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Abstract. In the first part of this paper we establish a uniqueness result for continuity equations
with a velocity field whose derivative can be represented by a singular integral operator of an L1

function, extending the Lagrangian theory in [F. Bouchut and G. Crippa, J. Hyperbolic Differ. Equ.,
10 (2013), pp. 235–282]. The proof is based on a combination of a stability estimate via optimal
transport techniques developed in [C. Seis, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear]
and some tools from harmonic analysis introduced in [F. Bouchut and G. Crippa, J. Hyperbolic Differ.
Equ., 10 (2013), pp. 235–282]. In the second part of the paper, we address a question that arose in
[M. C. Lopes Filho, A. L. Mazzucato, and H. J. Nussenzveig Lopes, Arch. Ration. Mech. Anal., 179
(2006), pp. 353–387], namely, whether 2 dimensional Euler solutions obtained via vanishing viscosity
are renormalized (in the sense of DiPerna and Lions) when the initial data have low integrability.
We show that this is the case even when the initial vorticity is only in L1, extending the proof for
the Lp case in [G. Crippa and S. Spirito, Comm. Math. Phys., 339 (2015), pp. 191–198].
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1. Introduction. In the present work we discuss the equivalence of the Eulerian
and the Lagrangian descriptions for solutions to some equations of fluid dynamics
with a velocity field with a certain weak regularity. To be more specific, we study the
continuity equation and the two-dimensional (2D) Euler equations in the case when
the velocity field has a merely integrable curl (i.e., the vorticity of the fluid is L1, but
not better). We develop a well-posedness theory for the linear continuity equation
and derive renormalization properties for solutions to the Euler equation in vorticity
form obtained as vanishing viscosity limits.

Before formulating the precise questions that we address in this paper and moti-
vating the related background from physics, let us review some basic features of the
linear theory. The continuity equation describes the transport of a conserved quantity
ρ by a velocity field u. Given an initial configuration ρ0, the Cauchy problem takes
the simple form

(1.1)
{
∂tρ+ ∇ · (uρ) = 0 in (0, T ) × Rn,

ρ(0, ·) = ρ0 in Rn.

In the classical case of smooth velocity fields and data, the problem of well-posedness
is typically solved using the method of characteristics: The unique solution is trans-
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3974 CRIPPA, NOBILI, SEIS, AND SPIRITO

ported by the flow associated with the velocity field. Since this perspective describes
the solution with respect to Langrangian coordinates, we will accordingly refer to it
as a Lagrangian solution.

Out of the smooth setting there are different ways to give meaning to the conti-
nuity equation (1.1). Whenever the velocity field is regular enough so that a (suitably
generalized) flow is well-defined, Lagrangian solutions are a reasonable contradiction.
A standard alternative notion which rather takes the partial differential equations
(PDE) point of view is that of distributional (or Eulerian) solutions. These, however,
are well-defined only as long as the product term uρ is locally integrable. In their
seminal paper [13], DiPerna and Lions introduced a new notion of generalized solu-
tions, the so-called renormalized solutions, which give sense to (1.1) even if both u
and ρ are merely integrable. Roughly speaking, one requires that

(1.2) ∂tβ(ρ) + ∇ · (uβ(ρ)
)

=
(
β(ρ) − ρβ′(ρ)

)∇ · u
for any smooth function β : R → R satisfying suitable growth conditions. Notice
that (1.2) can be formally derived from (1.1) by applying the chain rule, and that (1.2)
makes sense even when one cannot define distributionally the product uρ, due to the
low integrability of the two factors. In the case of divergence-free velocity fields,
∇ · u = 0, these solutions preserve any Lq norm, i.e.,

(1.3) ‖ρ(t)‖Lq = ‖ρ0‖Lq

for any t ≥ 0, whenever the right-hand side is finite.
DiPerna and Lions’s theory [13] in fact shows that these three concepts of solution

coincide if u ∈ L1(W 1,p) with ∇ · u ∈ L1(L∞) and ρ ∈ L∞(Lq), where 1
p + 1

q = 1.
Furthermore, Lagrangian and renormalized solutions still agree even if we do not
assume any integrability on ρ. In either case the Cauchy problem for the continuity
equation (1.1) is well-posed. Ambrosio [1] later generalized the theory to velocity
fields in L1(BV ) and solutions in L∞(L∞). The precise definition of Lagrangian,
distributional, and renormalized solutions will be recalled in section 2 below. For a
review of the DiPerna–Lions theory and its more recent developments we refer to the
lecture notes [2]. Here and at some later occurrences, for notational convenience, we
write Lr(X) = Lr((0, T );X) for a function space X on Rn, and if X = Lr(Rn) we
simply write Lr = Lr((0, T ) × Rn).

Our first main result in this paper concerns a theory for the continuity equa-
tion with weakly differentiable velocity fields that fall out of the DiPerna–Lions class
L1(W 1,1). To be more specific, we consider velocity fields u whose gradient is a sin-
gular integral of an L1 function, i.e., ∇u = K ∗ω for some singular integral kernel K.
Typical examples are 2D or three-dimensional (3D) velocity fields whose curl, which
is the vorticity in the context of fluid dynamics, is merely integrable, i.e.,

(1.4) ω = ∇ × u ∈ L1.

In these cases, K is the gradient of the Biot–Savart kernel; see e.g [22, Chap. 2].
Because Calderón–Zygmund maximal regularity estimates just fail in L1, in general,
∇u does not belong to L1 but only to L1(L1,∞). In this regard, the following result
extends the theory in [13].

Theorem 1.1. There exists exactly one distributional solution in the class
L∞(L∞ ∩ L1) to the continuity equation with velocity field u with bounded diver-
gence and satisfying ∇u = K ∗ω for some ω ∈ L1. This solution is also a Lagrangian
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CONTINUITY AND EULER EQUATIONS WITH L1 VORTICITY 3975

solution and a renormalized solution. Also the converse statement holds true: Every
Lagrangian or renormalized solution in the class L∞(L1 ∩L∞) is also a distributional
solution.

If in addition u is divergence free, then there exists a unique renormalized so-
lution in the class L∞(L0), which is also a Lagrangian solution. Conversely, every
Lagrangian solution in the class L∞(L0) is also a renormalized solution.

Here, L0 = L0(Rn) denotes the set of all measurable functions ρ on Rn with
values in R̄ such that Ln({|ρ| > λ}) is finite for every λ > 0.

A precise list of assumptions on the singular integral kernel K will be given in
the introduction of section 2 below.

Existence and uniqueness of Lagrangian solutions in the setting of our paper
were established earlier in [6], along with a full theory for the associated ordinary
differential equation. The nature of the approach of [6] does not allow, however,
the treatment of distributional or renormalized solutions. The major problem in the
analysis of distributional solutions in the setting of [6] (and of the present paper) is
the failure of a suitable adaptation of the method developed by DiPerna and Lions.
To be more specific—for the convenience of the experts among the readers—it is not
clear how a commutator estimate could be established.

Indeed, instead of following [13], the authors of [6] exploited the approach in-
troduced earlier in [10]. This work provides quantitative stability, compactness, and
regularity estimates for Lagrangian flows associated with velocity fields in L1(W 1,p)
with p > 1. By using more sophisticate harmonic analysis tools, the authors of [6]
managed to extend this approach to the case p = 1, and to the case when the gradient
of the velocity field is a singular integral of an integrable function. See also [19, 17, 4]
for some further extensions of this approach.

A PDE analogue of [10, 19] is only very recent. In [29] a new quantitative theory is
provided for distributional solutions of the continuity equation in the DiPerna–Lions
setting. This new theory is based on stability estimates for logarithmic Kantorovich–
Rubinstein distances, variants of which were introduced earlier in [7, 23, 28]. In
the case of velocity fields in L1(W 1,p) with p > 1, the new stability estimates are
optimal [30] and allow for sharp error estimates for numerical schemes [26, 27]. Let
us also mention, in this connection, that quantitative compactness results have been
recently derived in [8] by a smart technique involving the propagation of suitable
“logarithmic regularity norms” weighted by solutions of the adjoint equations with a
suitable penalization term. The authors apply this to get new existence results for
the compressible Navier–Stokes equations.

The present work combines the techniques developed in [29] with certain harmonic
analysis tools and a new estimate for the difference quotients of the velocity field
established in [6]. We will review some tools from [6] and [29] in sections 2 and 3.

The drawback of the approach in [29] is that it only applies to distributional
solutions and that it does not allow for a source term on the right-hand side of the
equation (see for instance [9] for the study of the equation with a source with low
integrability). As a consequence, the development of a full renormalization theory in
our context requires new ideas. Our strategy is able to handle renormalized solutions
only for divergence-free velocity fields, which causes the restriction in the second
statement of Theorem 1.1.

