39 research outputs found

    Measuring the Phase Variation of a DOCSIS 3.1 Full Duplex Channel

    Get PDF
    Including a Full Duplex option into DOCSIS introduces several problems. One of the more troublesome issues is the presence of a strong self interference signal that leaks from the transmit side to the receive side of a cable node. This self interference is caused by echoes in the channel that translate the forward travelling transmit signals into a reverse travelling signal, as well as, by leakage from the hybrid coupler used to couple the upstream and downstream signals. To suppress this self interference an echo canceller is implemented to remove the unwanted interference from the received signal. Unfortunately with the high rates of data transmission used in modern day CATV networks the echo canceller needs tremendous precision. A major concern in the implementation of Full Duplex into DOCSIS is if the channels used are even very slightly time varying. The echos in such channels change with time and can be difficult for the echo canceller to track. Changes in the response of the channel cause the echo profile of the network to shift and the echo canceler to re-adapt to the new channel response. The issue with this changing response is that it is possible for the channel to change faster than the echo canceller can adapt, resulting in the interference becoming unacceptably high. Since the channel is a physical network of coaxial cables often exposed to the environment, its propagation properties can be affected by wind swaying pole mounted cables, or by rapid heating from the sun, or sudden shifts in the load of the network. With information on how the physical properties of the cable changes, the engineers designing the echo canceller can know how fast the canceller must adapt to changes and also have a better measure of how reliable its echo cancellation will be. In this thesis the stability of the echo profile of the channel is measured. It is shown that the property of the channel with the greatest potential to rapidly change and cause noise after echo cancellation is the phase response of the channel. Due to this, the approach of this thesis is to measure the fluctuations in the phase of the channel response of a CATV network constructed in the lab. To measure the fluctuations in the phase response of the channel, a PLL (Phase Locked Loop) based circuit is designed and built on an FPGA (Field Programmable Gate Array) and connected to a model of a simple CATV network. The PLL circuit used to measure the phase fluctuations of the channel is designed to be able to measure changes occurring faster than 0.1 Hz and with a power higher than 10โˆ’7โ€…V210^{-7} \: V^2. The circuit is able to capture data from the channel over a period of 90 seconds. Using this phase variation measurement circuit a series of experiments were performed on a model CATV DOCSIS network. It was found that many physical disturbances to the network had the effect of rapidly shifting the phase response of the network. Heating the cables in the network was found to shift the phase response upwards of 20000โ€…ฮผ20000\:\muradians. Flexing the cables in the network was found to have a peak phase variation of 8000โ€…ฮผ8000\: \muradians with similar effects found from walking over cables. Overall, it was clear that physical effects on the network had the propensity to rapidly shift the network response. Any echo canceller that is designed in the future will have to consider these effects when reporting the cancellation that it is able to achieve

