10 research outputs found

    From one-class to two-class classification by incorporating expert knowledge : novelty detection in human behaviour

    Get PDF
    One-class classification is the standard procedure for novelty detection. Novelty detection aims to identify observations that deviate from a determined normal behaviour. Only instances of one class are known, whereas so called novelties are unlabelled. Traditional novelty detection applies methods from the field of outlier detection. These standard one-class classification approaches have limited performance in many real business cases. The traditional techniques are mainly developed for industrial problems such as machine condition monitoring. When applying these to human behaviour, the performance drops significantly. This paper proposes a method that improves existing approaches by creating semi-synthetic novelties in order to have labelled data for the two classes. Expert knowledge is incorporated in the initial phase of this data generation process. The method was deployed on a real-life test case where the goal was to detect fraudulent subscriptions to a telecom family plan. This research demonstrates that the two-class expert model outperforms a one-class model on the semi-synthetic dataset. In a next step the model was validated on a real dataset. A fraud detection team of the company manually checked the top predicted novelties. The results show that incorporating expert knowledge to transform a one-class problem into a two-class problem is a valuable method

    Prognostic of RUL based on Echo State Network Optimized by Artificial Bee Colony

    Get PDF
    Prognostic is an engineering technique used to predict the future health state or behavior of an equipment or system. In this work, a data-driven hybrid approach for prognostic is presented. The approach based on Echo State Network (ESN) and Artificial Bee Colony (ABC) algorithm is used to predict machine’s Remaining Useful Life (RUL). ESN is a new paradigm that establishes a large space dynamic reservoir to replace the hidden layer of Recurrent Neural Network (RNN). Through the application of ESN is possible to overcome the shortcomings of complicated computing and difficulties in determining the network topology of traditional RNN. This approach describes the ABC algorithm as a tool to set the ESN with optimal parameters. Historical data collected from sensors are used to train and test the proposed hybrid approach in order to estimate the RUL. To evaluate the proposed approach, a case study was carried out using turbofan engine signals show that the proposed method can achieve a good collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). The experimental results using the engine data from NASA Ames Prognostics Data Repository RUL estimation precision. The performance of this model was compared using prognostic metrics with the approaches that use the same dataset. Therefore, the ESNABC approach is very promising in the field of prognostics of the RUL

    Condition Assessment, Remaining Useful Life Prediction and Life Extension Decision Making for Offshore Oil and Gas Assets

    Get PDF
    Offshore oil and gas assets are highly complex structures comprising of several components, designed to have a lifecycle of about 20 to 30 years of working under harsh operational and environmental conditions. These assets, during their operational lifetime, are subjected to various degradation mechanisms such as corrosion, erosion, wear, creep and fatigue cracks. In order to improve economic viability and increase profitability, many operators are looking at extending the lifespan of their assets beyond the original design life, thereby making life extension (LE) an increasingly critical and highly-discussed topic in the offshore oil and gas industry. In order to manage asset aging and meet the LE requirements, offshore oil and gas operators have adopted various approaches such as following maintenance procedures as advised by the original equipment manufacturer (OEM), or using the experience and expertise of engineers and inspectors. However, performing these activities often provides very limited value addition to operators during the LE period of operation. This paper aims to propose a systematic framework to help operators meet LE requirements while optimizing their cost structure. This framework establishes an integration between three individual life assessment modules, namely: condition assessment, remaining useful life (RUL) prediction and LE decision-making. The benefits of the proposed framework are illustrated through a case study involving a three-phase separator system on a platform which was constructed in the mid-1970s in West Africa. The results of this study affirm the effectiveness of this framework in minimizing catastrophic failures during the LE phase of operations, whilst ensuring compliance to regulatory requirements

    Condition-based maintenance—an extensive literature review

    Get PDF
    This paper presents an extensive literature review on the field of condition-based maintenance (CBM). The paper encompasses over 4000 contributions, analysed through bibliometric indicators and meta-analysis techniques. The review adopts Factor Analysis as a dimensionality reduction, concerning the metric of the co-citations of the papers. Four main research areas have been identified, able to delineate the research field synthetically, from theoretical foundations of CBM; (i) towards more specific implementation strategies (ii) and then specifically focusing on operational aspects related to (iii) inspection and replacement and (iv) prognosis. The data-driven bibliometric results have been combined with an interpretative research to extract both core and detailed concepts related to CBM. This combined analysis allows a critical reflection on the field and the extraction of potential future research directions

    Improving water asset management when data are sparse

    Get PDF
    Ensuring the high of assets in water utilities is critically important and requires continuous improvement. This is due to the need to minimise risk of harm to human health and the environment from contaminated drinking water. Continuous improvement and innovation in water asset management are therefore, necessary and are driven by (i) increased regulatory requirements on serviceability; (ii) high maintenance costs, (iii) higher customer expectations, and (iv) enhanced environmental and health/safety requirements. High quality data on asset failures, maintenance, and operations are key requirements for developing reliability models. However, a literature search revealed that, in practice, there is sometimes limited data in water utilities - particularly for over-ground assets. Perhaps surprisingly, there is often a mismatch between the ambitions of sophisticated reliability tools and the availability of asset data water utilities are able to draw upon to implement them in practice. This research provides models to support decision-making in water utility asset management when there is limited data. Three approaches for assessing asset condition, maintenance effectiveness and selecting maintenance regimes for specific asset groups were developed. Expert elicitation was used to test and apply the developed decision-support tools. A major regional water utility in England was used as a case study to investigate and test the developed approaches. The new approach achieved improved precision in asset condition assessment (Figure 3–3a) - supporting the requirements of the UK Capital Maintenance Planning Common Framework. Critically, the thesis demonstrated that, on occasion, assets were sometimes misallocated by more than 50% between condition grades when using current approaches. Expert opinions were also sought for assessing maintenance effectiveness, and a new approach was tested with over-ground assets. The new approach’s value was demonstrated by the capability to account for finer measurements (as low as 10%) of maintenance effectiveness (Table 4-4). An asset maintenance regime selection approach was developed to support decision-making when data are sparse. The value of the approach is its versatility in selecting different regimes for different asset groups, and specifically accounting for the assets unique performance variables

