2,546 research outputs found

    BIM Integrated and Reference Process-based Simulation Method for Construction Project Planning

    Get PDF
    Die Verwendung von Simulationen zur Unterstützung traditioneller Planungsverfahren für Bauprojekte hat viele Vorteile, die in verschiedenen akademischen Forschungen vorgestellt wurden. Viele Anwendungen haben erfolgreich das Potenzial der Simulationsmethode zur Verbesserung der Qualität der Projektplanung demonstriert. Doch eine breite Anwendung der Simulationsmethoden zur Unterstützung der Planung von Bauprojekten konnte sich in der Praxis bis zum jetzigen Zeitpunkt nicht durchsetzen. Aufgrund einiger großer Hindernisse und Herausforderungen ist der Einsatz im Vergleich zu anderen Branchen noch sehr begrenzt. Die Komplexität sowie die dynamischen Wechselprozesse der unterschiedlichen Bauvorhaben stellen die erste Herausforderung dar.Die Anforderungen machen es sehr schwierig die verschieden Situationen realistisch zu modellieren und das Verhalten von Bauprozessen und die Interaktion mit den zugehörigen Ressourcen für reale Bauvorhaben darzustellen. Das ist einer der Gründe für den Mangel an speziellen Simulationswerkzeugen in der Bauprojektplanung. Die zweite Herausforderung besteht in der großen Menge an Projektinformationen, die in das Simulationsmodell integriert und während des gesamten Lebenszyklus des Projekts angepasst werden müssen. Die Erstellung von Simulationsmodellen, Simulationsszenarien sowie die Analyse und Verifizierung der Simulationsergebnisse ist langwierig. Ad-hoc Simulation sind daher nicht möglich. Zur Erstellung zuverlässiger Simulationsmodelle sind daher umfangreiche Ressourcen und Mitarbeiter mit speziellen Fachwissen erforderlich. Die vorgestellten Herausforderungen verhindern die breite Anwendung der Simulationsmethode zur Unterstützung der Bauprojektplanung und das Einsetzen der Software als wesentlicher Bestandteil des Arbeitsablaufes für die Bauplanung in der Praxis. Die Forschungsarbeit in dieser Arbeit befasst sich mit diesen Herausforderungen durch die Entwicklung eines Ansatzes sowie einer Plattform für die schnelle Aufstellung von Simulationsmodellen für Bauprojekte. Das Hauptziel dieser Forschung ist die Entwicklung eines integrierten und referenzmodellbasierten BIM Simulationsansatz zur Unterstützung der Planung von Bauprojekten und die Möglichkeit der Zusammenarbeit aller am Planungs- und Simulationsprozess beteiligten Akteure. Die erste Herausforderung wird durch die Einführung eines RPM-Konzepts (Reference Process Model) durch die Modellierung von Konstruktionsprozessen unter Verwendung von Business Process Modeling and Notation (BPMN) angegangen. Der Vorteil der RPM Modelle ist das sie bearbeitet und modifiziert können und dass sie automatisch als einsatzbereite Module in Simulationsmodelle umgewandelt werden können. Die RPM-Modelle enthalten auch Informationen zu Ressourcenanforderungen und andere verwandte Informationen für verschiedene Baubereiche mit unterschiedlichen Detaillierungsgraden. Die Verwendung von BPMN hat den Vorteil, dass die Simulationsmodellierung für das Projektteam, einschließlich derjenigen, die sich nicht mit der Simulation auskennen, flexibler, interoperabler und verständlicher ist. Bei diesem Ansatz ist die Modellierung von Referenzprozessmodellen vollständig von den Simulationskernkomponenten getrennt, um das Simulations-Toolkit generisch und erweiterbar für verschiedenste Konstruktionsbereiche wie Gebäude und Brücken. Der vorgestellte Forschungsansatz unterstützt die kontinuierliche Anwendung von Simulationsmodellen während des gesamten Projektlebenszyklus. Die Simulationsmodelle, die zur Unterstützung der Planung in der frühen Entwurfsphase erstellt werden, können von Simulationsexperten während der gesamten Planungs- und Bauphase weiter ausgebaut und aktualisiert werden. Die zweite Herausforderung wird durch die direkte Integration der Building Information Modeling (BIM) -Methode in die Simulationsmodellierung auf der Grundlage des Industry Foundation Classes-IFC (ISO 16739) , dem am häufigsten verwendeten BIM-Austauschformat, angegangen. Da die BIM-Modelle einen wichtigen Teil der Eingabeinformationen von Simulationsmodellen enthalten, können sie als Grundlage für die Visualisierung von Ergebnissen in Form von 4D-BIM-Modellen