122 research outputs found

    Capturing Aggregate Flexibility in Demand Response

    Full text link
    Flexibility in electric power consumption can be leveraged by Demand Response (DR) programs. The goal of this paper is to systematically capture the inherent aggregate flexibility of a population of appliances. We do so by clustering individual loads based on their characteristics and service constraints. We highlight the challenges associated with learning the customer response to economic incentives while applying demand side management to heterogeneous appliances. We also develop a framework to quantify customer privacy in direct load scheduling programs.Comment: Submitted to IEEE CDC 201

    Energy sustainable paradigms and methods for future mobile networks: A survey

    Full text link
    In this survey, we discuss the role of energy in the design of future mobile networks and, in particular, we advocate and elaborate on the use of energy harvesting (EH) hardware as a means to decrease the environmental footprint of 5G technology. To take full advantage of the harvested (renewable) energy, while still meeting the quality of service required by dense 5G deployments, suitable management techniques are here reviewed, highlighting the open issues that are still to be solved to provide eco-friendly and cost-effective mobile architectures. Several solutions have recently been proposed to tackle capacity, coverage and efficiency problems, including: C-RAN, Software Defined Networking (SDN) and fog computing, among others. However, these are not explicitly tailored to increase the energy efficiency of networks featuring renewable energy sources, and have the following limitations: (i) their energy savings are in many cases still insufficient and (ii) they do not consider network elements possessing energy harvesting capabilities. In this paper, we systematically review existing energy sustainable paradigms and methods to address points (i) and (ii), discussing how these can be exploited to obtain highly efficient, energy self-sufficient and high capacity networks. Several open issues have emerged from our review, ranging from the need for accurate energy, transmission and consumption models, to the lack of accurate data traffic profiles, to the use of power transfer, energy cooperation and energy trading techniques. These challenges are here discussed along with some research directions to follow for achieving sustainable 5G systems.Comment: Accepted by Elsevier Computer Communications, 21 pages, 9 figure

    Regional Government Competition

    Get PDF
    This monograph provides a coherent and systematic explanation of China’s regional economic development from the perspective of regional government competition. It gives an almost unknown exposition of the mechanisms of China's regional economic development, with numerous supporting cases drawn from both China and elsewhere. This book is an invaluable resource for anyone interested to learn more particularly the development and transformation of China’s regional economy from both the Chinese and global perspectives

    Regional Government Competition

    Get PDF
    This monograph provides a coherent and systematic explanation of China’s regional economic development from the perspective of regional government competition. It gives an almost unknown exposition of the mechanisms of China's regional economic development, with numerous supporting cases drawn from both China and elsewhere. This book is an invaluable resource for anyone interested to learn more particularly the development and transformation of China’s regional economy from both the Chinese and global perspectives

    Contingency Management in Power Systems and Demand Response Market for Ancillary Services in Smart Grids with High Renewable Energy Penetration.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Advanced Mechanism Design for Electric Vehicle Charging Scheduling in the Smart Infrastructure