    ์ฐจ์„ธ๋Œ€ ์ž๋™์ฐจ์šฉ ์นด๋ฉ”๋ผ ๋ฐ์ดํ„ฐ ํ†ต์‹ ์„ ์œ„ํ•œ ๋น„๋Œ€์นญ ๋™์‹œ ์–‘๋ฐฉํ–ฅ ์†ก์ˆ˜์‹ ๊ธฐ์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ์ •๋•๊ท .๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ฐจ์„ธ๋Œ€ ์ž๋™์ฐจ์šฉ ์นด๋ฉ”๋ผ ๋งํฌ๋ฅผ ์œ„ํ•ด ๋†’์€ ์†๋„์˜ 4๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์‹ ํ˜ธ์™€ ๋‚ฎ์€ ์†๋„์˜ 2๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์‹ ํ˜ธ๋ฅผ ํ†ต์‹ ํ•˜๋Š” ๋น„๋Œ€์นญ ๋™์‹œ ์–‘๋ฐฉํ–ฅ ์†ก์ˆ˜์‹ ๊ธฐ์˜ ์„ค๊ณ„ ๊ธฐ์ˆ ์— ๋Œ€ํ•ด ์ œ์•ˆํ•˜๊ณ  ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ ํ”„๋กœํ† ํƒ€์ž… ์„ค๊ณ„์—์„œ๋Š”, 10B6Q ์ง๋ฅ˜ ๋ฐธ๋Ÿฐ์Šค ์ฝ”๋“œ๋ฅผ ํƒ‘์žฌํ•œ 4๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์†ก์‹ ๊ธฐ์™€ ๊ณ ์ •๋œ ๋ฐ์ดํ„ฐ์™€ ์ฐธ์กฐ ๋ ˆ๋ฒจ์„ ๊ฐ€์ง€๋Š” 4๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์ ์‘ํ˜• ์ˆ˜์‹ ๊ธฐ์— ๋Œ€ํ•œ ๋‚ด์šฉ์ด ๊ธฐ์ˆ ๋˜์—ˆ๋‹ค. 4๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์†ก์‹ ๊ธฐ์—์„œ๋Š” ๊ต๋ฅ˜ ์—ฐ๊ฒฐ ๋งํฌ ์‹œ์Šคํ…œ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•œ ๋ฉด์  ๋ฐ ์ „๋ ฅ ํšจ์œจ์„ฑ์ด ์ข‹์€ 10B6Q ์ฝ”๋“œ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ด ์ฝ”๋“œ๋Š” ์ง๋ฅ˜ ๋ฐธ๋Ÿฐ์Šค๋ฅผ ๋งž์ถ”๊ณ  ์—ฐ์†์ ์œผ๋กœ ๊ฐ™์€ ์‹ฌ๋ณผ์„ ๊ฐ€์ง€๋Š” ๊ธธ์ด๋ฅผ 6๊ฐœ๋กœ ์ œํ•œ ์‹œํ‚จ๋‹ค. ๋น„๋ก ์—ฌ๊ธฐ์„œ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ๊ธธ์ด 10๋น„ํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์˜€์ง€๋งŒ, ์ œ์•ˆ๋œ ๊ธฐ์ˆ ์€ ์นด๋ฉ”๋ผ์˜ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ํƒ€์ž…์— ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ๊ธธ์ด์— ๋Œ€ํ•œ ํ™•์žฅ์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋ฐ˜๋ฉด, 4๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์ ์‘ํ˜• ์ˆ˜์‹ ๊ธฐ์—์„œ๋Š”, ์ƒ˜ํ”Œ๋Ÿฌ์˜ ์˜ต์…‹์„ ์ตœ์ ์œผ๋กœ ์ œ๊ฑฐํ•˜์—ฌ ๋” ๋‚ฎ์€ ๋น„ํŠธ์—๋Ÿฌ์œจ์„ ์–ป๊ธฐ ์œ„ํ•ด์„œ, ๊ธฐ์กด์˜ ๋ฐ์ดํ„ฐ ๋ฐ ์ฐธ์กฐ ๋ ˆ๋ฒจ์„ ์กฐ์ ˆํ•˜๋Š” ๋Œ€์‹ , ์ด ๋ ˆ๋ฒจ๋“ค์€ ๊ณ ์ •์‹œํ‚ค๊ณ  ๊ฐ€๋ณ€ ๊ฒŒ์ธ ์ฆํญ๊ธฐ๋ฅผ ์ ์‘ํ˜•์œผ๋กœ ์กฐ์ ˆํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์ƒ๊ธฐ 10B6Q ์ฝ”๋“œ ๋ฐ ๊ณ ์ • ๋ฐ์ดํ„ฐ ๋ฐ ์ฐธ์กฐ๋ ˆ๋ฒจ ๊ธฐ์ˆ ์„ ๊ฐ€์ง„ ํ”„๋กœํ† ํƒ€์ž… ์นฉ๋“ค์€ 40 ๋‚˜๋…ธ๋ฏธํ„ฐ ์ƒํ˜ธ๋ณด์™„ํ˜• ๋ฉ”ํƒˆ ์‚ฐํ™” ๋ฐ˜๋„์ฒด ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๊ณ  ์นฉ ์˜จ ๋ณด๋“œ ํ˜•ํƒœ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. 