verwendet werden. Diese Integration ermöglicht die schnelle und automatische Filterung und Extraktion sowie die Umwandlung notwendiger Informationen aus BIM Entwurf-Modellen. Um die Erstellung detaillierter Projektmodelle zu beschleunigen, wurde eine spezielle Methode für die halbautomatische Top-Down-Detaillierung von Projektstammmodelle entwickelt, die notwendige Eingangsdaten für die Simulationsmodelle sind. Diese Methode bietet den Vorteil, dass Konstruktionsalternativen mit minimalen Änderungen am Simulationsmodell untersucht werden können. Der entwickelte Ansatz wurde als Software- Prototyp in Form eines modularen Construction Simulation Toolkit (CST) basierend auf der Discrete Event Simulation (DES)- Methode und eines Collaboration- Webportals (ProSIM) zum Verwalten von Simulationsmodellen implementiert. Die so eingebettete Simulation ermöglicht mit minimalen Änderungen die Bewertung von Entwurfsalternativen und Konstruktionsmethoden auf den Bauablauf. Produktions- und Logistiksvorgänge können gleichzeitig in einer einheitlichen Umgebung simuliert werden und berücksichtigen die gemeinsam genutzten Ressourcen und die Interaktion zwischen Produktions- und Logistikaktivitäten. Es berücksichtigt auch die Änderungen im Baustellenlayout während der Konstruktionsphase. Die Verifizierung und Validierung des vorgeschlagenen Ansatzes wird durch verschiedene hypothetische und reale Bauprojekten durchgeführt.:1 Introduction: motivation, problem statement and objectives 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Thesis Structure 2 Definitions, Related work and background information 2.1 Simulation definition 2.2 Simulation system definition 2.3 Discrete Event Simulation 2.5 How simulation works 2.6 Workflow of simulation study 2.7 Related work 2.8 Traditional construction planning methods 2.8.1 Gantt chart 2.8.2 Critical Path Method (CPM) 2.8.3 Linear scheduling method/Location-based scheduling 2.9 Business Process Model and Notation 2.10Workflow patterns 2.10.1 Supported Control Flow Patterns 3 Reference Process-based Simulation Approach 3.1 Reference Process-based simulation approach 3.2 Reference Process Models 3.3 Reference process model for single task 3.4 Reference process models for complex activities 3.5 Process Pool 3.6 Top-down automatic detailing of project schedules 3.7 Simulation model formalism 3.8 Fundamental design concepts and application scope 4 Data Integration between simulation and construction Project models 4.1 Data integration between BIM models and simulation models 4.1.1 Transformation of IFC models to Graph models 4.1.2 Checking BIM model quality 4.1.3 Filtering of BIM models 4.1.4 Semantic enrichment of BIM models 4.1.5 Reference process models and BIM models 4.2 Reference Process Models and resources models 4.3 Process models and productivity factors 5 Construction Simulation Toolkit 5.1 System architecture and implementation 5.2 Basic steps to create a CST simulation model 5.3 CST Simulation components 5.3.1 Input components 5.3.2 Process components 5.3.3 Output components 5.3.4 Logistic components 5.3.5 Collaboration platform ProSIM 6 Case Studies and Validation 6.1 Verification and Validation of Simulation Models 6.2 Verification and validation techniques for simulation models 6.3 Case study 1: generic planning model 6.4 Case study 2: high rise building 6.4.1 Scenario I: effect of changing number of workers on structural work duration 6.4.2 Scenario II: simulation of structural work on operation level 6.4.3 Scenario III: automatic generation of detailed project schedule 6.5 Case study 3: airport terminal building 6.5.1 Multimodel Container 6.5.2 Scenario I: automatic generation of detailed project schedule 6.5.3 Scenario II: Find the minimal project duration 6.5.4 Scenario III: construction work for a single floor 7 Conclusions and Future Research 7.1 Conclusions 7.2 Outlook of the possible future research topics 7.2.1 Integration with real data collecting 7.2.2 Multi-criteria optimisation 7.2.3 Extend the control-flow and resource patterns 7.2.4 Consideration of further structure domains 7.2.5 Considering of space allocation and space conflicts 8 Appendix - Scripts 9 Appendix B - Reference Process Models 9.1 Reference Process Models for structural work 9.1.1 Wall 9.1.2 Roof 9.1.3 Foundations 9.1.4 