10,945 research outputs found

    Design for validation: An approach to systems validation

    Get PDF
    Every complex system built is validated in some manner. Computer validation begins with review of the system design. As systems became too complicated for one person to review, validation began to rely on the application of adhoc methods by many individuals. As the cost of the changes mounted and the expense of failure increased, more organized procedures became essential. Attempts at devising and carrying out those procedures showed that validation is indeed a difficult technical problem. The successful transformation of the validation process into a systematic series of formally sound, integrated steps is necessary if the liability inherent in the future digita-system-based avionic and space systems is to be minimized. A suggested framework and timetable for the transformtion are presented. Basic working definitions of two pivotal ideas (validation and system life-cyle) are provided and show how the two concepts interact. Many examples are given of past and present validation activities by NASA and others. A conceptual framework is presented for the validation process. Finally, important areas are listed for ongoing development of the validation process at NASA Langley Research Center

    On the role of Prognostics and Health Management in advanced maintenance systems

    Get PDF
    The advanced use of the Information and Communication Technologies is evolving the way that systems are managed and maintained. A great number of techniques and methods have emerged in the light of these advances allowing to have an accurate and knowledge about the systems’ condition evolution and remaining useful life. The advances are recognized as outcomes of an innovative discipline, nowadays discussed under the term of Prognostics and Health Management (PHM). In order to analyze how maintenance will change by using PHM, a conceptual model is proposed built upon three views. The model highlights: (i) how PHM may impact the definition of maintenance policies; (ii) how PHM fits within the Condition Based Maintenance (CBM) and (iii) how PHM can be integrated into Reliability Centered Maintenance (RCM) programs. The conceptual model is the research finding of this review note and helps to discuss the role of PHM in advanced maintenance systems.EU Framework Programme Horizon 2020, 645733 - Sustain-Owner - H2020-MSCA-RISE-201

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    MULTIPAC, a multiple pool processor and computer for a spacecraft central data system, phase 2 Final report

    Get PDF
    MULTIPAC, multiple pool processor and computer for deep space probe central data syste

    A knowledge-based system design/information tool for aircraft flight control systems

    Get PDF
    Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors

    A comparison of modular self-timed design styles

    Get PDF
    technical reportState-machine sequencing methods in modular 2-phase and 4-phase asynchronous handshake control are compared. Design styles are discussed, and the sequencers are tested against each other using a medium-scale minicomputer test design implemented in FPGAs. Seven 4-phase sequencers are tested. In these comparisons, 2- phase control is faster than 4-phase. Within the 4-phase designs, speed is enhanced when work is overlapped with handshake restoration. Performance of asynchronous and synchronous designs is compared

    Implementation of functional safety in a robotic manufacturing cell using iec 61508 standard and siemens technology

    Get PDF
    The past 50 years have seen a staggering amount of change in the technology and the business of process automation. The programmable logic controller (PLC) based control and monitoring system is a proven technology used to not only control processes but also to perform safety functions for processes in many industrial applications. There are many opportunities for improvements in any process or manufacturing system. One of the opportunities is achieving accurate safety function for measurement and process control to prevent human injury or death. The programmable electronic systems (PES) such as PLC systems are increasingly being used to perform safety functions as an integral part of the process or plant control system. A Robotic Manufacturing Cell is an example of a PES system and is used as an experimental setup for this work. The IEC 61508 standard defines various phases involved in the overall safety lifecycle for the PES system. This thesis study concentrates on such phases that include safety analysis methods, selection of an appropriate safety control system, implementation of safety as per the standard and safety validation. In this study four test cases are selected to perform safety analysis and implementation. It is verified how the conventional safety analysis method (FMEA) can be used to estimate the risk associated with each test case. As recommended by IEC 61508, a Risk-Graph method is used to calculate the Safety Integrity Level (SIL) requirement for each test case. A number of factors are required to be considered for selecting the appropriate safety control system architecture. After studying these factors and the safety analysis results, the Siemens safety PLC-based control system with SIL 3 configuration is selected for this application. IEC 61508 also recommends implementation of independent control systems for normal operation and safety. This study demonstrates how two independent PLC based control systems, one for normal operations and other for safety-related functions, are implemented to offer the most effective solution for this application. This is achieved by using PLCs from two different manufacturers, a non-safety PLC for normal operations and a Siemens safety PLC for safety-related functions. This study focuses on Machine Safety, and it can be used as a guideline for implementation of functional safety in real-life manufacturing environment

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    1990 Projects Day Booklet

    Get PDF
    https://scholarworks.seattleu.edu/projects-day/1005/thumbnail.jp

    Technology applications

    Get PDF
    A summary of NASA Technology Utilization programs for the period of 1 December 1971 through 31 May 1972 is presented. An abbreviated description of the overall Technology Utilization Applications Program is provided as a background for the specific applications examples. Subjects discussed are in the broad headings of: (1) cancer, (2) cardiovascular disease, (2) medical instrumentation, (4) urinary system disorders, (5) rehabilitation medicine, (6) air and water pollution, (7) housing and urban construction, (8) fire safety, (9) law enforcement and criminalistics, (10) transportation, and (11) mine safety
    corecore