It turns out that we can use Theorem 1.1 in the context of the 2D Euler equations
with L1 vorticity. Notice that, if u is a 2D divergence-free velocity field described by
the Euler equations and ω = ∇×u the vorticity, then ω solves the (nonlinear) vorticity
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equation
(1.5) ∂tω + u · ∇ω = 0,

which can be brought into the conservation form (1.1). It is clear that the linear
theory does not entail uniqueness for the nonlinear problem. Moreover, because ω is
not necessarily bounded, distributional solutions of (1.5) are in general not defined,
and in any case Theorem 1.1 does not imply that every L1 distributional solution of
the vorticity equation (1.5) is a renormalized or a Lagrangian solution. Combined
with the duality approach developed in [11], our theory, however, applies to certain
particular solutions, namely, those which are obtained as the zero-viscosity limit of
the Navier–Stokes equations: We call ω a viscosity solution to the Euler equations
(1.5) if

ω = lim
ν↓0

ων ,

where ων is the curl of some divergence-free velocity field uν and (uniquely) solves
the Navier–Stokes vorticity equation with viscosity ν, i.e.,

∂tω
ν + uν · ∇ων = νΔων .

Our result is the following.

Theorem 1.2. For initial vorticities in L1, viscosity solutions to the Euler vor-
ticity equations are renormalized solutions and also Lagrangian solutions.

This extends, to the borderline case p = 1, the analysis of [11] for the case p > 1.
More details will be given in Theorem 5.1 below.

The fact that viscosity solutions are Lagrangian solutions shows the equivalence
between the Eulerian and the Lagrangian description of fluid dynamics—at least in
this physically meaningful approximation: As in the smooth setting, the theorem
implies that the vorticity is constant along the flow. Existence results for the 2D
Euler equations with nonsmooth initial vorticity are proved in [34, 14, 32, 12].

We want to point out that Theorem 1.2 is also relevant in connection with the
theory of 2D turbulence. The phenomenological theory developed by Kraichnan [20]
and Batchelor [3] is modeled after Kolmogorov’s celebrated “K41” theory of 3D tur-
bulence. In analogy to the energy cascade in K41, there is the enstrophy cascade
picture at the heart of the Kraichnan–Batchelor theory. The enstrophy, which is half
the integral of the square of vorticity, is a conserved quantity for 2D ideal fluids de-
scribed by the Euler equations, and it is dissipated by viscous fluids described by the
Navier–Stokes equations. In the cascade picture, the nonlinearity transports enstro-
phy from large to small scales until it is dissipated by viscosity. A key assumption in
turbulence theory is that the enstrophy dissipation rate is bounded away from zero
uniformly in the viscosity.

Under certain assumptions, this picture, however, is ruled out by the following
argument. It is easily checked that the Navier–Stokes equations dissipate the enstro-
phy 1

2‖ων(t)‖2
L2 at the rate ν‖∇ων(t)‖2

L2 . If the latter was bounded away from zero
by a positive constant C, then

‖ων(t)‖2
L2 + Ct ≤ ‖ω0‖2

L2

for any t > 0. In order to perform the limit ν → 0, it remains to invoke a standard
compactness argument. We find a function ω in L∞(L2) which satisfies the Euler
equations in vorticity form and such that ‖ω(t)‖L2 < ‖ω0‖L2 for any positive t. That
means that the limiting Euler equations do not preserve enstrophy. This, however,
contradicts the DiPerna–Lions theory of renormalized solutions [13]. Indeed, because
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‖∇u‖L2 = ‖ω‖L2, the advecting velocity field is in the DiPerna–Lions class, and thus
ω is a renormalized solution, which entails (1.3) with ρ = ω and q = 2.

It is natural to ask if such dissipation is in fact present under more general as-
sumptions. For a given Banach space X , the questions are thus the following: Given
an initial datum in X, is there a viscosity solution to the Euler vorticity equation?
And, if yes, is that viscosity solution a renormalized solution? These questions are
mathematically interesting independently from their fluid dynamical background.

Among some other spaces, these questions were studied for Lp spaces in [21]
(p ≥ 2) and [11] (1 < p < 2), and in either case both questions (when applicable)
are answered positively. Notice that for p < 4/3, a priori estimates available for u
and ω are not enough to guarantee that the nonlinear term uω is in L1. For this
reason, in order to make sense of (1.1), solutions to the Euler equation are defined as
renormalized solutions and the second question is redundant. The arguments in [21]
and [11] are hinged on the fact that the Calderón–Zygmund theory for the Biot–Savart
kernel (given implicitly in (1.4)) yields ‖∇u‖Lp � ‖ω‖Lp precisely if p ∈ (1,∞). In the
borderline case p = 1, where this estimate fails, u does not have Sobolev regularity
and therefore DiPerna–Lions theory is not applicable; see, however, [32]. Notice that
the other borderline case p = ∞ is, on the contrary, well-behaved [34]: In fact, even
uniqueness for the nonlinear problem can be proven. Our Theorem 1.2 extends the
results from [21] and [11] to the case p = 1. We build up on the linear theory
established in Theorem 1.1 and closely follow the argumentation developed in [11].

The paper is organized as follows: In section 2 we recall some basic definitions of
solutions to linear continuity equations, some auxiliary results from harmonic analysis
and interpolation, and embedding estimates for weak Lebesgue spaces. Section 3
contains some preliminaries on optimal transportation distances for specific choices
of concave cost functions. In section 4 we prove our uniqueness result for linear
continuity equations when the velocity field is a singular integral of an L1 function.
The final section 5 is devoted to the analysis of vanishing viscosity solutions for the 2D
Euler equations. Throughout the paper we will use the short notation a � b whenever
a ≤ Cb for some constant C depending only on the space dimension n and on other
quantities that we do not specify as they do not play any role in the estimates.

2. Linear continuity equations and singular integrals. The present section
is divided into three subsections: In the first one, we recall the definitions of distribu-
tional, Lagrangian, and renormalized solutions to the continuity equation (1.1) under
quite general assumptions. In the second subsection, we specify the assumptions on
the velocity field and the singular integral kernel, and collect a number of technical re-
sults that were previously established in [6]. In the last subsection we summarize some
inequalities involving weighted Lebesgue spaces that we will need in the following.

2.1. Distributional, renormalized, and Lagrangian solutions to linear
continuity equations. We start by recalling the usual definition of distributional
solutions.

Definition 2.1 (distributional solutions). Let u ∈ L1((0, T );Lp
loc(R

n)) and
ρ0 ∈ Lq

loc(R
n) be given for some q such that 1/p+ 1/q ≤ 1. A function ρ is called a

distributional solution of (1.1) if ρ ∈ L∞((0, T );Lq
loc(R

n)) and
¨

ρ(∂tφ+ u · ∇φ) dxdt +
ˆ
ρ0φ|t=0 dx = 0

for any φ ∈ C∞
c ([0, T ) × Rn).
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Whenever the velocity’s divergence is bounded from below, distributional solu-
tions in the sense of the previous definition can be obtained by smooth approximation.
This standard argument is performed, for instance, in [13, Propositon II.1].

In the context of linear transport and continuity equations, DiPerna and Lions
[13] introduced the concept of renormalized solutions.

Definition 2.2 (renormalized solutions). Let u ∈ L1((0, T );L1
loc(R

n)) be given
with ∇ · u ∈ L1((0, T );L1

loc(R
n)) and ρ0 ∈ L0(Rn). Then, ρ ∈ L∞([0, T );L0(Rn))

is a renormalized solution of (1.1) if for any β ∈ C1(R) ∩ L∞(R), β vanishing in a
neighborhood of 0 and |β′(s)s| bounded, it holds
¨

β(ρ)(∂tφ+ u · ∇φ) + (∇ · u)
(
β′(ρ)ρ− β(ρ)

)
φdxdt+

ˆ
β(ρ0)φ|t=0 dx = 0

for any φ ∈ C∞
c ([0, T ) × Rn).

Note that the definition of a renormalized solution makes sense even when it
is not possible to define distributional solutions, e.g., if ρu /∈ L1

loc. In fact, under
the hypotheses on ρ and β, it holds that β(ρ) and ρβ′(ρ) are both in L∞(L1 ∩ L∞).
Moreover, if ρ and u are as in Definition 2.1 above, an approximation argument shows
that renormalized solutions are in fact distributional solution; cf. [13, Theorem II.3].

Before defining Lagrangian solutions we first need to introduce regular Lagrangian
flows.