Concrete work 9.1.5 Top-Down RPMs for structural work in a work section 10 Appendix E 10.1 Basic elements of simulation models in Plant Simulation 10.2 Material Flow Objects 11 ReferencesUsing simulation to support construction project planning has many advantages, which have been presented in various academic researches. Many applications have successfully demonstrated the potential of using simulation to improve the quality of construction project planning. However, the wide adoption of simulation has not been achieved in practice yet. It still has very limited use compared with other industries due to some major obstacles and challenges. The first challenge is the complexity of construction processes and projects planning methods, which make it very difficult to develop realistic simulation models of construction processes and represent their dynamic behavior and the interaction with project resources. This led to lack of special simulation tools for construction project planning. The second challenge is the huge amount of project information that has to be integrated into the simulation model and to be maintained throughout the design, planning and construction phases. The preparation of ad-hoc simulation models and setting up different scenarios and verification of simulation results usually takes a long time. Therefore, creating reliable simulation models requires extensive resources with advanced skills. The presented challenges prevent the wide application of simulation techniques to support and improve construction project planning and adopt it as an essential part of the construction planning workflow in practice. The research work in this thesis addresses these challenges by developing an approach and platform for rapid development of simulation models for construction projects. The main objective of this research is to develop a BIM integrated and reference process-based simulation approach to support planning of construction projects and to enable collaboration among all actors involved in the planning and simulation process. The first challenge has been addressed through the development of a construction simulation toolkit and the Reference Process Model (RPM) method for modelling construction processes for production and logistics using Business Process Modelling and Notation (BPMN). The RPM models are easy to understood also by non-experts and they can be transformed automatically into simulation models as ready-to-use modules. They describe the workflow and logic of construction processes and include information about duration, resource requirements and other related information for different construction domains with different levels of details. The use of BPMN has many advantages. It enables the understanding of how simulation models work by project teams, including those who are not experts in simulation. In this approach, the modelling of Reference Process Models is totally separated from the simulation core components. In this way, the simulation toolkit is generic and extendable for various construction types such as buildings, bridges and different construction domains such as structural work and indoor operations. The presented approach supports continuous adoption of simulation models throughout the whole project life cycle. The simulation model which supports project planning in the early design phase can be continuously extended with more detailed RPMs and updated information through the planning and construction phases. The second challenge has been addressed by supporting direct integration of Building Information Modelling (BIM) method with the simulation modelling based on the Industry Foundation Classes IFC (ISO 16739) standard, which is the most common and only ISO standard used for exchanging BIM models. As the BIM models contain the biggest part of the input information of simulation models and they can be used for effective visualization of results in the form of animated 4D BIM models. The integration between BIM and simulation enables fast and semi-automatic filtering, extraction and transformation of the necessary information from BIM models for both design and construction site models. In addition, a special top-down semi-automatic detailing method was developed in order to accelerate the process