    An asset residual life prediction model based on expert judgments

    No full text
    An appropriate and accurate residual life prediction for an asset is essential for cost effective and timely maintenance planning and scheduling. The paper reports the use of expert judgments as the additional information to predict a regularly monitored asset’s residual life. The expert judgment is made on the basis of measured condition monitoring parameters, and is treated as a random variable, which may be described by a probability distribution due to the uncertainty involved. Since most expert judgments are in the form of a set of integer numbers, we can either directly use a discrete distribution or use a continuous distribution after some transformation. A key concept used in this paper is condition residual life where the residual life at the point of checking is conditional on, among others, the past expert judgments made on the same assetto date. Stochastic filtering theory is used to predict the residual life given available expert judgments. Artificial, simulated and real data are used for validating and testing the model developed

    Modelling spatio-temporal human behaviour with mobile phone data : a data analytical approach

    Get PDF

    An integrated approach to value chain analysis of end of life aircraft treatment

    Get PDF
    Dans cette thèse, on propose une approche holistique pour l’analyse, la modélisation et l’optimisation des performances de la chaîne de valeur pour le traitement des avions en fin de vie (FdV). Les recherches réalisées ont débouché sur onze importantes contributions. Dans la première contribution, on traite du contexte, de la complexité, de la diversité et des défis du recyclage d’avions en FdV. La seconde contribution traite du problème de la prédiction du nombre de retraits d’avions et propose une approche intégrée pour l’estimation de ce nombre de retraits. Le troisième et le quatrième articles visent à identifier les parties prenantes, les valeurs perçues par chaque partenaire et indiquent comment cette valeur peut affecter les décisions au stade de la conception. Les considérations relatives à la conception et à la fabrication ont donné lieu à quatre contributions importantes. La cinquième contribution traite des défis et opportunités pouvant résulter de l’application des concepts de la chaîne logistique verte, pour les manufacturiers d’avions. Dans la sixième contribution, un outil d’aide à la décision a été développé pour choisir la stratégie verte qui optimise les performances globales de de toute la chaîne de valeur en tenant compte des priorités et contraintes de chaque partenaire. Dans la septième contribution, un modèle mathématique est proposé pour analyser le choix stratégique des manufacturiers en réponse aux directives en matière de FdV de produits comme le résultat des interactions des compétiteurs dans le marché. La huitième contribution porte sur les travaux réalisés dans le cadre d’un stage chez le constructeur d’avions, Bombardier. Cette dernière traite de l’apport de « l’analyse du cycle de vie » au stade de la conception d’avions. La neuvième contribution introduit une méthodologie d’analyse de la chaîne de valeur dans un contexte de développement durable. Finalement, les dixième et onzième contributions proposent une approche holistique pour le traitement des avions en FdV en intégrant les concepts du « lean », du développement durable et des contraintes et opportunités inhérentes à la mondialisation des affaires. Un modèle d’optimisation intégrant les modèles d’affaires, les stratégies de désassemblage et les structures du réseau qui influencent l’efficacité, la stabilité et l’agilité du réseau de récupération est proposé. Les données requises pour exploiter le modèle sont indiquées dans l’article. Mots-clés: Fin de vie des avions, analyse de la chaîne de valeurs, développement durable, intervenants.The number of aircrafts at the end of life (EOL) is continuously increasing. Dealing with retired aircrafts considering the environmental, social and economic impacts is becoming an emerging problem in the aviation industry in near future. This thesis seeks to develop a holistic approach in order to analyze the value chain of EOL aircraft treatment in the context of sustainable development. The performed researches have led to eleven main contributions. In the first contribution, the complexity and diversity of the EOL aircraft recycling including the challenges and problem context are discussed. The second contribution addresses the challenges for estimation of retired aircrafts and proposes an integrated approach for prediction of EOL aircrafts. The third and fourth contributions aim to identify the players involved in EOL recycling context, values perceived by different shareholders and formulate that how such value can affect design decisions. Design stage consideration and manufacture’s issues are discussed and have led to four main contributions. The fifth contribution addresses the opportunities and challenges of applying green supply chain for aircraft manufacturers. In the sixth contribution, a decision tool is developed to aid manufactures in early stage of design for their green strategy choices. In the seventh contribution, a mathematical model is developed in order to analyze the strategic choice of manufacturers in response to EOL directives as the result of the interaction of competitors in the market. An internship project has been also performed in Bombardier and led to the eighth contribution, which addresses life cycle approach and incorporating the sustainability in early stage of design of aircraft. The ninth contribution introduces a methodology for analyzing the value chain in the context of sustainable development. Finally, the tenth and eleventh contributions propose a holistic approach to EOL aircraft treatment considering lean principals, sustainable development, and global business environment. An optimization model is developed to support decision making in both strategic and managerial level. The analytical approaches, decision tools and step by step guidelines proposed in this thesis will aid decision makers to identify appropriate strategies for the EOL aircraft treatment in the sustainable development context. Keywords: End of life aircraft, value chain analysis, sustainable development, stakeholders
    corecore