10B6Q ์ฝ”๋“œ๋Š” ํ•ฉ์„ฑ ๊ฒŒ์ดํŠธ ์ˆซ์ž๋Š” 645๊ฐœ์™€ ํ•จ๊ป˜ ๋‹จ 0.0009 mm2 ์˜ ๋ฉด์  ๋งŒ์„ ์ฐจ์ง€ํ•œ๋‹ค. ๋˜ํ•œ, 667 MHz ๋™์ž‘ ์ฃผํŒŒ์ˆ˜์—์„œ ๋‹จ 0.23 mW ์˜ ์ „๋ ฅ์„ ์†Œ๋ชจํ•œ๋‹ค. 10B6Q ์ฝ”๋“œ๋ฅผ ํƒ‘์žฌํ•œ ์†ก์‹ ๊ธฐ์—์„œ 8-Gb/s 4๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์‹ ํ˜ธ๋ฅผ ๊ณ ์ • ๋ฐ์ดํ„ฐ ๋ฐ ์ฐธ์กฐ ๋ ˆ๋ฒจ์„ ๊ฐ€์ง€๋Š” ์ ์‘ํ˜• ์ˆ˜์‹ ๊ธฐ๋กœ 12-m ์ผ€์ด๋ธ” (22-dB ์ฑ„๋„ ๋กœ์Šค) ์„ ํ†ตํ•ด์„œ ๋ณด๋‚ธ ๊ฒฐ๊ณผ ์ตœ์†Œ ๋น„ํŠธ ์—๋Ÿฌ์œจ 108 ์„ ๋‹ฌ์„ฑํ•˜์˜€๊ณ , ๋น„ํŠธ ์—๋Ÿฌ์œจ 105 ์—์„œ๋Š” ์•„์ด ๋งˆ์ง„์ด 0.15 UI x 50 mV ๋ณด๋‹ค ํฌ๊ฒŒ ์ธก์ •๋˜์—ˆ๋‹ค. ์†ก์ˆ˜์‹ ๊ธฐ๋ฅผ ํ•ฉ์นœ ์ „๋ ฅ ์†Œ๋ชจ๋Š” 65.2 mW (PLL ์ œ์™ธ) ์ด๊ณ , ์„ฑ๊ณผ์˜ ๋Œ€ํ‘œ์ˆ˜์น˜๋Š” 0.37 pJ/b/dB ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ฒซ๋ฒˆ์งธ ํ”„๋กœํ† ํƒ€์ž… ์„ค๊ณ„์„ ํฌํ•จํ•˜์—ฌ ๊ฐœ์„ ๋œ ๋‘๋ฒˆ์งธ ํ”„๋กœํ† ํƒ€์ž… ์„ค๊ณ„์—์„œ๋Š”, 12-Gb/s 4๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์ •๋ฐฉํ–ฅ ์ฑ„๋„ ์‹ ํ˜ธ์™€ 125-Mb/s 2๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์—ญ๋ฐฉํ–ฅ ์ฑ„๋„ ์‹ ํ˜ธ๋ฅผ ํƒ‘์žฌํ•œ ๋น„๋Œ€์นญ ๋™์‹œ ์–‘๋ฐฉํ–ฅ ์†ก์ˆ˜์‹ ๊ธฐ์— ๋Œ€ํ•ด ๊ธฐ์ˆ ๋˜๊ณ  ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ๋„“์€ ์„ ํ˜• ๋ฒ”์œ„๋ฅผ ๊ฐ€์ง€๋Š” ํ•˜์ด๋ธŒ๋ฆฌ๋“œ๋Š” gmC ์ €๋Œ€์—ญ ํ†ต๊ณผ ํ•„ํ„ฐ์™€ ์—์ฝ” ์ œ๊ฑฐ๊ธฐ์™€ ํ•จ๊ป˜ ์•„์›ƒ๋ฐ”์šด๋“œ ์‹ ํ˜ธ๋ฅผ 24 dB ์ด์ƒ ํšจ์œจ์ ์œผ๋กœ ๊ฐ์†Œ์‹œ์ผฐ๋‹ค. ๋˜ํ•œ, ๋„“์€ ์„ ํ˜• ๋ฒ”์œ„๋ฅผ ๊ฐ€์ง€๋Š” ํ•˜์ด๋ธŒ๋ฆฌ๋“œ์™€ ํ•จ๊ป˜ ๊ฒŒ์ธ ๊ฐ์†Œ๊ธฐ๋ฅผ ํ˜•์„ฑํ•˜๊ฒŒ ๋˜๋Š” ์„ ํ˜• ๋ฒ”์œ„ ์ฆํญ๊ธฐ๋ฅผ ํ†ตํ•ด 4๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์‹ ํ˜ธ์˜ ์„ ํ˜•์„ฑ๊ณผ ์ง„ํญ์˜ ํŠธ๋ ˆ์ด๋“œ ์˜คํ”„ ๊ด€๊ณ„๋ฅผ ๊นจ๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. ๋™์‹œ ์–‘๋ฐฉํ–ฅ ์†ก์ˆ˜์‹ ๊ธฐ ์นฉ์€ 40 ๋‚˜๋…ธ๋ฏธํ„ฐ ์ƒํ˜ธ๋ณด์™„ํ˜• ๋ฉ”ํƒˆ ์‚ฐํ™” ๋ฐ˜๋„์ฒด ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์ƒ๊ธฐ ์„ค๊ณ„ ๊ธฐ์ˆ ๋“ค์„ ์ด์šฉํ•˜์—ฌ, 4๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ๋ฐ 2๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์†ก์ˆ˜์‹ ๊ธฐ ๋ชจ๋‘ 5m ์ฑ„๋„ (์ฑ„๋„ ๋กœ์Šค 15.9 dB) ์—์„œ 1E-12 ๋ณด๋‹ค ๋‚ฎ์€ ๋น„ํŠธ ์—๋Ÿฌ์œจ์„ ๋‹ฌ์„ฑํ•˜์˜€๊ณ , ์ด 78.4 mW ์˜ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ๊ธฐ๋กํ•˜์˜€๋‹ค. ์ข…ํ•ฉ์ ์ธ ์†ก์ˆ˜์‹ ๊ธฐ๋Š” ์„ฑ๊ณผ ๋Œ€ํ‘œ์ง€ํ‘œ๋กœ 0.41 pJ/b/dB ์™€ ํ•จ๊ป˜ ๋™์‹œ ์–‘๋ฐฉํ–ฅ ํ†ต์‹  ์•„๋ž˜์—์„œ 4๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์‹ ํ˜ธ ๋ฐ 2๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์‹ ํ˜ธ ๊ฐ๊ฐ์—์„œ ์•„์ด ๋งˆ์ง„ 0.15 UI ์™€ 0.57 UI ๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ์ด ์ˆ˜์น˜๋Š” ์„ฑ๊ณผ ๋Œ€ํ‘œ์ง€ํ‘œ 0.5 ์ดํ•˜๋ฅผ ๊ฐ€์ง€๋Š” ๊ธฐ์กด ๋™์‹œ ์–‘๋ฐฉํ–ฅ ์†ก์ˆ˜์‹ ๊ธฐ์™€์˜ ๋น„๊ต์—์„œ ์ตœ๊ณ ์˜ ์•„์ด ๋งˆ์ง„์„ ๊ธฐ๋กํ•˜์˜€๋‹ค.In this dissertation, design techniques of a highly asymmetric simultaneous bidirectional (SB) transceivers with high-speed PAM-4 and low-speed PAM-2 signals are proposed and demonstrated for the next-generation automotive camera link. In a first prototype design, a PAM-4 transmitter with 10B6Q DC balance code and a PAM-4 adaptive receiver with fixed data and threshold levels (dtLevs) are presented. In PAM-4 transmitter, an area- and power-efficient 10B6Q code for an AC coupled link system that guarantees DC balance and limited run length of six is proposed. Although the input data width of 10 bits is used here, the proposed scheme has an extensibility for the input data width to cover various data types of the camera. On the other hand, in the PAM-4 adaptive receiver, to optimally cancel the sampler offset for a lower BER, instead of adjusting dtLevs, the gain of a programmable gain amplifier is adjusted adaptively under fixed dtLevs. The prototype chips including above proposed 10B6Q code and fixed dtLevs are fabricated in 40-nm CMOS technology and tested in chip-on-board assembly. The 10B6Q code only occupies an active area of 0.0009 mm2 with a synthesized gate count of 645. It also consumes 0.23 mW at the operating clock frequency of 667 MHz. The transmitter with 10B6Q code delivers 8-Gb/s PAM-4 signal to the adaptive receiver using fixed dtLevs through a lossy 12-m cable (22-dB channel loss) with a BER of 1E-8, and the eye margin larger than 0.15 UI x 50 mV is measured for a BER of 1E-5. The proto-type chips consume 65.2 mW (excluding PLL), exhibiting an FoM of 0.37 pJ/b/dB. In a second prototype design advanced from the first prototypes, An asymmetric SB transceivers incorporating a 12-Gb/s PAM-4 forward channel and a 125-Mb/s PAM-2 back channel are presented and demonstrated. The proposed wide linear range (WLR) hybrid combined with a gmC low-pass filter and an echo canceller effectively suppresses the outbound signals by more than 24dB. In addition, linear range enhancer which forms a gain attenuator with WLR hybrid breaks the trade-off between the linearity and the amplitude of the PAM-4 signal. The SB transceiver chips are separately fabricated in 40-nm CMOS technology. Using above design techniques, both PAM-4 and PAM-2 SB transceivers achieve BER less than 1E-12 over a 5-m channel (15.9 dB channel loss), consuming 78.4 mW. The overall transceivers achieve an FoM of 0.41 pJ/b/dB and eye margin (at BER of 1E-12) of 0.15 UI and 0.57 UI for the forward PAM-4 and back PAM-2 signals, respectively, under SB communication. This is the best eye margin compared to the prior art SB transceivers with an FoM less than 0.5.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 DISSERTATION ORGANIZATION 4 CHAPTER 2 BACKGROUND ON AUTOMOTIVE CAMERA LINK 6 2.1 OVERVIEW 6 2.2 SYSTEM REQUIREMENTS 10 2.2.1 CHANNEL 10 2.2.2 POWER OVER DIFFERENTIAL LINE (PODL) 12 2.2.3 AC COUPLING AND DC BALANCE CODE 15 2.2.4 SIMULTANEOUS BIDIRECTIONAL COMMUNICATION 18 2.2.4.1 HYBRID 18 2.2.4.2 ECHO CANCELLER 20 2.2.5 ADAPTIVE RECEIVE EQUALIZATION 22 CHAPTER 3 AREA AND POWER EFFICIENT 10B6Q ENCODER FOR DC BALANCE 25 3.1 INTRODUCTION 25 3.2 PRIOR WORKS 28 3.3 PROPOSED AREA- AND POWER-EFFICIENT 10B6Q PAM-4 CODER 30 3.4 DESIGN OF THE 10B6Q CODE 33 3.4.1 PAM-4 DC BALANCE 35 3.4.2 PAM-4 TRANSITION DENSITY 35 3.4.3 10B6Q DECODER 37 3.5 IMPLEMENTATION AND MEASUREMENT RESULTS 40 CHAPTER 4 PAM-4 TRANSMITTER AND ADAPTIVE RECEIVER WITH FIXED DATA AND THRESHOLD LEVELS 45 4.1 INTRODUCTION 45 4.2 PRIOR WORKS 47 4.3 ARCHITECTURE AND IMPLEMENTATION 49 4.2.1 PAM-4 TRANSMITTER 49 4.2.2 PAM-4 ADAPTIVE RECEIVER 52 4.3 MEASUREMENT RESULTS 62 CHAPTER 5 ASYMMETRIC SIMULTANEOUS BIDIRECTIONAL TRANSCEIVERS USING WIDE LINEAR RANGE HYBRID 68 5.1 INTRODUCTION 68 5.2 PRIOR WORKS 70 5.3 WIDE LINEAR RANGE (WLR) HYBRID 75 5.3 IMPLEMENTATION 78 5.3.1 SERIALIZER (SER) DESIGN 78 5.3.2 DESERIALIZER (DES) DESIGN 79 5.4 HALF CIRCUIT ANALYSIS OF WLR HYBRID AND LRE 82 5.5 MEASUREMENT RESULTS 88 CHAPTER 6 CONCLUSION 97 BIBLIOGRAPHY 99 ์ดˆ ๋ก 106๋ฐ•

