323 research outputs found

    Functional Poisson approximation in Kantorovich-Rubinstein distance with applications to U-statistics and stochastic geometry

    Get PDF
    A Poisson or a binomial process on an abstract state space and a symmetric function ff acting on kk-tuples of its points are considered. They induce a point process on the target space of ff. The main result is a functional limit theorem which provides an upper bound for an optimal transportation distance between the image process and a Poisson process on the target space. The technical background are a version of Stein's method for Poisson process approximation, a Glauber dynamics representation for the Poisson process and the Malliavin formalism. As applications of the main result, error bounds for approximations of U-statistics by Poisson, compound Poisson and stable random variables are derived, and examples from stochastic geometry are investigated.Comment: Published at http://dx.doi.org/10.1214/15-AOP1020 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Eulerian and Lagrangian solutions to the continuity and Euler equations with L1L^1 vorticity

    Get PDF
    In the first part of this paper we establish a uniqueness result for continuity equations with velocity field whose derivative can be represented by a singular integral operator of an L1L^1 function, extending the Lagrangian theory in \cite{BouchutCrippa13}. The proof is based on a combination of a stability estimate via optimal transport techniques developed in \cite{Seis16a} and some tools from harmonic analysis introduced in \cite{BouchutCrippa13}. In the second part of the paper, we address a question that arose in \cite{FilhoMazzucatoNussenzveig06}, namely whether 2D Euler solutions obtained via vanishing viscosity are renormalized (in the sense of DiPerna and Lions) when the initial data has low integrability. We show that this is the case even when the initial vorticity is only in~L1L^1, extending the proof for the LpL^p case in \cite{CrippaSpirito15}

    Concentration of empirical distribution functions with applications to non-i.i.d. models

    Full text link
    The concentration of empirical measures is studied for dependent data, whose joint distribution satisfies Poincar\'{e}-type or logarithmic Sobolev inequalities. The general concentration results are then applied to spectral empirical distribution functions associated with high-dimensional random matrices.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ254 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    corecore