Definition 2.3 (regular Lagrangian flows). Let u ∈ L1((0, T );L1
loc(R

n)) be
given. We say that X : (0, T ) × Rn → Rn is a regular Lagrangian flow associated
with u if

(1) for a.e. x ∈ Rn the map t �→ X(t, x) is an absolutely continuous integral
solution of the ordinary differential equation d

dtX(t, x) = u(t,X(t, x)) for
t ∈ (0, T ) with X(0, x) = x;

(2) there exists a constant L, called the compressibility constant, independent of
t such that

Ln(B) ≤ LLn({x ∈ Rn : X(t, x) ∈ B})

for any Borel set B ⊂ Rn.

For a given regular Lagrangian flow, we furthermore define the corresponding
Jacobian determinant JX by JX(t, x) := det(∇xX(t, x)). We will call a regular
Lagrangian flow invertible if X(t, ·) is a.e. invertible for any t ∈ (0, T ). In this case
we denote by X−1(t, ·) its inverse map. Then the definition of Lagrangian solutions
of (1.1) is the following:

Definition 2.4 (Lagrangian solutions). Let ρ0 ∈ L0(Rn) be given. A function
ρ is called a Lagrangian solution of (1.1) if ρ ∈ L∞((0, T );L0(Rn)) and there exists
an invertible regular Lagrangian flow X associated with u such that

ρ(t, x) =
ρ0(X−1(t, x))

JX(t,X−1(t, x))

for all t ∈ (0, T ) and a.e. x ∈ Rn.

Notice that Lagrangian solutions are just those solutions that are obtained in
the smooth setting via the method of characteristics. We can more compactly write
ρ(t, ·) = X(t, ·)#ρ0, where # denotes the pushforward operator.
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2.2. Velocity fields whose gradient is given by a singular integral. In
this subsection we collect some harmonic analysis tools for singular integrals defined
by

Sω := K ∗ ω
for sufficiently fast decaying functions ω. We focus on integral kernels K : Rn \{0} →
R which satisfy the following properties:

(K1) K ∈ S′(Rn) and K̂ ∈ L∞(Rn), where K̂ denotes the Fourier transform of
K;

(K2) K|Rn\{0} ∈ C1(Rn \ {0});
(K3) there exists a constant C ≥ 0 such that

|K(x)| ≤ C

|x|n for every x = 0 ;

(K4) there exists a constant C ≥ 0 such that

|∇K(x)| ≤ C

|x|n+1 for every x = 0 ;

(K5) there exists a constant C ≥ 0 such that∣∣∣∣∣
ˆ

R1<|x|<R2

K(x) dx

∣∣∣∣∣ ≤ C for every 0 < R1 < R2 < ∞ .

Typical examples of admissible kernels are first order derivatives of the 2D or 3D Biot–
Savart kernels or, more generally, second order derivatives of Newtonian potentials.
For a comprehensive theory of singular integrals we refer to [31].

By standard Calderón–Zygmund theory, S extends to a continuous operator on
Lp as long as p ∈ (1,∞), and continuity fails if p = 1. Instead, one has the weak
estimate

(2.1) ‖Sω‖L1,∞ � ‖ω‖L1.

Recall that, for arbitrary p, the space Lp,∞ denotes the weak Lp space (or Lorentz
space), which is associated with the quasi-norm

‖f‖p
Lp,∞ = sup

λ>0

{
λpLn ({x ∈ Rn : |f(x)| > λ})

}
for every measurable function f on Rn. Observe that the quantity ‖ · ‖Lp,∞ is not a
norm, because it lacks the triangular inequality. We also recall that the embedding
Lp ⊂ Lp,∞ holds with ‖f‖Lp,∞ ≤ ‖f‖Lp and that the inclusion is strict for any p < ∞.
We also adopt the standard convention that L∞,∞ = L∞.

A central tool in classical Calderón–Zygmund theory is the maximal operator M ,
defined by

M(f)(x) = sup
ε>0

1
Ln(Bε(x))

ˆ
Bε(x)

|f(y)| dy.

This operator is itself continuous from Lp to Lp provided that 1 < p ≤ ∞. Again,
continuity ceases to hold at p = 1. Instead, in analogy to (2.1), one has

‖M(f)‖L1,∞ � ‖f‖L1.
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Although this weak bound holds for the maximal function and for the singular op-
erator (see (2.1)) separately, we cannot hope that the same bound holds for the
composition M ◦ S. Such an estimate, however, would be essential for an adaptation
of the method introduced in [10] (and translated to the PDE setting in [29]). Indeed,
one of the key estimates in [10] is the control of difference quotients by gradients. In
a first step the authors use the fact that difference quotients are bounded by maximal
functions,

|u(x) − u(y)|
|x− y| � M(∇u)(x) +M(∇u)(y)

for a.e. x, y. This estimate is rather elementary and belongs to the class of Morrey
estimates; its proof is essentially contained in [15, pp. 143–144]. In the second step
the authors apply the continuity estimate for maximal function operators, which is
suitable only if p > 1. For gradients of the form Sω with merely integrable ω, this
strategy needs some modifications. As in [6], we will consider the following smooth
variant of the maximal function:

Mσ(f)(x) := sup
ε>0

∣∣∣∣ 1
εn

ˆ
Rn

σ

(
x− y

ε

)
f(y) dy

∣∣∣∣ ,
where σ ∈ C∞

c (Rn). Notice that the difference from the classical maximal function
is not only the smooth cutoff, but also that the modulus is taken only after the com-
putation of the (smooth) average. It is proved in [6] that for appropriate convolution
kernels σ the compositions of S with these smooth maximal functions do satisfy the
estimate

‖Mσ(Sω)‖L1,∞(Rn) � ‖ω‖L1(Rn);

see [6, Theorem 3.3]. Regarding the Morrey-type estimate, it is proven in [6] that if
ω ∈ L1(L1) = L1((0, T ) × Rn) then there exist a function G on (0, T ) × Rn and for
a.e. t a set Nt with Ln(Nt) = 0 such that

(2.2)
|u(t, x) − u(t, y)|

|x− y| � G(t, x) +G(t, y) ∀x, y ∈ Nt .

For every ε > 0, this function can be furthermore decomposed into the sum G1
ε +G2

ε:

(2.3)
∥∥G1

ε

∥∥
L1(L1,∞) ≤ ε,

∥∥G2
ε

∥∥
L1(L2) ≤ Cε,

where Cε depends, besides on ε, also on the equi-integrability of ω. This in particular
prevents the applicability of this technique to the case when ω is a measure with a
nontrivial singular part.

2.3. Some inequalities. We conclude this section with auxiliary embedding
and interpolation inequalities on a finite measure space (X,μ). We will later need such
inequalities in the specific case of measures of the form dμ(t, x) = χ(0,T )(t)|ρ(t, x)|dL1⊗
dLn and similarly. For this purpose we define Lp and weak-Lp norms on (X,μ) by

‖f‖p
Lp(μ) =

ˆ
X

|f |p dμ

and
‖f‖p

Lp,∞(μ) = sup
λ>0

{
λpμ ({x ∈ X : |f(x)| > λ})

}
,

respectively.
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Lemma 2.5. For 1 ≤ r < p it holds that

(2.4) ‖f‖r
Lr(μ) ≤ p

p− r
μ(X)1− r

p ‖f‖r
Lp,∞(μ) .

Proof. Let us rewrite the Lr norm of f in terms of the measure of its superlevel
sets. Denoting m(λ) = μ ({x ∈ X : |f(x)| ≥ λ}), we have

‖f‖r
Lr(μ) =

ˆ ∞

0
rλr−1m(λ) dλ =

ˆ α

0
rλr−1m(λ) dλ +

ˆ +∞

α

rλr−1m(λ) dλ ,

where α is a positive number that we will choose later.
The first term is trivially estimated as follows:

ˆ α

0
rλr−1m(λ) dλ ≤ μ(X)αr .

We turn to the estimate of the second term. Using the inequality λpm(λ) ≤ ‖f‖p
Lp,∞(μ),

we find ˆ +∞

α

rλr−1m(λ) dλ ≤ r

p− r
‖f‖p

Lp,∞(μ)α
r−p .

Therefore putting all together we have

‖f‖r
Lr(μ) ≤ μ(X)αr +

r

p− r
‖f‖p

Lp,∞(μ)α
r−p .

Optimizing the right-hand side with respect to α we find α = μ(X)− 1
p ‖f‖Lp,∞(μ) and,

thus,
‖f‖r

Lr(μ) ≤ p

p− r
μ(X)1− r

p ‖f‖r
Lp,∞(μ).

This is the desired inequality.

The following interpolation inequality is a variant of [6, Lemma 2.2].

Lemma 2.6. For any 1 < p < ∞ it holds that

(2.5) ‖f‖L1(μ) ≤ p

p− 1
‖f‖L1,∞(μ)

[
1 + log

(
μ(X)1− 1

p ‖f‖Lp,∞(μ)

‖f‖L1,∞(μ)

)]
.