    Theory, design and application of gradient adaptive lattice filters

    Get PDF
    SIGLELD:D48933/84 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Itsehรคiriรถn analoginen RF-kumoaminen

    Get PDF
    In this thesis a novel RF-canceler for full-duplex operation is presented, designed and implemented. The canceler is built for the full-duplex research group which is currently collaborating with Intel labs. The original design is from Intel. Two revision of cancelers were built and measured. The obtained results prove the canceler design to be effective and it is self-adaptive. The obtained cancellation in self-adaptive mode is order of 30 dB when using 20 MHz wide signal. This design fares well against other designs presented in academia

    Design of a reusable distributed arithmetic filter and its application to the affine projection algorithm

    Get PDF
    Digital signal processing (DSP) is widely used in many applications spanning the spectrum from audio processing to image and video processing to radar and sonar processing. At the core of digital signal processing applications is the digital filter which are implemented in two ways, using either finite impulse response (FIR) filters or infinite impulse response (IIR) filters. The primary difference between FIR and IIR is that for FIR filters, the output is dependent only on the inputs, while for IIR filters the output is dependent on the inputs and the previous outputs. FIR filters also do not sur from stability issues stemming from the feedback of the output to the input that aect IIR filters. In this thesis, an architecture for FIR filtering based on distributed arithmetic is presented. The proposed architecture has the ability to implement large FIR filters using minimal hardware and at the same time is able to complete the FIR filtering operation in minimal amount of time and delay when compared to typical FIR filter implementations. The proposed architecture is then used to implement the fast affine projection adaptive algorithm, an algorithm that is typically used with large filter sizes. The fast affine projection algorithm has a high computational burden that limits the throughput, which in turn restricts the number of applications. However, using the proposed FIR filtering architecture, the limitations on throughput are removed. The implementation of the fast affine projection adaptive algorithm using distributed arithmetic is unique to this thesis. The constructed adaptive filter shares all the benefits of the proposed FIR filter: low hardware requirements, high speed, and minimal delay.Ph.D.Committee Chair: Anderson, Dr. David V.; Committee Member: Hasler, Dr. Paul E.; Committee Member: Mooney, Dr. Vincent J.; Committee Member: Taylor, Dr. David G.; Committee Member: Vuduc, Dr. Richar

    VLSI signal processing through bit-serial architectures and silicon compilation

    Get PDF

    Adaptive equalizers for multipath compensation in digital microwave communications

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D82998 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF
    corecore