    Get PDF
    Electric vehicle (EV) continues to grow rapidly due to low emission and high intelligence. This thesis considers a smart infrastructure (SI) as an EV-centered ecosystem, which is an integrated and connected multi-modal network involving interacting intelligent agents, such as EVs, charging facilities, electric power grids, distributed energy resources, etc. The system modeling paradigm is derived from distributed artificial intelligence and modelled as multi-agent systems (MAS), where the agents are self-interested and reacting strategically to maximize their own benefits. The integration, interaction, and coordination of EVs with SI components will raise various features and challenges on the transportation efficiency, power system stability, and user satisfaction, as well as opportunities provided by optimization, economics, and control theories, and other advanced technologies to engage more proactively and efficiently in allocating the limited charging resources and collaborative decision-making in a market environment. A core challenge in such an EV ecosystem is to trade-off the two objectives of the smart infrastructure, of system-wide efficiency and at the same time the social welfare and individual well-being against agents’ selfishness and collective behaviors. In light of this, scheduling EVs' charging activities is of great importance to ensure an efficient operation of the smart infrastructure and provide economical and satisfactory charging experiences to EV users under the support of two-way flow of information and energy of charging facilities. In this thesis, we develop an advanced mechanism design framework to optimize the charging resource allocation and automate the interaction process across the overall system. The key innovation is to design specific market-based mechanisms and interaction rules, integrated with concepts and principles of mechanism design, scheduling theory, optimization theory, and reinforcement learning, for charging scheduling and dynamic pricing problem in various market structures. Specifically, this research incorporates three synergistic areas: (1) Mathematical modelling for EV charging scheduling. We have developed various mixed-integer linear programs for single-charge with single station, single-charge with multiple stations, and multi-charge with multiple stations in urban or highway environments. (2) Market-based mechanism design. Based on the proposed mathematical models, we have developed particular market-based mechanisms from the resource provider’s prospective, including iterative bidding auction, incentive-compatible auction, and simultaneous multi-round auction. These proposed auctions contain bids, winner determination models, and bidding procedure, with which the designer can compute high quality schedules and preserve users’ privacy by progressively eliciting their preference information as necessary. (3) Reinforcement learning-based mechanism design. We also proposed a reinforcement mechanism design framework for dynamic pricing-based demand response, which determines the optimal charging prices over a sequence of time considering EV users’ private utility functions. The learning-based mechanism design has effectively improved the long-term revenue despite highly-uncertain requests and partially-known individual preferences of users. This Ph.D. dissertation presents a market prospective and unlocks economic opportunities for MAS optimization with applications to EV charging related problems; furthermore, applies AI techniques to facilitate the evolution from manual mechanism design to automated and data-driven mechanism design when gathering, distributing, storing, and mining data and state information in SI. The proposed advanced mechanism design framework will provide various collaboration opportunities with the research expertise of reinforcement learning with innovative collective intelligence and interaction rules in game theory and optimization tools, as well as offers research thrust to more complex interfaces in intelligent transportation system, smart grid, and smart city environments

    Transformation to advanced mechatronics systems within new industrial revolution: A novel framework in Automation of Everything (AoE)

    Get PDF
    The recent advances in cyber-physical domains, cloud, cloudlet and edge platforms along with the evolving Artificial Intelligence (AI) techniques, big data analytics and cutting-edge wireless communication technologies within the Industry 4.0 (4IR) are urging mechatronics designers, practitioners and educators to further review the ways in which mechatronics systems are perceived, designed, manufactured and advanced. Within this scope, we introduce the service-oriented cyber-physical advanced mechatronics systems (AMSs) along with current and future challenges. The objective in AMSs is to create remarkable intelligent autonomous products by 1) forging effective sensing, self-learning, Wisdom as a Service (WaaS), Information as a Service (InaaS), precise decision making and actuation using effective location-independent monitoring, control and management techniques with products, and 2) maintaining a competitive edge through better product performances via immediate and continuous learning, while the products are being used by customers and are being produced in factories within the cycle of Automation of Everything (AoE). With the advanced wireless communication techniques and improved battery technologies, AMSs are capable of getting independent and working with other massive AMSs to construct robust, customisable, energy-efficient, autonomous, intelligent and immersive platforms. In this regard, rather than providing technological details, this paper implements philosophical insights into 1) how mechatronics systems are being transformed into AMSs, 2) how robust AMSs can be developed by both exploiting the wisdom created within cyber-physical smart domains in the edge and cloud platforms, and incorporating all the stakeholders with diverse objectives into all phases of the product life-cycle, and 3) what essential common features AMSs should acquire to increase the efficacy of products and prolong their product life. Against this background, an AMS development framework is proposed in order to contextualize all the necessary phases of AMS development and direct all stakeholders to rivet high quality products and services within AoE
    • 

    corecore