Proof. We start again by writing the L1 norm of f in terms of its level sets.
Setting as above m(λ) = μ({x ∈ X : |f(x)| > λ}), we have

‖f‖L1(μ) =
ˆ α

0
m(λ) dλ +

ˆ β

α

m(λ) dλ +
ˆ ∞

β

m(λ) dλ ,

where

α =
‖f‖L1,∞(μ)

μ(X)
and β =

(‖f‖p
Lp,∞(μ)

‖f‖L1,∞(μ)

) 1
p−1

.

The choice of α and β is admissible in the sense that α ≤ β. Indeed, because m(λ) ≤
μ(X), it holds that

‖f‖L1,∞(μ) ≤ μ(X)1− 1
p ‖f‖Lp,∞(μ)

which is equivalent to α ≤ β.
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Using the trivial bound m(λ) ≤ μ(X) again, we see that
ˆ α

0
m(λ) dλ ≤ αμ(X) = ‖f‖L1,∞(μ).

On the one hand, from the estimate λm(λ) ≤ ‖f‖L1,∞(μ), we deduce that

ˆ β

α

m(λ) dλ ≤ ‖f‖L1,∞(μ) log
(
β

α

)
= ‖f‖L1,∞(μ) log

(
μ(X)

(‖f‖Lp,∞(μ)

‖f‖L1,∞(μ)

) p
p−1
)
.

On the other hand, from the estimate λpm(λ) ≤ ‖f‖p
Lp,∞(μ), we have

ˆ ∞

β

m(λ) dλ ≤ 1
p− 1

‖f‖p
Lp,∞(μ)β

1−p =
1

p− 1
‖f‖L1,∞(μ) .

A combination of the previous estimates yields the statement of the lemma.

3. Optimal transportation with logarithmic cost functions. In this sec-
tion, we briefly review some tools from the theory of optimal transportation that will
become relevant in our subsequent analysis. For a comprehensive introduction into
the topic, we refer to [33].

We consider two nonnegative distributions ρ1 and ρ2 on Rn with the same total
mass

(3.1)
ˆ
ρ1 dx =

ˆ
ρ2 dx < ∞,

and denote by Π(ρ1, ρ2) the set of the corresponding transport plans. Namely, π ∈
Π(ρ1, ρ2) is a measure on the product space Rn × Rn with marginals ρ1 and ρ2, i.e.,

π[A× Rn] =
ˆ

A

ρ1 dx , π[Rn ×A] =
ˆ

A

ρ2 dy

for all measurable sets A ⊂ Rn or, equivalently,

(3.2)
¨

(f1(x) + f2(y))dπ(x, y) =
ˆ
f1ρ1 dx+

ˆ
f2ρ2 dy

for all functions f1 in L1(ρ1 dx) and f2 in L1(ρ2 dx). For a given cost function c on
R+ the minimal transportation cost is defined as

(3.3) Dc(ρ1, ρ2) = inf
π∈Π(ρ1,ρ2)

¨
c(|x− y|)dπ(x, y).

Informally speaking, Dc(ρ1, ρ2) measures the minimal total cost for transferring one
configuration ρ1 (e.g., a pile of sand) into another configuration ρ2 (e.g., a hole), if
the cost for the transport of a single item over the distance z is given by c(z).

In this paper we will only consider strictly concave cost functions. Notice that
strictly concave cost functions naturally induce a metric on Rn, given by d(x, y) =
c(|x− y|). In this case, (3.3) admits the dual formulation

(3.4) Dc(ρ1, ρ2) = sup
ζ

{ˆ
ζ(ρ1 − ρ2) dx : |ζ(x) − ζ(y)| ≤ d(x, y)

}
.
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This identity is a variant of the classical Kantorovich duality of optimal transporta-
tion and is usually referred to as the Kantorovich–Rubinstein theorem; cf. [33, Theo-
rem 1.14]. The theorem has an immediate consequence: Dc(ρ1, ρ2) is a transshipment
cost that depends only on the difference of ρ1 and ρ2. In particular it extends to den-
sities that are not necessarily nonnegative but satisfy (3.1). Moreover, Dc defines a
metric on the space of densities with the same total mass; cf. [33, Theorem 7.3]. This
metric is called a Kantorovich–Rubinstein distance. For any function ρ ∈ L1(Rn)
with zero average, ˆ

ρ dx = 0 ,

we introduce the norm

Dc(ρ) := Dc(ρ, 0) := Dc(ρ+, ρ−),

where the superscripted plus and minus signs indicate the positive and the negative
parts, respectively.

We note that the primal problem (3.3) admits a unique minimizer πopt ∈ Π(ρ+, ρ−),
called the optimal transport plan, and the dual problem (3.4) admits a (nonunique)
maximizer ζopt, called the Kantorovich potential, which are characterized by the iden-
tity

ζopt(x) − ζopt(y) = d(x, y) for dπopt-almost all (x, y) ,

cf. [33, Theorem 2.45] . It is not difficult to infer from this identity that ζopt is weakly
differentiable with
(3.5)

∇ζopt(x) = ∇ζopt(y) = ∇xd(x, y) = c′(|x− y|) x− y

|x− y| for dπopt-almost all (x, y).

Morover, since we consider strictly concave cost functions, it turns out that the unique
minimizer πopt is in fact concentrated on the graph of a function. Namely, there exist
two maps S, T : Rn → Rn such that

(3.6) πopt = (id×T )#ρ+ = (S × id)#ρ−,

and S and T obey the relations ρ+ = S#ρ
− and ρ− = T#ρ

+. The existence of such
maps has been proven in [16, 24]; see also [25, Theorem 3.26] for a self-contained
proof. The structure in (3.6) will be essential in order to estimate the off-diagonal
terms in the proof of Lemma 4.7; see in particular the term I2 in that proof.

In most parts of this paper, we will consider a smooth variant of the bounded
logarithmic cost function introduced in [29], namely,

(3.7) cδ(z) = log
(

tanh(z)
δ

+ 1
)
,

and write Dδ(ρ) as an abbreviation of Dcδ
(ρ) for notational convenience. In the

following, πopt and ζopt will always denote the optimal transport plan and Kantorovich
potentials corresponding to this norm. If dδ(x, y) is analogously defined, we notice
that dδ(x, y) ≤ δ−1|x − y|, and thus ζopt is a Lipschitz function and by normalizing
ζopt(0) = 0 it is bounded by log(δ−1 + 1). For later reference, we notice that (3.5)
becomes

(3.8) ∇ζopt(x) = ∇ζopt(y) =
1 − tanh2(|x− y|)
δ + tanh(|x− y|)

x− y

|x− y|
for dπopt-almost all (x, y).

D
ow

nl
oa

de
d 

01
/2

6/
18

 to
 1

31
.1

52
.2

11
.4

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3984 CRIPPA, NOBILI, SEIS, AND SPIRITO

We finally consider the Kantorovich–Rubinstein norm

D(ρ) := inf
π∈Π(ρ+,ρ−)

¨
tanh |x− y| dπ(x, y)

on the space of functions with zero average. A control of D(ρ) by Dδ(ρ) is established
in the following lemma.

Lemma 3.1. Let ρ be an average-zero function in L1(Rn). Then for any γ > 0
and δ > 0 it holds that

D(ρ) ≤ Dδ(ρ)
log 1

γ

+
δ

γ
‖ρ‖L1.

This is a variant of an estimate first proved in [29]. For the convenience of the
reader, we redo the short proof with the modified distance functions.

Proof. We define K = {(x, y) ∈ Rn × Rn : cδ(|x − y|) ≤ log 1
γ )} and denote by

Kc its complement. Throughout the proof, πopt denotes the optimal transport plan
corresponding to Dδ(ρ). On the one hand, we have

¨
K

tanh |x− y| dπopt ≤ δ

γ
πopt[K]

and πopt[K] is bounded by πopt[Rn × Rn] = ‖ρ‖L1. On the other hand, by the
boundedness of the hyperbolic tangent, we estimate
¨

Kc

tanh |x− y| dπopt ≤ πopt[Kc] ≤ 1
log 1

γ

¨
Kc

cδ(|x − y|) dπopt(x, y) ≤ Dδ(ρ)
log 1

γ

.

Combining both estimates yields

D(ρ) ≤
¨

tanh |x− y| dπopt(x, y) ≤ Dδ(ρ)
log 1

γ

+
δ

γ
‖ρ‖L1.

