9 research outputs found

    An eXtended Manufacturing Integrated System for feature based manufacturing with STEP-NC

    Get PDF
    International audienceCNC feature-based programming with STEP-NC standard extends the collaborative model of manufacturing data exchange all along the numerical data chain. This paper considers the mutations related to this approach from the manufacturing system level to the industrial enterprise as a whole. The eXtended Manufacturing Integrated System concept is introduced to fill in the gap of the current manufacturing data exchange bottleneck. It is composed of eXtended CAD and eXtended CNC systems to link the CAD model to the real machined part through the Manufacturing Information Pipeline. The contributions associated with these concepts are demonstrated through a validation platform implemented on industrial CNC manufacturing equipments

    Development of a knowledge base for the planning of prismatic parts inspection on CMM

    Get PDF
    Inspection on coordinate measuring machines (CMMs) is based on software support for various classes of metrological tasks, i.e. Tolerances. Today, the design of a uniform inspection plan for a measuring part presents a rather complex issue due to the following: (i) metrological complexity of a measuring part; (ii) skills and knowledge of a designer / inspection planner; and (iii) software for CAI model, considered as a part of an integrated CAD-CAPP-CAM-CAI system. This issue could be addressed by the usage of expert systems that generate a conceptual inspection plan for a measuring part, based on which the inspection plan for a selected CMM could be automatically developed. This paper presents the development of a model of an automatic inspection planning system for CMMs, and, in particular, the developed knowledge base model

    Development of a knowledge base for the planning of prismatic parts inspection on CMM

    Get PDF
    Inspection on coordinate measuring machines (CMMs) is based on software support for various classes of metrological tasks, i.e. Tolerances. Today, the design of a uniform inspection plan for a measuring part presents a rather complex issue due to the following: (i) metrological complexity of a measuring part; (ii) skills and knowledge of a designer / inspection planner; and (iii) software for CAI model, considered as a part of an integrated CAD-CAPP-CAM-CAI system. This issue could be addressed by the usage of expert systems that generate a conceptual inspection plan for a measuring part, based on which the inspection plan for a selected CMM could be automatically developed. This paper presents the development of a model of an automatic inspection planning system for CMMs, and, in particular, the developed knowledge base model

    Applying Computer Integrated Manufacturing for Productivity Improvement: A Literature Review

    Get PDF
    In this era of globalization, information technology, especially through the use of computer technology (program and software) is developing rapidly and has aN enormous impact on the manufacturing industry to support companies as a solving problems tool related to manufactured products that rely on input, process, and output, as well as Increasing effectiveness, efficiency, and productivity. The purpose of this study is to review various literature regarding the application of Computer Integrated Manufacturing (CIM) in the manufacturing company. Also, the scope of this study is to discuss and analyse in depth the related articles through the identification of scientific publications from 2001 to 2021, published in databases and electronic journals in English, and 30 items selected

    Network part program approach based on the STEP-NC data structure for the machining of multiple fixture pallets

    Get PDF
    partially_open4noThe adoption of alternative process plans, that is, process plans that include alternative ways of machining a workpiece, can improve system performance through a better management of resource availability. Unfortunately even if this opportunity is deeply analysed in literature, it is not frequently adopted in real manufacturing practice. In order to fill this gap, this article presents the network part program (NPP) approach for the machining of multiple fixture pallets. The NPP approach is based on the STEP-NC data structure which supports nonlinear sequences of operations and process flexibility. In the NPP approach, a machining system supervisor defines the machining sequences and generates the related part programs just before the execution of the pallet. This article provides an approach with high scientific value and industrial applicability based on the integration of new and existing process planning methods. A real industrial case study is considered in order to show that in real applications the final quality is unaffected by the change of the sequence of the operations due to the employment of nonlinear process plans. Since the results appear very encouraging, the proposed approach is a possible solution to accelerate the adoption of nonlinear process planning in real manufacturing practice.S. Borgia; S. Pellegrinelli; S. Petro'; T. TolioBorgia, Stefano; Pellegrinelli, Stefania; Petro', Stefano; Tolio, TULLIO ANTONIO MARI

    Design for manufacture using machining features on CNC machining centers

    Get PDF
    Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) systems have become more and more needed and useful in the machining processes environment. In order to achieve competitive advantage, companies adopted new manufacturing methods. As a consequence, and in machining processes context, the interaction of CAD and CAM has growth over the years in order to increase the production efficiency, as well as to reduce costs and time. The development of this work started with an extensive literature review. In that review, the author found that only a few articles approached the interaction or integration of CAD and CAM systems. Moreover, the authors that studied this interaction focused on systems for turning parts. Thus, there is a gap in the literature related to the integration and automation of these systems when applied to milling parts. Therefore, the purpose of this dissertation is to enable the interaction of these systems in order to provide a completely automated process since the design stage until the machining stage. Finally, the process’ implementation showed that the developed algorithm was able to satisfy the initial requirements of this work, i.e., when given a set of initial parameters, the program drew the required geometry, and then generated the required G-code, such that this code can be sent to the CAM software to machine the workpiece, thereby obtaining the final product.Os sistemas Computer-Aided Design (CAD) and Computer-Aided Manufacturing(CAM) estão, cada vez mais, a ser mais necessários e úteis no contexto da maquinagem. De modo a conseguir vantagem competitiva, as empresas têm adotado novos métodos de produção. Consequentemente, no contexto da indústria da maquinagem, a interação entre CAD e CAM tem crescido nos últimos anos, de modo a permitir uma maior eficácia na produção, assim como também redução de tempo e custo. O desenvolvimento deste trabalho começou com uma extensa revisão da literatura. Nesta revisão, o autor apercebeu-se que apenas alguns artigos se debruçaram sobre a interação ou integração dos sistemas CAD e CAM. Para além disso, os autores desses artigos focaram-se em sistemas para torneamento. Assim, constata-se que existe um espaço livre na literatura no que diz respeito à integração destes sistemas quando aplicados à fresagem. Por isso, o objetivo desta dissertação é permitir a interação dos dois sistemas referidos, de forma a promover um processo completamente automático desde o design até à maquinagem. Por fim, a implementação do processo mostrou que o algoritmo desenvolvido alcançou os objetivos iniciais do trabalho, ou seja, baseando-se apenas nos parâmetros fornecidos, o programa desenhou as geometrias necessárias, sendo depois capaz de gerar o código G respetivo, para que este possa ser transferido para o centro de maquinagem, de modo a que o material possa ser maquinado, dando origem ao produto final

