN requires careful training parameters, communication cost

and dependency on chunk size.

In the next chapter, we will review all works we have undertaken in this thesis and

will discuss possible future work(s) on big data summarization.
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6
CONCLUSION AND FUTURE WORK

This thesis has focused on processing, storage and communication aspects of big

data by constructing synopses. Many studies have been conducted to develop

and improve summarization techniques. We stress on the above as important

challenges of big data summarization. In our work we have proposed different summa-

rization frameworks to reduce limitations of processing, storage and communication.

We have focused on three summarization techniques, namely dimensionality reduction,

clustering and histograms with respect to their importance and wide applicability in

different areas. We studied these challenges in the cases of static and dynamic data, and

in centralized and decentralized manners for different application scenarios. In the rest

of this chapter we summarize our main contributions, followed by possible interesting

research directions that can be pursued in the future.

6.1 Summarization of Matrix-based Data

We studied the problem of storage and transmission of large scale medical images.

Many medical images such as X-ray images need to be transferred between remote and

centralized hospitals for further processing and recognition. However, transmission and

storage of these voluminous images are problematic.

We proposed summarization frameworks to extract and capture similarities among a

stream of images. We discussed new methods for lossless compression using the concept

of memory-assisted universal coding. The proposed approaches are well suited to com-
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press large datasets of medical images, especially for recurrent usage. The algorithms

consist of a learning phase followed by a testing phase. In the learning phase, dimen-

sionality reduction techniques, whether PCA or NMF as techniques of summarization

are performed on training images to extract a set of eigenimages which are used to

reconstruct the different test images. The reconstructed images are simply represented

(coded) by low dimensional feature vectors. The error (or residual) images are then com-

pressed using traditional lossless compression algorithms such as the CALIC, JPEG-LS,

bzip2 and CTW algorithms. Using the JRST database, our experimental results showed

that the performance of traditional lossless algorithms can be improved by using the

proposed algorithms. The proposed concept of using memory to enhance the performance

of universal coders is expected to have a major impact in areas where images exhibit a

high correlation.

6.2 Multiple Stream Summarization using
Clustering

We proposed two multiple stream clustering algorithms using an indexing tree in central-

ized and distributed models. Our proposed algorithms are based on one of the well-known

micro-clustering techniques, ClusTree [4]. The objectives of this study were to minimize

the communication cost of clustering distributed data streams and accelerating speed

of processing data streams in both a centralized and a decentralized manner. Indeed,

data streams cannot be stored or processed in their entirety in a central location and

only a summarized form is stored. Data is summarized by means of micro-clustering

techniques; such techniques allow local sites to capture as much information as their

local storage permits in the form of cluster feature vectors and to store them in a local

tree index structure.

In the centralized framework, we proposed a new, anytime, concurrent, multiple

stream clustering algorithm. We captured the summary statistics of multiple data

streams concurrently in the online phase. We proposed to maintain statistical information

of the data locality in micro-clusters at a dynamic, multiple access index data structure

for further offline clustering. In the online phase, the index data structure maintains

summaries of data in the format of cluster feature tuples (CF) instead of storing all

incoming objects. Then, the data structure is traversed through an index to insert new
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data objects concurrently into their closest micro-clusters. We proposed a centralized

micro-clustering algorithm that can concurrently cluster multiple streams.

We also extended ClusTree into DistClusTree, a comprehensive distributed frame-

work for stream clustering. The framework leverages both spatial index summaries and

online tracking for balancing communication cost and clustering quality. We demon-

strated that DistClusTree efficiently produces clusters as good as its centralized version.

DistClusTree is able to reduce communication costs significantly and it is easily config-

urable in practice according to the requested clustering quality.

6.3 Summarization using Histograms

We proposed two frameworks called iDMS-GMM and iDMS-GAN which synchronously

construct and maintain a global kd-tree from locally distributed streaming data. In these

frameworks we used two generative models to compact local data. These local summaries

are sent to the central site chunk by chunk. We significantly reduced communication costs

by sending summaries instead of actual and unlimited streams of data. At the central

site, we generated approximate data from received local summaries using generative

models of GMM and GAN. In iDMS-GMM, we only sent a summary vector for each

cluster including a number of data points, mean and a covariance matrix. These three

features are enough to generate approximate data in the central site. In iDMS-GAN, we

sent trained generator networks to the central site in order to regenerate data.

We introduced a novel distributed framework that maintains the global kd-tree at the

central site from the locally received data. TThe way of precisely merging kd-tree indices

is deemed to be impossible due to their recursive structures along different dimensions.

However, the prominent characteristics of our iDMS framework provide an efficient

and effective implementation. We address the fundamental problem of maintaining a

global kd-tree via a novel distributed framework. Within the framework, we propose

GMM/GAN-based distributed and maintenance algorithms that are succinct, effective

and efficient. We demonstrate the effectiveness and efficiency of the framework (in terms

of kd-tree approximation error and communication cost) through experiments on real

datasets and against the baseline setting: i.e. all arrived local data points are sent to the

central site. We aim to maintain a histogram over union of all local sites at the central

site. Frequency counting is the main key in constructing histogram. Hence, we needed

to communicate on all data points and not just on cluster features such as center and

radius.
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6.4 Future work

In this thesis we mostly paid attention to summarization of streaming numerical and

structured data in distributed environments. However, techniques for distributed sum-

marization of unstructured data such as health records, audio, video and text remain

largely unexplored. For example, synopsis construction algorithms have been developed

for summarizing unstructured data [243], [244] but with less focus on merging and

aggregating them in distributed and parallel manners. Therefore, developing summa-

rization methods that deal with dynamism of data in distributed settings is still an open

problem.

Although static and homogeneous data summarizations have been studied, it has not

been sufficiently adopted to distributed, dynamic and heterogeneous data. We believe

there are open, motivating and interesting research directions in this area as unlimited

data are generated from various distributed sources that require union integration and

aggregation over their heterogeneous summaries in a central location.

We developed memory-assisted frameworks to extract commonalities among a static

set of medical images in an offline manner. Future work can be carried on to study

and enhance them, such as a rule-of-thumb for choosing the number of learning levels

and investigating the effects of different encoders on the performance of the proposed

techniques. Furthermore, MAC frameworks can be extended for online processing of

other two-dimensional arrays (i.e. matrix-based data) by using more advance incremen-

tal/online dimensionality reduction techniques such as Incremental Principal Component

Analysis (IPCA) and extending the centralized memory-assisted compression into the

distributed one. It could be worthwhile to generalize the framework by substituting

other dimensionality reduction techniques and adopting a variety of medical/non-medical

images.

In this work, we only investigated online distributed summarization in a client-

server model, where all summaries are aggregated in a local site. More studies could

be conducted on distributed summarization in peer-to-peer models. For example, the

DistClusTree algorithm could be expanded from a client-server model to a peer to peer

model. Additionally, it would be of interest to generalize this framework by applying

other index structures, especially distributed index data structures such as VBI [245].

Another interesting research dimension which remains unexplored in the field of

distributed stream clustering is an extensive comparison of different existing distributed

clustering algorithms in the literature.
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We studied the problem of merging kd-trees as representatives of histograms, i.e.

summarization, using generative models. However, there is still room to improve the

data generation part by replacing GAN with its variations [246]. The framework can

also be extended by using other multi-dimensional index structures and non-mergeable

summaries. Plugging update mechanisms (e.g. fully-dynamic maintenance) such as

delete and insert into the global index-tree is still open for investigation. Moreover,

the framework opens up an interesting theoretical problem on how to effective merge

index-trees.
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