4. Uniqueness of distributional solutions of the continuity equation. In
this section, we state and prove our first main result, the well-posedness of the Cauchy
problem (1.1) in the sense of distributions introduced in Definition 2.1. To specify
the assumptions on the velocity field, we assume that

(4.1) u ∈ Lp,∞((0, T ) × Rn)

for some p > 1 and that ∇u = K ∗ ω for some L1 function ω, which in components
reads

(4.2) ∂iuj =
L∑

=1

K
ij ∗ ω

ij for some ω1
ij , . . . , ω

L
ij ∈ L1 ((0, T );L1(Rn)

)
for any i, j ∈ {1, . . . , n}, where the K

ij ’s satisfy the hypotheses (K1) to (K5). More-
over we suppose that

(4.3) ∇ · u ∈ L1((0, T );L∞(Rn)).
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We remark that condition (4.1) substitutes the usual growth condition assumed in
the DiPerna–Lions theory. We also impose that the initial datum is integrable and
bounded, i.e.,

(4.4) ρ0 ∈ L∞ ∩ L1(Rn).

Let us now give a precise result.

Theorem 4.1. Let u be a velocity field satisfying (4.1), (4.2), and (4.3) and let
the initial datum ρ0 be such that (4.4) holds. Then the Cauchy problem (1.1) has a
unique distributional solution ρ in the class L∞((0, T );L∞ ∩ L1(Rn)).

Notice that distributional solutions are well-defined, because

(4.5) ‖uρ‖L1 � ‖ρ‖1− 1
p

L1 ‖ρ‖
1
p

L∞‖u‖Lp,∞ .

Indeed, using Lemma 2.4 with the measure dμ(t, x) = χ(0,T )(t)|ρ(t, x)|dL1 ⊗ dLn we
have

‖uρ‖L1 = ‖u‖L1(μ) ≤ p

p− 1
‖ρ‖1− 1

p

L1 ‖u‖Lp,∞(μ) ,

which combined with the estimate

‖u‖p
Lp,∞(μ) = sup

λ

{
λp

¨
χ{|u|>λ}(t, x) |ρ(t, x)| dt dx

}
≤ ‖ρ‖L∞‖u‖p

Lp,∞

gives (4.5). Observe that the right-hand side of (4.5) is finite by the assumptions on
ρ and u in the statement of Theorem 4.1.

It is worth pointing out that the assumption (4.3) on the divergence of u is used
only to prove existence, but it is not needed for uniqueness.

Under the hypotheses (4.1)–(4.4), (unique) Lagrangian solutions (see Definition
2.4) were constructed in [6]. These solutions solve (1.1) also in the sense of distri-
butions and in the sense of renormalized solutions (see Definition 2.2). The new
contribution of Theorem 4.1 is thus the uniqueness part. Moreover, combining our
result with the ones in [6], we deduce the following corollary.

Corollary 4.2. Under the assumptions of Theorem 4.1, the notions of distribu-
tional, Lagrangian, and renormalized solutions are equivalent.

Furthermore, it was shown in [6] that Lagrangian solutions exist and are renor-
malized solutions even under the milder assumption that ρ0 ∈ L0. Under the assump-
tion that u is divergence free, the composed functions β(ρ) also solve the continuity
equation in the class L∞(L1), and are unique. From Theorem 4.1 we thus infer the
following consequence.

Corollary 4.3. Let u be a divergence-free velocity field satisfying (4.1) and (4.2)
and let the initial datum ρ0 be in L0. Then there exists a unique renormalized solution
to the Cauchy problem (1.1). Moreover, the notions of Lagrangian and renormalized
solutions are equivalent.

Theorem 4.1 and Corollaries 4.2 and 4.3 contain all statements of Theorem 1.1 of
the introduction.

To simplify the notation in the following, we will simply write ρt, πt, and ζt for
ρ(t, ·) πopt(t), and ζopt(t, ·), respectively.
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Our proof of Theorem 4.1 combines ideas recently developed in [29] with the
harmonic-analysis techniques from [6]. The main tool is the following “stability”
estimate, whose proof will be postponed to subsection 4.1.

Proposition 4.4. Let ρ ∈ L∞((0, T );L∞ ∩ L1(Rn)) be a nontrivial solution of
the continuity equation (1.1) with zero average. Then there exists for every ε > 0 a
finite constant Cε > 0 such that for every δ > 0 it holds

sup
0≤t≤T

Dδ(ρt) � Dδ(ρ0)

+ ε‖ρ‖L1

[
1 + log

(
1
εδ

( ‖ρ‖L1

‖ρ‖L∞

)1− 1
p

‖u‖Lp,∞

)]
+ Cε‖ρ‖L∞(L2).

The proof of Theorem 4.1 follows directly from Proposition 4.4.

Proof of Theorem 4.1. The existence of distributional solutions follows immedi-
ately from the construction of Lagrangian solutions in [6, section 7]. In view of the
linearity of the problem, uniqueness holds if the trivial solution is the unique solution
with ρ0 = 0. We argue by contradiction and assume that there is a nontrivial solution
in L∞(L∞ ∩ L1) with zero initial datum. Then Proposition 4.4 yields

sup
0≤t≤T

Dδ(ρt) � ε‖ρ‖L1

[
1 + log

(
1
εδ

( ‖ρ‖L1

‖ρ‖L∞

)1− 1
p

‖u‖Lp,∞

)]
+ Cε‖ρ‖L∞(L2).

Since, by assumption, u and ρ are bounded in Lp,∞ and L∞(L∞ ∩ L1), respectively,
we may write

sup
0≤t≤T

Dδ(ρt) � Cε

[
1 + log

(
1
δε

)]
+ Cε ,

where the constant C depends on ‖ρ‖L∞,‖ρ‖L1, and ‖u‖Lp,∞. We let θ > 0 be
arbitrarily small and we fix a ε such that

ε
[
1 + log

( 1
δε

)]
| log δ| ≤ θ

2
uniformly in δ � 1 .

Notice that this is possible because

ε
[
1 + log

( 1
δε

)]
| log δ| =

ε(1 + | log ε| + | log δ|)
| log δ| ≤ ε (2 + | log ε|) ,

and the right-hand side converges to 0 as ε → 0. Now that ε and, in particular, Cε

are fixed, we choose δ such that

Cε

| log δ| ≤ θ

2
,

and obtain that Dδ(ρt) � θ| log δ| uniformly in t. Because θ was arbitrary, the latter
implies that

(4.6)
Dδ(ρt)
| log δ| → 0 as δ → 0

for all times t.
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It remains to conclude that (4.6) implies that ρt = 0 for all t, which contradicts
the hypothesis at the beginning of the proof. In fact, from Lemma 3.1 with γ =

√
δ

it follows that

D(ρt) ≤
√
δ‖ρt‖L1 + 2

Dδ(ρt)
| log δ| .

Letting δ → 0, we find D(ρt) = 0 thanks to (4.6), and thus ρt = 0 because D is a
norm. This concludes the proof.

4.1. Proof of Proposition 4.4. In most parts of the proof, we follow [29].
Starting point is the following rate of change formula for the Kantorovich–Rubinstein
norm Dδ(ρt), which is valid for distributional solutions to the continuity equation.

Lemma 4.5. The mapping t �→ Dδ(ρt) is absolutely continuous with

(4.7)
d

dt
Dδ(ρt) =

ˆ
∇ζt · u(t, ·)ρt dx for a.e. t ∈ (0, T ),

where ζt is the Kantorovich potential corresponding to Dδ(ρt).

The statement of the lemma was already proved in [29]. Here, we present a
slightly simplified argument for the convenience of the reader.

Proof. We first notice that the definition of distributional solutions, Definition 2.1,
and a standard approximation argument imply that

(4.8)
ˆ
ζ (ρt − ρt−h) dx =

ˆ
∇ζ ·

(ˆ t

t−h

u(s, ·)ρs ds

)
dx

for all ζ ∈ C∞
c (Rn) and a.e. t ∈ (0, T ) and h ∈ R such that t− h ∈ (0, T ). Moreover,

because ρ and uρ are both in L1(L1) (cf. (4.5)), it is enough to consider (4.8) for ζ’s
in W 1,∞(Rn).