    A mathematical model development for the lateral collapse of octagonal tubes

    Get PDF
    . Many researches has been done on the lateral collapse of tube. However, the previous researches only focus on cylindrical and square tubes. Then a research has been done discovering the collapse behaviour of hexagonal tube and the mathematic model of the deformation behaviour had been developed [8]. The purpose of this research is to study the lateral collapse behaviour of symmetric octagonal tubes and hence to develop a mathematical model of the collapse behaviour of these tubes. For that, a predictive mathematical model was developed and a finite element analysis procedure was conducted for the lateral collapse behaviour of symmetric octagonal tubes. Lastly, the mathematical model was verified by using the finite element analysis simulation results. It was discovered that these tubes performed different deformation behaviour than the cylindrical tube. Symmetric octagonal tubes perform 2 phases of elastic - plastic deformation behaviour patterns. The mathematical model had managed to show the fundamental of the deformation behaviour of octagonal tubes. However, further studies need to be conducted in order to further improve on the proposed mathematical mode

    An eXtended Manufacturing Integrated System for feature-based manufacturing with STEP-NC

    No full text
    Computer Numerical Control (CNC) feature-based programming with STandard for the Exchange of Product data model-compliant Numerical Control extends the collaborative model of manufacturing data exchange all along the numerical data chain. This study considers the mutations related to this approach from the manufacturing system level to the industrial enterprise as a whole. The eXtended Manufacturing Integrated System concept is introduced to fill in the gap of the current manufacturing data exchange bottleneck. It is composed of eXtended Computer Aided Design (CAD) and eXtended CNC systems to link the CAD model to the real machined part through the Manufacturing Information Pipeline. The contributions associated with these concepts are demonstrated through a validation platform implemented on industrial CNC manufacturing equipments.X111113sciescopu

    Ingénierie de la chaîne numérique d'industrialisation : proposition d'un modèle d'interopérabilité pour la conception-fabrication intégrées

    Get PDF
    This work focuses on the knowledge and the data management extracted from the manufacturing to ensure the interoperability in the digital chain. According to the extended enterprise and the factory of the future context, the aeronautics manufacturers tend to a design and manufacturing integrated platform in order to get a right part the first time.This work focus on manufacturing process control and capitalization of know-how from the manufacturing aiming at answering the following issue : How to enable interoperability for the digital production process in order to ensure an integrated and agile design and manufacturing ? This issue is addressed with two proposals : OntoSTEP-NC which focuses on how to model and structure the manufacturing knowledge from the CNC machine and Closed-Loop Manufacturing which focuses on how to re-use and integrate the information feedback from manufacturing to process engineering. Both combined those two proposals address the main issue of this work defining an interoperability framework for the factory of the future and address trends like the definition of guidelines for manufacturing in extended enterprise context. This work has been validated through a demonstrator and an industrial case study with various scenarios.Ce travail s'intéresse à la gestion d'information techniques et connaissances métiers issues de la production pour assurer l'interopérabilité et la continuité de la chaîne numérique. Dans un contexte d'entreprise étendue et de développement des technologies de l’information pour l'usine du futur, l'industrie aéronautique s'oriente vers une intégration flexible et agile des phases de conception et fabrication pour l'obtention de pièces bonnes du premier coup. C'est pour assurer la maîtrise des processus et la capitalisation des savoir-faire métier issus de la fabrication que ces travaux adressent la problématique suivante : comment élaborer un modèle d'interopérabilité de la chaîne numérique d'industrialisation, pour assurer une intégration agile de la conception et de la fabrication ? Pour ce faire, nous définissons deux propositions : OntoSTEP-NC pour permettre l'extraction et la structuration des données issues de la fabrication et Closed-Loop Manufacturing pour permettre l'intégration et la réutilisation des connaissances métiers capitalisées au niveau de l'industrialisation. Les apports de ces propositions se retrouvent dans la définition d'un cadre d'interopérabilité pour l'usine du futur mais également dans les enjeux tels que la définition de bonnes pratiques pour l'entreprise étendue en vue d'une harmonisation des processus de fabrication. Ces travaux ont été validés au travers d'un démonstrateur sur un cas d'étude industriel comportant plusieurs scénarii
    corecore