of preparing detailed project schedules, which are essential input data for the simulation models and hence reduce the time and efforts needed to create simulation models. The developed approach has been implemented as a software prototype in the form of a modular Construction Simulation Toolkit (CST) based on the Discrete Event Simulation (DES) method and an online collaboration web portal 'ProSIM' for managing simulation models. The collaboration portal helps to overcome the problem of huge information and make simulation models accessible for non simulation experts. Simulation models created by CST toolkit facilitate the evaluation of design alternatives and construction methods with minimal changes in the simulation model. Both production and logistic operations can be simulated at the same time in a unified environment and take into account the shared resources and the interaction between production and logistic activities. It also takes into account the dynamic nature of construction projects and hence the changes in the construction site layout during the construction phase. The verification and validation of the proposed approach is carried out through various academic and real construction project case studies.:1 Introduction: motivation, problem statement and objectives 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Thesis Structure 2 Definitions, Related work and background information 2.1 Simulation definition 2.2 Simulation system definition 2.3 Discrete Event Simulation 2.5 How simulation works 2.6 Workflow of simulation study 2.7 Related work 2.8 Traditional construction planning methods 2.8.1 Gantt chart 2.8.2 Critical Path Method (CPM) 2.8.3 Linear scheduling method/Location-based scheduling 2.9 Business Process Model and Notation 2.10Workflow patterns 2.10.1 Supported Control Flow Patterns 3 Reference Process-based Simulation Approach 3.1 Reference Process-based simulation approach 3.2 Reference Process Models 3.3 Reference process model for single task 3.4 Reference process models for complex activities 3.5 Process Pool 3.6 Top-down automatic detailing of project schedules 3.7 Simulation model formalism 3.8 Fundamental design concepts and application scope 4 Data Integration between simulation and construction Project models 4.1 Data integration between BIM models and simulation models 4.1.1 Transformation of IFC models to Graph models 4.1.2 Checking BIM model quality 4.1.3 Filtering of BIM models 4.1.4 Semantic enrichment of BIM models 4.1.5 Reference process models and BIM models 4.2 Reference Process Models and resources models 4.3 Process models and productivity factors 5 Construction Simulation Toolkit 5.1 System architecture and implementation 5.2 Basic steps to create a CST simulation model 5.3 CST Simulation components 5.3.1 Input components 5.3.2 Process components 5.3.3 Output components 5.3.4 Logistic components 5.3.5 Collaboration platform ProSIM 6 Case Studies and Validation 6.1 Verification and Validation of Simulation Models 6.2 Verification and validation techniques for simulation models 6.3 Case study 1: generic planning model 6.4 Case study 2: high rise building 6.4.1 Scenario I: effect of changing number of workers on structural work duration 6.4.2 Scenario II: simulation of structural work on operation level 6.4.3 Scenario III: automatic generation of detailed project schedule 6.5 Case study 3: airport terminal building 6.5.1 Multimodel Container 6.5.2 Scenario I: automatic generation of detailed project schedule 6.5.3 Scenario II: Find the minimal project duration 6.5.4 Scenario III: construction work for a single floor 7 Conclusions and Future Research 7.1 Conclusions 7.2 Outlook of the possible future research topics 7.2.1 Integration with real data collecting 7.2.2 Multi-criteria optimisation 7.2.3 Extend the control-flow and resource patterns 7.2.4 Consideration of further structure domains 7.2.5 Considering of space allocation and space conflicts 8 Appendix - Scripts 9 Appendix B - Reference Process Models 9.1 Reference Process Models for structural work 9.1.1 Wall 9.1.2 Roof 9.1.3 Foundations 9.1.4 Concrete work 9.1.5 Top-Down RPMs for structural work in a work section 10 Appendix E 10.1 Basic elements of simulation models in Plant Simulation 10.2 Material Flow Objects 11 Reference