We first show that the mapping t �→ Dδ(ρt) is absolutely continuous, hence clas-
sically differentiable at a.e. t ∈ (0, T ). By the optimality of ζt at time t, it holds
that

Dδ(ρt) − Dδ(ρt−h) ≤
ˆ
ζt (ρt − ρt−h) dx(4.9)

=
ˆ t

t−h

ˆ
∇ζt · u(s, ·)ρs dxds

for a.e. t ∈ (0, T ) and h ∈ R. Analogously, by the optimality of ζt−h at time t− h, it
holds that

Dδ(ρt) − Dδ(ρt−h) ≥
ˆ
ζt−h (ρt − ρt−h) dx(4.10)

=
ˆ t

t−h

ˆ
∇ζt−h · u(s, ·)ρs dxds

for a.e. t ∈ (0, T ) and h ∈ R. Using that ζt is Lipschitz with ‖∇ζt‖∞ ≤ 1/δ for
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a.e. t ∈ (0, T ), we can combine (4.9) and (4.10) to the effect that

|Dδ(ρt) − Dδ(ρt−h)| ≤ 1
δ

∣∣∣∣ˆ t

t−h

ˆ
|u(s, ·)ρs| dxds

∣∣∣∣
for a.e. t ∈ (0, T ) and h ∈ R. Using again that uρ ∈ L1(L1) by (4.5), we conclude
that t �→ Dδ(ρt) is absolutely continuous.

We eventually prove the expression (4.7) for the derivative. To this aim, it is
enough to consider again (4.9), divide by h, and let h → 0. By Lebesgue’s differenti-
ation theorem we find

lim
h↓0

Dδ(ρt) − Dδ(ρt−h)
h

≤
ˆ

∇ζt · u(t, ·)ρt dx

and

lim
h↑0

Dδ(ρt) − Dδ(ρt−h)
h

≥
ˆ

∇ζt · u(t, ·)ρt dx,

which implies (4.7) at a.e. t.

In the next step, we integrate the identity from Lemma 4.5 and estimate the
right-hand side with the help of the explicit formulas we found for ∇ζt on sptπt.

Lemma 4.6. It holds that

sup
0≤t≤T

Dδ(ρt) ≤ Dδ(ρ0) +
ˆ T

0

¨ |u(t, x) − u(t, y)|
δ + |x− y| dπt(x, y)dt.

A very similar version of this estimate was first derived in [7] by using Lagrangian
coordinates and the primal formulation (3.3). Here, we follow [29] which is based on
the dual formulation (3.4) and (3.5).

Proof. Using the marginal conditions (3.2) for the transport plans, we can rewrite
the estimate from Lemma 4.5 as

d

dt
Dδ(ρt) =

¨
(u(t, x) · ∇ζt(x) − u(t, y) · ∇ζt(y) ) dπt(x, y).

This formulation is advantageous because the derivative of ζopt is explicitly known on
sptπopt. Indeed, in view of (3.8), we have

d

dt
Dδ(ρt) =

¨
1 − tanh2(|x − y|)
δ + tanh(|x− y|)

x− y

|x− y| · (u(t, x) − u(t, y)) dπt(x, y).

Thanks to the elementary estimate

0 <
1 − tanh2(z)
δ + tanh(z)

≤ 1
δ + z

for any nonnegative z, the latter becomes

d

dt
Dδ(ρt) ≤

¨ |u(t, x) − u(t, y)|
δ + |x− y| dπt(x, y).

Integration in time, the fact that the initial value is attained weakly, and the fact that
Kantorovich–Rubinstein distances metrize weak convergence (cf. [33, Theorem 7.12]),
imply the statement of the lemma.
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At this point, our proof substantially deviates from the one in [29], but exploits
the techniques developed in [6]. We first notice that (2.2) and the decomposition
G = G1

ε +G2
ε allow for estimating the integrand as

(4.11)
|u(t, x) − u(t, y)|
δ + |x− y| � min

{ |u(t, x)| + |u(t, y)|
δ

,G1
ε(t, x) +G1

ε(t, y)
}

+G2
ε(t, x)+G

2
ε(t, y)

for a.e. t and every x, y ∈ Nt, where Ln(Nt) = 0. Observe that this estimate holds
for a.e. t and πt-a.e. (x, y) ∈ Rn × Rn, because the marginals of the measure πt are
absolutely continuous w.r.t the Lebesgue measure Ln.

We will estimate the integrals of the terms on the right-hand side separately. For
the first term we have the following integral bound.

Lemma 4.7. It holds that
ˆ T

0

¨
min

{ |u(t, x)| + |u(t, y)|
δ

,G1
ε(t, x) +G1

ε(t, y)
}
dπt(x, y)dt

� ε‖ρ‖L∞

(
1 + log

(
1
εδ

( ‖ρ‖L1

‖ρ‖L∞

)1− 1
p

‖u‖Lp,∞

))
,

provided that ρ ≡ 0.

Proof. Let us first bound the expression on the left-hand side by the sum I1 + I2,
where

I1 =
ˆ T

0

¨
min

{ |u(t, x)|
δ

,G1
ε(t, x)

}
dπt(x, y) dt

+
ˆ T

0

¨
min

{ |u(t, y)|
δ

,G1
ε(t, y)

}
dπt(x, y) dt,

I2 =
ˆ T

0

¨
min

{ |u(t, x)|
δ

,G1
ε(t, y)

}
dπt(x, y) dt

+
ˆ T

0

¨
min

{ |u(t, y)|
δ

,G1
ε(t, x)

}
dπt(x, y) dt .

Thanks to the marginal condition (3.2), the diagonal terms in I1 immediately simplify
to

I1 =
ˆ T

0

ˆ
min

{ |u|
δ
,G1

ε

}
|ρ| dx dt,

because ρ+ + ρ− = |ρ|. We write ψ = min{|u|/δ,G1
ε} for notational convenience. The

difficulty in estimating ψ in the L1 norm comes from the fact that G1
ε is bounded

only in the weaker space L1,∞; cf. (2.3). The term δ−1|u| on the other hand is
controlled even in Lp,∞ (cf. (4.1)), but with a large factor δ−1. Following the strategy
developed in [6], we combine the controls in the spaces L1,∞ and Lp,∞ with the
help of the interpolation inequality (2.5). For this, we introduce the finite measure
dμ(t, x) = χ(0,T )(t)|ρ(t, x)|dL1 ⊗ dLn on Rn+1. We then have on the one hand that

(4.12) ‖ψ‖L1,∞(μ) ≤ ∥∥G1
ε

∥∥
L1,∞(μ) ≤ ‖ρ‖L∞

∥∥G1
ε

∥∥
L1(L1,∞) ≤ ε‖ρ‖L∞,

where in the last inequality we have used (2.3). On the other hand, we have

(4.13) ‖ψ‖Lp,∞(μ) ≤ 1
δ
‖u‖Lp,∞(μ) ≤ 1

δ
‖ρ‖

1
p

L∞‖u‖Lp,∞,
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and the expression on the right is finite thanks to (4.1). Combining these two estimates
with the interpolation inequality (2.5) then yields

I1 = ‖ψ‖L1(μ) � ε‖ρ‖L∞

(
1 + log

(
1
εδ

( ‖ρ‖L1

‖ρ‖L∞

)1− 1
p

‖u‖Lp,∞

))
.

The estimate of the off-diagonal terms I2 is quite similar. It makes, in addition,
use of the optimal transport maps introduced in (3.6). It holds that

I2 =
ˆ T

0

ˆ
min

{ |u ◦ S|
δ

,G1
ε

}
ρ− dy dt+

ˆ T

0

ˆ
min

{ |u ◦ T |
δ

,G1
ε

}
ρ+ dx dt =: Ia

2 +Ib
2 ,

where the composition acts in the spatial variable only. The treatment of both terms
Ia
2 and Ib

2 is very similar and it is thus enough to focus on one of them, say Ia
2 . We set

ψ = min{|u◦S|/δ,G1
ε} and define the finite measure dμ(t, x) = χ(0,T )(t)ρ−(t, x)dL1 ⊗

dLn on Rn+1. The estimate in (4.12) applies without changes with the new choices
of ψ and μ. Also the final estimate in (4.13) remains valid; its derivation, however,
needs a small modification. In fact, similarly as before, we obtain

‖ψ‖Lp,∞(μ) ≤ 1
δ
‖u ◦ S‖Lp,∞(μ).

We now use the relation ρ+ = S#ρ
− to the effect that

μ({|u ◦ S| > λ}) =
(
S#ρ

−L1 ⊗ Ln
)
({|u| > λ}) =

(
ρ+L1 ⊗ Ln

)
({|u| > λ}).

From this, the final estimate in (4.13) follows. It remains to argue as for I1 to
conclude.

The integral estimate of the second term in (4.11) is contained in the following
lemma.

Lemma 4.8. It holds thatˆ T

0

¨ (
G2

ε(t, x) +G2
ε(t, y)

)
dπt(x, y) ≤ Cε‖ρ‖L∞(L2).

Proof of Lemma 4.8. In view of the marginal conditions (3.2), we write and esti-
mateˆ T

0

¨
G2

ε(t, x) +G2
ε(t, y) dπt(x, y) =

ˆ T

0

ˆ
G2

ε|ρ| dxdt ≤ ‖ρ‖L∞(L2)‖G2
ε‖L1(L2),

where we used the Cauchy–Schwarz inequality, since ρ ∈ L∞((0, T );L2(Rn)) via
interpolation of norms. It remains to apply (2.3).

