23 research outputs found

    Gestion de la complexité géométrique dans le calcul d'éclairement pour la présentation publique de scènes archéologiques complexes

    Get PDF
    International audienceFor cultural heritage, more and more 3D objects are acquired using 3D scanners [Levoy 2000]. The resulting objects are very detailed with a large visual richness but their geometric complexity requires specific methods to render them. We first show how to simplify those objects using a low-resolution mesh with its associated normal maps [Boubekeur 2005] which encode details. Using this representation, we show how to add global illumination with a grid-based and vector-based representation [Pacanowski 2005]. This grid captures efficiently low-frequency indirect illumination. We use 3D textures (for large objects) and 2D textures (for quasi-planar objects) for storing a fixed set of irradiance vectors. These grids are built during a preprocessing step by using almost any existing stochastic global illumination approach. During the rendering step, the indirect illumination within a grid cell is interpolated from its associated irradiance vectors, resulting in a smooth everywhere representation. Furthermore, the vector-based representation offers additional robustness against local variations of geometric properties of the scene.Pour l’étude du patrimoine, de plus en plus d’objets 3D sont acquis par le biais de scanners 3D [Levoy 2000]. Les objets ainsi acquis contiennent de nombreux détails et fournissent une très grande richesse visuelle. Mais pour les afficher, leur très grande complexité géométrique nécessite l’utilisation d’algorithmes spécifiques. Nous montrons ici comment simplifier ces objets par un maillage de faible résolution et une collection de cartes de normales [Boubekeur 2005] pour préserver les détails. Avec cette représentation, nous montrons comment il est possible de calculer un éclairement réaliste à l’aide d’une grille et de données vectorielles [Pacanowski 2005]. Cette grille permet de capturer efficacement les basses fréquences d’un éclairement indirect. Nous utilisons des textures 3D (pour des gros objets) et potentiellement des textures 2D (pour les objets quasi-plans) afin de stocker un nombre prédéterminé de vecteurs d’irradiance. Ces grilles sont calculées au cours d’un pré-calcul à l’aide de n’importe quelle méthode stochastique de calcul d’éclairement global. Pour l’affichage, l’éclairement indirect dû à la grille est interpolé au sein de la cellule associée à la position courante, fournissant ainsi une représentation continue. De plus, cette approche vectorielle permet une plus grande robustesse aux variations locales des propriétés géométriques de la scène

    Gestion de la complexité géométrique dans le calcul d'éclairement pour la présentation publique de scènes archéologiques complexes

    Get PDF
    International audienceFor cultural heritage, more and more 3D objects are acquired using 3D scanners [Levoy 2000]. The resulting objects are very detailed with a large visual richness but their geometric complexity requires specific methods to render them. We first show how to simplify those objects using a low-resolution mesh with its associated normal maps [Boubekeur 2005] which encode details. Using this representation, we show how to add global illumination with a grid-based and vector-based representation [Pacanowski 2005]. This grid captures efficiently low-frequency indirect illumination. We use 3D textures (for large objects) and 2D textures (for quasi-planar objects) for storing a fixed set of irradiance vectors. These grids are built during a preprocessing step by using almost any existing stochastic global illumination approach. During the rendering step, the indirect illumination within a grid cell is interpolated from its associated irradiance vectors, resulting in a smooth everywhere representation. Furthermore, the vector-based representation offers additional robustness against local variations of geometric properties of the scene.Pour l’étude du patrimoine, de plus en plus d’objets 3D sont acquis par le biais de scanners 3D [Levoy 2000]. Les objets ainsi acquis contiennent de nombreux détails et fournissent une très grande richesse visuelle. Mais pour les afficher, leur très grande complexité géométrique nécessite l’utilisation d’algorithmes spécifiques. Nous montrons ici comment simplifier ces objets par un maillage de faible résolution et une collection de cartes de normales [Boubekeur 2005] pour préserver les détails. Avec cette représentation, nous montrons comment il est possible de calculer un éclairement réaliste à l’aide d’une grille et de données vectorielles [Pacanowski 2005]. Cette grille permet de capturer efficacement les basses fréquences d’un éclairement indirect. Nous utilisons des textures 3D (pour des gros objets) et potentiellement des textures 2D (pour les objets quasi-plans) afin de stocker un nombre prédéterminé de vecteurs d’irradiance. Ces grilles sont calculées au cours d’un pré-calcul à l’aide de n’importe quelle méthode stochastique de calcul d’éclairement global. Pour l’affichage, l’éclairement indirect dû à la grille est interpolé au sein de la cellule associée à la position courante, fournissant ainsi une représentation continue. De plus, cette approche vectorielle permet une plus grande robustesse aux variations locales des propriétés géométriques de la scène

    Towards interactive global illumination effects via sequential Monte Carlo adaptation

