13,209 research outputs found

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    The Hamilton-Waterloo Problem with even cycle lengths

    Full text link
    The Hamilton-Waterloo Problem HWP(v;m,n;α,β)(v;m,n;\alpha,\beta) asks for a 2-factorization of the complete graph KvK_v or KvIK_v-I, the complete graph with the edges of a 1-factor removed, into α\alpha CmC_m-factors and β\beta CnC_n-factors, where 3m<n3 \leq m < n. In the case that mm and nn are both even, the problem has been solved except possibly when 1{α,β}1 \in \{\alpha,\beta\} or when α\alpha and β\beta are both odd, in which case necessarily v2(mod4)v \equiv 2 \pmod{4}. In this paper, we develop a new construction that creates factorizations with larger cycles from existing factorizations under certain conditions. This construction enables us to show that there is a solution to HWP(v;2m,2n;α,β)(v;2m,2n;\alpha,\beta) for odd α\alpha and β\beta whenever the obvious necessary conditions hold, except possibly if β=1\beta=1; β=3\beta=3 and gcd(m,n)=1\gcd(m,n)=1; α=1\alpha=1; or v=2mn/gcd(m,n)v=2mn/\gcd(m,n). This result almost completely settles the existence problem for even cycles, other than the possible exceptions noted above

    Structure and enumeration of (3+1)-free posets

    Full text link
    A poset is (3+1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets play a central role in the (3+1)-free conjecture of Stanley and Stembridge. Lewis and Zhang have enumerated (3+1)-free posets in the graded case by decomposing them into bipartite graphs, but until now the general enumeration problem has remained open. We give a finer decomposition into bipartite graphs which applies to all (3+1)-free posets and obtain generating functions which count (3+1)-free posets with labelled or unlabelled vertices. Using this decomposition, we obtain a decomposition of the automorphism group and asymptotics for the number of (3+1)-free posets.Comment: 28 pages, 5 figures. New version includes substantial changes to clarify the construction of skeleta and the enumeration. An extended abstract of this paper appears as arXiv:1212.535

    The Waldschmidt constant for squarefree monomial ideals

    Get PDF
    Given a squarefree monomial ideal IR=k[x1,,xn]I \subseteq R =k[x_1,\ldots,x_n], we show that α^(I)\widehat\alpha(I), the Waldschmidt constant of II, can be expressed as the optimal solution to a linear program constructed from the primary decomposition of II. By applying results from fractional graph theory, we can then express α^(I)\widehat\alpha(I) in terms of the fractional chromatic number of a hypergraph also constructed from the primary decomposition of II. Moreover, expressing α^(I)\widehat\alpha(I) as the solution to a linear program enables us to prove a Chudnovsky-like lower bound on α^(I)\widehat\alpha(I), thus verifying a conjecture of Cooper-Embree-H\`a-Hoefel for monomial ideals in the squarefree case. As an application, we compute the Waldschmidt constant and the resurgence for some families of squarefree monomial ideals. For example, we determine both constants for unions of general linear subspaces of Pn\mathbb{P}^n with few components compared to nn, and we find the Waldschmidt constant for the Stanley-Reisner ideal of a uniform matroid.Comment: 26 pages. This project was started at the Mathematisches Forschungsinstitut Oberwolfach (MFO) as part of the mini-workshop "Ideals of Linear Subspaces, Their Symbolic Powers and Waring Problems" held in February 2015. Comments are welcome. Revised version corrects some typos, updates the references, and clarifies some hypotheses. To appear in the Journal of Algebraic Combinatoric

    Generating Functions For Kernels of Digraphs (Enumeration & Asymptotics for Nim Games)

    Full text link
    In this article, we study directed graphs (digraphs) with a coloring constraint due to Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels of digraphs, which appears in numerous fields of research such as game theory, complexity theory, artificial intelligence (default logic, argumentation in multi-agent systems), 0-1 laws in monadic second order logic, combinatorics (perfect graphs)... Kernels of digraphs lead to numerous difficult questions (in the sense of NP-completeness, #P-completeness). However, we show here that it is possible to use a generating function approach to get new informations: we use technique of symbolic and analytic combinatorics (generating functions and their singularities) in order to get exact and asymptotic results, e.g. for the existence of a kernel in a circuit or in a unicircuit digraph. This is a first step toward a generatingfunctionology treatment of kernels, while using, e.g., an approach "a la Wright". Our method could be applied to more general "local coloring constraints" in decomposable combinatorial structures.Comment: Presented (as a poster) to the conference Formal Power Series and Algebraic Combinatorics (Vancouver, 2004), electronic proceeding
    corecore