3,784 research outputs found

    Smart construction companies using internet of things technologies

    Get PDF
    The digital world is enriched due to the increase in the number of things which are rapidly connecting to the Internet. The Internet of Things (IoT) facilitates and improves the work efficiency and human life in various fields. IoT was adopted extensively to male buildings more effective and extra smart. For example, buildings are consuming a considerable energy amount. In buildings, there is a critical requirement for energy efficiency, whereas one of the smart building’s aims is monitoring, reducing and managing the energy consumption of buildings without compromising the operational efficiency and the comfort of occupants. The systems of Heating, Ventilation and Air Conditioning (HVAC) are contributing to considerable consumption of energy in buildings. Also, plug loads and lighting are consuming a lot energy. Thus, smart buildings have the ability of using many IoT sensor types in HVAC along with other mechanical systems making such more adaptive and intelligent. The embedded sensors as well as their related controllers which are mounted in smart buildings are generating a huge amount of data (big data), such data might be subjected to extraction, filtration ana analyzation and utilized for the analytics of smart buildings. For example, the big data analytics might be utilized for analyzing and improving the energy efficiency in addition to the residents’ overall user experience in building. It has been verified that there is an increased focus on smart buildings and big data analytics and management. Yet, there is a requirement for identifying the problems and solutions for overcoming them in such field. With the use of a design research method and model driven architecture, this study aims to develop such system.The major aim of this work is introducing a technique with increased possibility for moving Intelligent Buildings (IBs) towards next-generation model. It depends on IoT adapted to IB for integrating smart re-configurable subsystems and components of IB into Enterprise Network Integrated Building Systems (ENIBSs), also, if possible, into ENIBS’ global networks. The study is presented in the following way. Section 2 is providing an overview of IoT, it is indicating that IoT is relatively new and no associated contribution on using the IoT on IBs or, on the ENIBSs, were indicated in such regard. Section3 is presenting the methodological model that has been used to design a generic model for the IoT with the applicability in the IBs as well as generic architectures for re-configurable smart plug-and-play control systems for quick configuration and integration regarding smart components of the IB. Section 4 provides the theory’ experimental test. The study ends up with the conclusions and some suggestions for the future work

    A modular product structure based methodology for seamless information flow in PLM system implementation

    Get PDF
    Product development process deals with large amount of information generated from market survey, concept design, manufacture, test, limited production, production, service, and obsoleting. The information should be stored systematically so that it is easily traceable and reusable for future product development. This paper presents a methodology for seamless product information flow between the three main enterprise information systems such as Computer Aided Design and Manufacturing (CAD/CAM), Product Data/Lifecycle Management (PDM/PLM) and Enterprise Resource Planning (ERP) used in the process of innovative product development while implementing PLM. PLM implementation deals with various existing product data and information generated over years both from CAD and ERP systems. Data integration is very challenging in multi-national engineering companies and has important impact on future decisions while creating new processes. The aim is to define a modular product structure that can be used to connect the product information throughout the life cycle that can be reused effectively and efficiently for future similar products

    An experiment in remote manufacturing using the advanced communications technology satellite

    Get PDF
    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic

    Special Session on Industry 4.0

    Get PDF
    No abstract available
    • …
    corecore