    Get PDF
    Journal ArticleThis paper presents a novel method that effectively combines both control variates and importance sampling in a sequential Monte Carlo context while handling general single-bounce global illumination effects. The radiance estimates computed during the rendering process are cached in an adaptive per-pixel structure that defines dynamic predicate functions for both variance reduction techniques and guarantees well-behaved PDFs, yielding continually increasing efficiencies thanks to a marginal computational overhead

    Deep Shading: Convolutional Neural Networks for Screen-Space Shading

    No full text
    In computer vision, Convolutional Neural Networks (CNNs) have recently achieved new levels of performance for several inverse problems where RGB pixel appearance is mapped to attributes such as positions, normals or reflectance. In computer graphics, screen-space shading has recently increased the visual quality in interactive image synthesis, where per-pixel attributes such as positions, normals or reflectance of a virtual 3D scene are converted into RGB pixel appearance, enabling effects like ambient occlusion, indirect light, scattering, depth-of-field, motion blur, or anti-aliasing. In this paper we consider the diagonal problem: synthesizing appearance from given per-pixel attributes using a CNN. The resulting Deep Shading simulates all screen-space effects as well as arbitrary combinations thereof at competitive quality and speed while not being programmed by human experts but learned from example images

    Nouvelle représentation directionnelle pour l'éclairage global

    Get PDF
    National audienceDans cet article, nous introduisons une nouvelle représentation de la fonction d'éclairage première étape pour en obtenir une reconstruction volumique et multirésolution. Notre représentation se veut robuste aux variations locales de la géométrie et de ses propriétés matérielles afin de permettre le plongement d'un objet dans une solution d'éclairage. Nous montrons comment notre représentation peut être utilisée comme structure de cache pour l'éclairage indirect diffus dans le cadre de l'algorithme du tracé de rayon

    Creating effective computer generated scene lighting using traditional film lighting techniques

    Get PDF
    This thesis explores the process of translating traditional cinematic lighting into the digital realm by understanding distinctly different lighting styles of three Directors of Photography. These Directors of Photography are Conrad Hall, Gregg Toland, and Zhao Fei. Digital lighting studies representative of the work of each Director of Photography were created. In these studies, the lighting in scenes done by each Director of Photography was digitally mimicked. As a result, the lighting studies provided valuable insight into the approaches of these masters of light. An animation was created to display a scene lit in the three lighting styles of each Director of Photography. The process, learned from the lighting studies, of creating three different lighting styles representative of each Director of Photography was applied to the final animation. The analysis and lighting studies of each Directors' of Photography style expedited the process of lighting the final animation in each different style. As a result, a more complex environment was effectively lit in three different cinematic styles with animated light

    Clustering bidireccional en iluminación global basada en puntos

    Get PDF
    La síntesis de imágenes fotorrealistas por ordenador, requiere modelar y simular de forma precisa las interacciones entre luz y materia. Para conseguir este realismo, no sólo se debe calcular la iluminación que proviene de las distintas fuentes de luz que iluminan la escena, si no que también se debe tener en cuenta la energía reflejada entre las distintas superficies, denominada iluminación global. A pesar de los grandes avances tecnológicos, la generación de este tipo de imágenes requiere de una gran cantidad de tiempo y recursos. En producciones cinematográficas este coste tiene un importante impacto debido a la complejidad de las escenas modeladas además de la necesidad de generar miles de fotogramas. Por ello, las productoras invierten millones de dólares en potentes clusters de cálculo para la generación de contenido digital de sus películas, siendo la investigación y desarrollo de nuevas técnicas un tema de gran interés. En los últimos años, han surgido técnicas capaces de calcular la iluminación global de forma aproximada. A pesar de ofrecer resultados aproximados, son lo suficientemente convincentes como para que sus errores pasen desapercibidos. Algunos de estos métodos simulan la luz reflejada por las superficies como un conjunto de luces virtuales (VPLs), calculando su contribución mediante una evaluación jerárquica de las mismas, agrupando VPLs similares como una única fuente de energía. Debido a su eficiencia, estas técnicas han sido extensamente utilizadas en multitud de producciones cinematográficas. A pesar de su eficiencia, estos métodos no escalan bien con el número de píxels a iluminar. Este hecho se agrava con las enormes resoluciones necesarias en la creación de contenido digital. La alta definición se ha convertido en un estándar y el contenido 3D se está implantando progresivamente, donde la generación de imágenes desde múltiples puntos de vista es necesaria. Sin embargo, las muestras generadas desde la cámara presentan una coherencia que puede ser explotada para aproximar la luz que reciben. En este proyecto se aborda el desarrollo de una nueva técnica para el cálculo de la iluminación global basada en VPLs, que explota las similitudes entre las muestras desde la cámara y las VPLs para reducir de forma adaptativa la cantidad de computación, mediante la evaluación jerárquica de las contribuciones de las luces sobre los puntos a iluminar. De esta manera, podemos desarrollar un algoritmo capaz de generar imágenes o grupos de imágenes de alta resolución con gran cantidad de elementos de iluminación con costes sublineales, tanto en el número de luces virtuales como en el número de píxels.
    corecore