    The General Electric MOD-1 wind turbine generator program

    Get PDF
    The design, fabrication, installation and checkout of MOD-1, a megawatt class wind turbine generator which generates utility grade electrical power, is described. A MOD-1/MOD-1A tradeoff study is discussed

    Definition of the 2005 flight deck environment

    Get PDF
    A detailed description of the functional requirements necessary to complete any normal commercial flight or to handle any plausible abnormal situation is provided. This analysis is enhanced with an examination of possible future developments and constraints in the areas of air traffic organization and flight deck technologies (including new devices and procedures) which may influence the design of 2005 flight decks. This study includes a discussion on the importance of a systematic approach to identifying and solving flight deck information management issues, and a description of how the present work can be utilized as part of this approach. While the intent of this study was to investigate issues surrounding information management in 2005-era supersonic commercial transports, this document may be applicable to any research endeavor related to future flight deck system design in either supersonic or subsonic airplane development

    Wind-Wise Automated Decision Support Tool for Tower Crane type selection and location

    Get PDF
    Extreme wind speeds pose a serious threat to tower crane stability. Out-of-service wind loads trigger moments that may lead to overturning of a tower crane. Even if the tower crane is anchored to the ground, its structural integrity can be compromised by strong winds since the pressure exerted by the latter can lead to excessive deflections of the mast (which may be a main cause for collapse of the entire structure). Paradoxically, although strong winds have been linked to some catastrophic failures of tower cranes, their effect is often overlooked from a construction management perspective when the models for these cranes are selected during construction planning. Moreover, tower crane location and resources supply locations selection both significantly influence the tower crane model designation and subsequently the overall productivity of the project. This paper proposes a methodology which is consisting of (i) twofold mathematical distance-based-optimization technique encompassing the crane capacity (represented as the lifted moments) and hook operation time to analyze the tower crane site layout combinatorial optimization (determining the optimal crane and the corresponding material supply locations) therefore, facilitating selecting the tower crane model through the lifting critical radius. This optimization gives practitioners the option to explore the effect of different sets of constraints on productivity and overall lifting moments. In this respect, the planning team can choose to favor faster crane operations (i.e., a tighter schedule of crane operations), or they may opt to minimize the lifting-moment, choosing a more conservative crane capacity model to mitigate total cost (ii) a static wind analysis to investigate the efficiency of the tower crane model selected to withstand extreme wind speeds against overturning (through grounding bearing pressures reactions) and mast excessive deformation (compared to allowable deflection constraints). The proposed methodology is applied on a large-scale construction site with 514 crane and material supply location and the selected tower crane model resistance against maximum potential wind speed is examined and ballast base dimensions are determined. Additionally, a case study from the existing literature is investigated as a small-scale construction site and more improved site layout optimization is generated. Finally, a well-known-real-world crane accident is analyzed to validate the performance of the proposed wind static analysis method

    Improved Tower Cranes Operation Using Integrated 3D BIM Model and GPS Technology

    Get PDF
    Tower and mobile cranes are the most commonly used equipment on building construction jobsites. They play an essential role in material handling, placement, assembly and erection operations. Statistics reveal that during the last decade, the construction industry has suffered globally from crane related accidents. Hence, detailed study of different aspects of crane-based activity is important in terms of time and safety. There are several studies for enhancing safety conditions of crane operations on jobsites to decrease the number of fatalities and even increase the productivity. Existing approaches and studies have deployed wireless networks and tracking sensors to detect and identify workers, but high initial cost for installation and maintenance of these technologies and inappropriate feedback for disregarding workers privacy hold down their usability. The purpose of this study is to develop a proactive lifting operation management system to prevent potential accidents caused by tower cranes’ components through using GPS in integrated 3D BIM models. In this study, generated workspaces are utilized to demonstrate areas occupied by workers or equipment instead of using individual tags for each entity. As construction workers may leave their work zone for some reasons, 3D video tracking is applied for identifying and tracking if workers leave their pre-defined workspaces. The developed model captures the load position in real time and subsequently compares the load’s bounding box position with defined area in BIM model. In the developed model, tower crane’s load dimensions and starting point of the loading procedure are inserted and subsequently the model updates the load’s position in real time. The updated position in the 3D model is checked proactively with existing spaces to send alerts in case of overlapping. Two case studies are used to demonstrate the concept and to validate the feasibility of the proposed method. In the first case study the added plug-in is used to generate workspaces for material, equipment and labors and in the second one, the real time safety system is validated in two different scenarios. The developed plug-in in Revit environment enhances timely proximity detection for enhanced safety since it detects objects based on pre-defined spaces and retrieves crane’s load location in the model in real time. Identifying resources of interest which being free of tag and developing the real time conflict detection in Revit can be addressed as main findings of this study

    Digital technologies for enhancing crane safety in construction: a combined quantitative and qualitative analysis

    Get PDF
    A digital-enabled safety management approach is increasingly crucial for crane operations, which are common yet highly hazardous activities sensitive to environmental dynamics on construction sites. However, there exists a knowledge gap regarding the current status and developmental trajectory of this approach. Therefore, this paper aims to provide a comprehensive overview of digital technologies for enhancing crane safety, drawing insights from articles published between 2008 and 2021. Special emphasis is placed on the sensing devices currently in use for gathering “man-machine-environment” data, as well as the communication networks, data processing algorithms, and intuitive visualization platforms employed. Through qualitative and quantitative analysis of the literature, it is evident that while notable advancements have been made in digital-enabled crane safety management, these achievements remain largely confined to the experimentation stage. Consequently, a framework is proposed in this study to facilitate the practical implementation of digital-enabled crane safety management. Furthermore, recommendations for future research directions are presented. This comprehensive review offers valuable guidance for ensuring safe crane operations in the construction industry