To conclude the proof of Proposition 4.4, we substitute (4.11) into the estimate
of Lemma 4.6 and apply Lemmas 4.7 and 4.8.

5. Vanishing viscosity for 2D Euler equation. In this section we are going to
exploit the uniqueness result for the linear equation to prove the second main theorem
of the paper, namely, Theorem 1.2. The Cauchy problem for the two-dimensional
Euler equations in vorticity formulation in (0, T ) × R2 is the following:

(5.1)

⎧⎨⎩ ∂tω + u · ∇ω = 0 in (0, T ) × R2 ,
u = k ∗ ω in (0, T ) × R2 ,

ω|t=0 = ω0 in R2 ,
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where we recall that the vorticity ω ∈ R and the velocity field u ∈ R2 are unknown
and k is the Biot–Savart kernel

k(x) =
1
2π

x⊥

|x|2 .

The initial datum is assumed to satisfy

(5.2) ω0 ∈ L1
c

(
R2) ∩H−1

loc

(
R2) ,

where L1
c denotes the spaces of compactly supported integrable functions and ω0 ∈

H−1
loc means that ψω0 ∈ H−1 for any ψ ∈ C∞

c . This condition is important in the
following as it provides a local bound on the kinetic energy for the velocity u0. We
recall (see [5]), that if ω ∈ L∞((0, T );L1(R2)), the velocity field u = k ∗ ω is in the
class of velocity fields considered in section 2. Indeed, the Biot–Savart kernel k has a
distributional derivative given by

∂jk(x) =
1
2π
∂j

(−x2

|x|2 ,
x1

|x|2
)

and its Fourier transform ∂̂jki is bounded in L∞(R2).
For any ν > 0, the Cauchy problem for the 2D Navier–Stokes equations in vorticity

formulation is given by

(5.3)

⎧⎨⎩ ∂tω
ν + uν · ∇ων = νΔων in (0, T ) × R2 ,

uν = k ∗ ων in (0, T ) × R2 ,
ων |t=0 = ων

0 in R2 ,

where the vorticity ων ∈ R and the velocity field uν ∈ R2 are unknown. We as-
sume that {ων

0}ν are supported in the same compact set and satisfy the following
hypotheses:

(5.4)

⎧⎪⎨⎪⎩
ων

0 ∈ C∞
c (R2) ,

{ων
0}ν ⊂ L1(R2) ∩H−1

loc (R2) uniformly ,

ων
0 → ω0 in L1(R2) .

We note that given ω0 ∈ L1
c(R

2) ∩H−1
loc (R2) it is easy to construct (e.g., by convolu-

tion) a sequence {ων
0}ν satisfying (5.4). Finally, we recall (see [22, Theorem 3.2A]),

that given ων
0 satisfying (5.4) there exists a unique smooth solution (uν , ων) of the

Cauchy problem (5.3). The main goal of this section is to prove that, up to subse-
quences, the limit of the sequence (uν , ων) exists and satisfies the Euler equations
(5.1) as a Lagrangian and renormalized solution. For the definitions of Lagrangian
and renormalized solutions we refer to the linear case, i.e., Definitions 2.2 and 2.4
above, which have both to be augmented by the Biot–Savart condition u = k ∗ ω.
Notice that JX ≡ 1 thanks to the incompressibility condition ∇ · u = 0.

For the convenience of the reader we rewrite the statement of Theorem 1.2 in a
more detailed form.

Theorem 5.1. Let ω0 and {ων
0}ν satisfying (5.2) and (5.4). Let (uν , ων) be the

unique smooth solution of (5.3). Then, there exists

(u, ω) ∈ L∞ ((0, T );L2
loc ∩ L2,∞(R2)

)× L∞ ((0, T );L1(R2)
)D
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such that, up to subsequences, for any 1 ≤ p < 2

(5.5)

{
uν → u strongly in Lp((0, T );Lp

loc(R
2)) ,

ων ∗
⇀ ω weakly* in L∞((0, T );L1(R2)) .

Moreover, (u, ω) satisfies the Euler equations in the sense of Lagrangian and renor-
malized solutions.

In the above theorem the weak* convergence in L∞((0, T );L1(R2)) is intended in
the duality with L1((0, T );L∞(R2)). We divide the proof of Theorem 5.1 into several
lemmas. In the first lemma we prove the compactness result stated in Theorem 5.1.

Lemma 5.2. Under the hypothesis of Theorem 5.1 there exists

(u, ω) ∈ L∞ ((0, T );L2
loc ∩ L2,∞(R2)

)× L∞ ((0, T );L1(R2)
)

such that the convergences (5.5) hold.

Proof. By the uniform bounds on the initial datum (5.4) and the global existence
of smooth solutions of the 2D Navier–Stokes equations it follows that (see DiPerna
and Majda [14, section 2A]), for any compact Q ⊂ R2 and some s > 0, the following
uniform bounds hold:

sup
ν

sup
t∈(0,T )

ˆ
Q

|uν |2 dx ≤ C(Q), sup
ν

sup
t∈(0,T )

ˆ
|ων | ≤ C,

{uν}ν ⊂ Lip
(
(0, T );H−s

loc(R
2)
)
.

Then, by standard weak compactness arguments (see [14, Theorem 1.1]), there exists
(u, ω) ∈ L∞(0, T, L2

loc(R
2))×L∞((0, T ); M(R2)), where M(R2) is the space of Radon

measures, such that up to a subsequence, not relabeled, the following convergences
hold: {

uν → u strongly in Lp((0, T );Lp
loc(R

2)) , 1 ≤ p < 2,

ων ∗
⇀ ω weakly* in L∞((0, T ); M(R2)).

Moreover, by the weak Hardy–Littlewood–Sobolev inequality (see [18, Lemma 4.5.7])
it holds

(5.6) ‖uν‖L∞((0,T );L2,∞(R2)) ≤ c‖ων‖L∞((0,T );L1(R2)),

and this implies u ∈ L∞((0, T );L2,∞(R2)). To prove that ω ∈ L∞((0, T );L1(R2)),
by the Dunford–Pettis theorem we just need to prove that the sequence {ων}ν is
equi-integrable in space. We start by noticing that since the sequence of initial data
{ων

0}ν is strongly convergent in L1
c(R2) there exists G : [0,∞] → [0,∞] such that

G ∈ C1(R), G(0) = 0, G is convex and increasing, and

(5.7) lim
s→∞

G(s)
s

= ∞ and sup
ν

ˆ
R2
G(|ων

0 (x)|) dx < ∞.

Then, by a suitable truncation argument, it follows that ων satisfies

(5.8) ∂t|ων | − νΔ|ων | + uν · ∇|ων | ≤ 0.
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Multiplying (5.8) by G′(|ων |) and integrating by parts and using the divergence-free
condition we get

d

dt

ˆ
R2
G(|ων(t, x)|) dx + ν

ˆ
R2
G′′(|ων(t, x)|)|∇|ων ||2 dx ≤ 0.

Using that G is convex, integrating in time, and exploiting (5.7), there exists a con-
stant C > 0 independent of the viscosity ν such that

sup
t∈(0,T )

ˆ
R2
G(|ων(t, x)|) ≤ C.

In turn this implies that given any ε > 0 there exists δ = δ(ε) such that, for any
measurable set A ⊂ R2 such that L2(A) ≤ δ, it holds

(5.9) sup
t∈(0,T )

ˆ
A

|ων | dx ≤ ε.

In order to conclude that ω ∈ L∞((0, T );L1(R2)) we need to prove that {ων}ν is
equi-integrable at infinity. We start by noting that by (5.4) there exists a radius
R̃ = R̃(‖ω0‖1) such that

(5.10)
ˆ

|x|>R̃

|ων
0 | dx = 0.

Let now r and R be such that R̃ < r < R/2. Let φR
r ∈ C∞

c (R2) be the cutoff function
defined as

ψR
r (x) =

⎧⎪⎨⎪⎩
0 if |x| ∈ [0, r] ,
1 if |x| ∈ [2r,R] ,
0 if |x| ∈ [2R,∞) .

Then,

(5.11)
∣∣∇ψR

r

∣∣ ≤ C

r
,

∣∣∇2ψR
r

∣∣ ≤ C

r2
.

Let β ∈ C1(R) ∩ L∞(R) be a convex function, then by (5.3) we have

(5.12) ∂tβ(ων) + uν · ∇β(ων) − νΔβ(ων) + νβ′′(ων)|∇ων |2 = 0.

By multiplying (5.12) by ψR
r , integrating by parts, integrating in time, and using

(5.10) we get for all t ∈ (0, T )

(5.13)
ˆ
β(ων)ψR

r dx ≤
¨

|uν ||β(ων)| ∣∣∇ψR
r

∣∣ dxdt+ ν

¨
|β(ων)| ∣∣ΔψR

r

∣∣ dxdt.
Let M > 0. By a simple approximation argument we can choose β(s) = |s| ∧ M .
Then, after sending R → ∞ in (5.13) and using (5.11) we have
ˆ

{|x|>2r}
(|ων | ∧M) dx ≤ 1

r

¨
|uν |(|ων | ∧M) dxdt+

ν

r2

¨
|ων | ∧M dxdt.
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A simple manipulation leads to the following inequality, for all t ∈ (0, T )
ˆ

{|x|>2r}
|ων | dx ≤

ˆ
{|ων |>M}

|ων | dx

+
1
r

¨
|uν |(|ων | ∧M) dxdt+

ν

r2

¨
|ων | ∧M dxdt.

Let us now decompose the kernel k = k1 + k2, where k1 = kχB1(0) ∈ L1(R2) and
k2 = kχB1(0)c ∈ L∞(R2). The decomposition of the kernel induces the decomposition
uν = uν

1+uν
2 and, by Young’s inequality (for convolution), we have the uniform bounds

{uν
1}ν ∈ L∞ ((0, T );L1(R2)

)
, {uν

2}ν ∈ L∞ ((0, T ) × R2) .
Using the above decomposition we infer that for all t ∈ (0, T )

ˆ
{|x|>2r}

|ων | dx ≤ sup
t∈(0,T )

ˆ
{|ων |>M}

|ων | dx+
MT

r
sup

t∈(0,T )
‖uν

1‖L1(R2)

+
T

r
sup

t∈(0,T )

(‖uν
2‖L2(R2)‖ων‖L1(R2)

)
+
ν

r2
‖ων

0‖L1(R2)

= (I) + (II) + (III) + (IV ).

We are now going to estimate all the terms separately: First, we note that for any
t ∈ (0, T ) we have that

L2(
{
x ∈ R2 : |ων(t, x)| > M

} ≤ 1
M

‖ων‖L1(R2)

≤ 1
M

‖ων
0‖L1(R2)

≤ C

M
‖ω0‖L1(R2).

Let ε > 0 and δ = δ(ε) given in (5.9), then we can choose M = M(ε), independent of
the time, such that

L2 ({x ∈ R2 : |ων(t, x)| > M
}) ≤ δ for any t ∈ (0, T ).

Then, by (5.9),

sup
t∈(0,T )

ˆ
{|ων |>M}

|ων | dx ≤ ε

4
.

With this choice of M fixed, since we can assume without loss of generality ν < 1, we
can infer that there exists r = r(ε) such that

(II) ≤ ε

4
, (III) ≤ ε

4
, (IV ) ≤ ε

4
.

Then, we have just proved that for any ε > 0 there exists r = r(ε) such that

sup
t∈(0,T )

ˆ
{|x|>2r}

|ων | dx ≤ ε.

This together with (5.9) implies

ων ∗
⇀ ω in L∞ ((0, T );L1(R2)

)
.
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In the following lemma we prove a duality formula for the limit (u, ω) obtained
in Lemma 5.2.

Lemma 5.3. Let (u, ω) be as in Lemma 5.2. Then, for any χ ∈ C∞
c ((0, T ) × R2)

there exists φ1 ∈ L∞((0, T );L1 ∩ L∞(R2)) solving in the sense of distributions{ −∂tφ1 − ∇ · (uφ1) = χ in (0, T ) × R2 ,
φ1|t=T = 0 in R2(5.14)

with u = k ∗ ω. Moreover, the following duality formula holds:

(5.15)
¨

χω dxdt =
ˆ
ω0φ1|t=0 dx.

Proof. First we prove that u = k ∗ω a.e. in (0, T )×R2. Let η ∈ C∞
c ((0, T )×R2),

then

0 = lim
ν→0

¨
(uν − (k ∗ ων))η dxdt = lim

ν→0

¨
uνη − ων(k ∗ η) dxdt

=
¨

uη − ω(k ∗ η) dxdt

=
¨

(u− (k ∗ ω))η dxdt,

where the convergences (5.5) have been used together with the bound k ∗ φ ∈
L∞((0, T ) × R2), which holds because η ∈ C∞

c ((0, T ) × R2).
Let χ ∈ C∞

c ((0, T )×R2) and let φν be the unique smooth solution of the following
Cauchy problem{ −∂tφ

ν − νΔφν − ∇ · (uνφν) = χ in (0, T ) × R2 ,
φν |t=T = 0 in R2 ,

(5.16)

where {uν}ν is the subsequence chosen in Lemma 5.2. Then, by multiplying (5.3) by
φν and integrating by parts we get

(5.17)
¨

ωνχdxdt =
ˆ
ων

0φ
ν |t=0 dx.

Since χ ∈ C∞
c ((0, T ) × R2), by standard energy estimates it follows that

(5.18)

{
{φν}ν ⊂ L∞((0, T );L∞ ∩ L1(R2)) ,

{√
ν∇φν}ν ⊂ L2((0, T ) × R2)

with uniform bounds. It then follows that up to subsequences there exists φ1 ∈
L∞((0, T );L∞ ∩ L1(R2)) such that

(5.19) φν ∗
⇀ φ1 in L∞ ((0, T );L∞ ∩ L1(R2)

)
.

Moreover, by using (5.16) the convergence in (5.19) can be upgraded to

φν → φ1 in C
(
(0, T );L∞

w∗(R2)
)
,

where C((0, T );L∞
w∗(R2)) is the space of continuous functions with value in L∞(R2)

endowed with the weak∗ topology. Then, by (5.5), (5.17), (5.18), and (5.19) it follows
that φ1 is a distributional solution of the backward transport Cauchy problem (5.14)
and (5.15) holds.
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Now, we are in position to prove Theorem 5.1.

Proof of Theorem 5.1. Let us consider the Cauchy problem for the following linear
continuity equation,

(5.20)
{
∂tw + ∇ · (uw) = 0 in (0, T ) × R2 ,

w|t=0 = ω0 in R2

with u = k∗ω. We regularize the velocity field and the initial datum by using classical
mollification. Then, we obtain sequences {uδ}δ and {ω0,δ}δ. By the standard Cauchy–
Lipschitz theory we can find a sequence of smooth functions {wδ}δ uniformly bounded
in L∞((0, T );L1(R2)) such that{

∂tw
δ + ∇ · (uδw

δ) = 0 in (0, T ) × R2 ,
wδ|t=0 = ω0,δ in R2 .

It is proved in [6] that Lagrangian solutions are stable under smooth approximation.
Therefore, there exists w̄ ∈ C((0, T );L1(R2)) such that

wδ → w̄ in C
(
(0, T );L1(R2)

)
and w̄ is a Lagrangian solution of (5.20) in the sense of Definition 2.4. Note that
this is the first crucial point in this section where we really need to use the fact that
ω ∈ L∞((0, T );L1(R2)). Finally, let χ ∈ C∞

c ((0, T ) × R2) and let φδ be the unique
smooth solution of the following backward transport Cauchy problem{ −∂tφ

δ − ∇ · (uδφ
δ) = χ in (0, T ) × R2 ,

φδ|t=T = 0 in R2 .

Arguing as in Lemma 5.3, we can infer that there exists φ2 ∈ L∞((0, T );L∞∩L1(R2))
a distributional solution of{ −∂tφ2 − ∇ · (uφ2) = χ in (0, T ) × R2 ,

φ2|t=T = 0 in R2(5.21)

with u = k ∗ ω and

(5.22)
¨

χw̄ dxdt =
ˆ
ω0φ2|t=0 dx.

We need to prove that φ1 = φ2. By subtracting (5.21) from (5.14) we have that
the difference φ1 − φ2 is a distributional solution in L∞((0, T );L1 ∩ L∞(R2)) of the
Cauchy problem{

∂t(φ1 − φ2) + ∇ · (u(φ1 − φ2)) = 0 in (0, T ) × R2 ,
(φ1 − φ2)|t=T = 0 in R2 .

Since the velocity field u satisfies (K1)–(K5) and (5.6), by Theorem 4.1 it follows that
φ1 = φ2 a.e. in (0, T ) × R2.

We are ready to conclude: Subtracting (5.22) from (5.15) we have that
¨

χ(ω − w̄) dxdt = 0

and by varying χ ∈ C∞
c ((0, T ) × R2) we obtain ω = w̄ a.e. in (0, T ) × R2 and then ω

is Lagrangian and renormalized.
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