    Analyzing Arizona OSHA Injury Reports Using Unsupervised Machine Learning

    Get PDF
    abstract: As the construction continue to be a leading industry in the number of injuries and fatalities annually, several organizations and agencies are working avidly to ensure the number of injuries and fatalities is minimized. The Occupational Safety and Health Administration (OSHA) is one such effort to assure safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance. Given the large databases of OSHA historical events and reports, a manual analysis of the fatality and catastrophe investigations content is a time consuming and expensive process. This paper aims to evaluate the strength of unsupervised machine learning and Natural Language Processing (NLP) in supporting safety inspections and reorganizing accidents database on a state level. After collecting construction accident reports from the OSHA Arizona office, the methodology consists of preprocessing the accident reports and weighting terms in order to apply a data-driven unsupervised K-Means-based clustering approach. The proposed method classifies the collected reports in four clusters, each reporting a type of accident. The results show the construction accidents in the state of Arizona to be caused by falls (42.9%), struck by objects (34.3%), electrocutions (12.5%), and trenches collapse (10.3%). The findings of this research empower state and local agencies with a customized presentation of the accidents fitting their regulations and weather conditions. What is applicable to one climate might not be suitable for another; therefore, such rearrangement of the accidents database on a state based level is a necessary prerequisite to enhance the local safety applications and standards

    4D dynamic construction management and visualization software : 2. site trial

    Get PDF
    Author name used in this publication: K. W. Chau2004-2005 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A model to optimize single tower crane location within a construction site

    Get PDF
    This thesis describes the development of a descriptive mathematical model to determine the optimum position of a single tower crane. The objective function of the model is that of minimization of total travel time necessary to complete all movements from the installation of the crane until it is dismantled and removed. Previous models which have been developed to determine optimum crane selection and location are categorized as simulation models, expert systems and mathematical models and three particular models are credited as making contributions to the problem of tower crane location. However, the model developed here overcomes many of the deficiencies exhibited by these models. In developing a model to determine optimum tower crane location, the characteristics of the construction site in which it will be placed and those of the crane itself must be considered separately. The most challenging and significant problem is in determining the total number of movements which will occur during the time when a particular crane is installed on a particular site. The method adopted was the application of a linear programming technique, the Simplex Method. Once the (computer) model had been developed a wide range of simulations were carried out to see if any general truth concerning the optimum layout could be evinced. The result of these simulations demonstrated that there are potentially significant savings to be made, in terms of the time to complete all movements, by locating the crane in the optimum position rather than in one where the maximum time to complete all movements occurs. Typical savings were in the order of 30% but situations where the time savings were in excess of 100% and even 200% were not uncommon. The layout configuration was shown to have very little influence on the magnitude of the minimum time to complete all movements. And these optimum positions were found to consistently occur at the site perimeter, very often at the corners, whilst the positions associated with the maximum times were consistently located internally. However, when the cost implications of locating the crane at the perimeter, which necessitates the use of a crane with a longer jib than would be necessary were the crane located internally, were taken into account, it was shown that, in terms of cost benefits, the cheaper option is to use the crane with a short a jib as is viable for the purposes of reaching the points the crane is required to service, and locate the crane internally. Finally, neural networks were shown to have potential as a tool to predict optimum crane location, but further work is needed to produce a working model

    Study of Civil Markets for Heavy-Lift Airships

    Get PDF
    The civil markets for heavy lift airships (HLAs) were defined by first identifying areas of most likely application. The operational suitability of HLAs for the applications identified were then assessed. The operating economics of HLAs were established and the market size for HLA services estimated by comparing HLA operating and economic characteristics with those of competing modes. The sensitivities of the market size to HLA characteristics were evaluated and the number and sizes of the vehicles required to service the more promising markets were defined. Important characteristics for future HLAs are discussed that were derived from the study of each application, including operational requirements, features enhancing profitability, military compatibility, improved design requirements, approach to entry into service, and institutional implications for design and operation
    corecore