9,350 research outputs found

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Decentralized Optimal Control With Application In Power System

    Get PDF
    An output-feedback decentralized optimal controller is proposed for power systems with renewable energy penetration. Renewable energy source is modeled similar to the classical generator model and is equipped with the unified power flow controller (UPFC). The transient performance of power system is considered and stability of the dynamical states are investigated. An offline decentralized optimal controller is designed that utilizes only the local states. The network comprises conventional synchronous generators as well as renewable sources with inverter equipped with UPFC. Subsequently, the optimal decentralized controller is compared to the initial stabilizing controller used to obtain the optimal controller. An online decentralized optimal controller is designed for discrete-time system. Two neuro networks are utilized to estimate value function and optimal control strategy. Furthermore, a novel observer-based decentralized optimal controller is developed on small scale discrete-time power system. The system is trained followed by least square rules and successive approximation. Simulation results on IEEE 14-, 30-, and 118-bus power system benchmarks shows satisfactory performance of the online decentralized controller. And also, simulation results demonstrate great performance of the observer and the optimal controller compare to the centralized optimal controller

    TOWARDS OPTIMAL OPERATION AND CONTROL OF EMERGING ELECTRIC DISTRIBUTION NETWORKS

    Get PDF
    The growing integration of power-electronics converters enabled components causes low inertia in the evolving electric distribution networks, which also suffer from uncertainties due to renewable energy sources, electric demands, and anomalies caused by physical or cyber attacks, etc. These issues are addressed in this dissertation. First, a virtual synchronous generator (VSG) solution is provided for solar photovoltaics (PVs) to address the issues of low inertia and system uncertainties. Furthermore, for a campus AC microgrid, coordinated control of the PV-VSG and a combined heat and power (CHP) unit is proposed and validated. Second, for islanded AC microgrids composed of SGs and PVs, an improved three-layer predictive hierarchical power management framework is presented to provide economic operation and cyber-physical security while reducing uncertainties. This scheme providessuperior frequency regulation capability and maintains low system operating costs. Third, a decentralized strategy for coordinating adaptive controls of PVs and battery energy storage systems (BESSs) in islanded DC nanogrids is presented. Finally, for transient stability evaluation (TSE) of emerging electric distribution networks dominated by EV supercharging stations, a data-driven region of attraction (ROA) estimation approach is presented. The proposed data-driven method is more computationally efficient than traditional model-based methods, and it also allows for real-time ROA estimation for emerging electric distribution networks with complex dynamics

    Enhancing transient performance of microgeneration-dense low voltage distribution networks

    Get PDF
    In addition to other measures such as energy saving, the adoption of microgeneration driven by renewable and low carbon energy resources is expected to have the potential to reduce losses associated with producing and delivering electricity, combat climate change and fuel poverty, and improve the overall system performance. However, incorporating a substantial volume of microgeneration within a system that is not designed for such a paradigm could lead to conflicts in the operating strategies of the new and existing centralised generation technologies. So it becomes vital for such substantial amount of microgeneration among other decentralised resources to be controlled in the way that local constraints are mitigated and their aggregated response supports the wider system. In addition, the characteristic behaviour of connected microgeneration requires to be understood under different system conditions to ascertain measures of risk and resilience, and to ensure the benefits of microgeneration to be delivered. Therefore, this thesis provides three main valuable contributions of future attainment of sustainable power systems. Firstly, a new conceptual control structure for a system incorporating a high penetration of microgeneration and dynamic load is developed. Secondly, the resilience level of the host distribution network as well as the resilience levels of microgeneration during large transient disturbances is evaluated and quantified. Thirdly, a technical solution that can support enhanced transient stability of a large penetration of LV connected microgeneration is introduced and demonstrated. A control system structure concept based on “a cell concept” is introduced to manage the spread of heavy volumes of distributed energy resources (DERs) including microgeneration such that the useful features of DER units in support of the wider system can be exploited, and the threats to system performance presented by significant connection of passive and unpredictable DERs can be mitigated. The structure also provides simpler and better coordinated communication with DERs by allowing the inputs from DERs and groups of cells to be transferred as collective actions when it moves from a local to a wider system level. The anticipated transient performance problems surrounding the integration of microgeneration on a large basis within a typical urban distribution network are addressed. Three areas of studies are tackled; the increased fault level due to the present of microgeneration, the collective impact of LV connected microgeneration on traditional LV protection performance, and the system fault ride through capabilities of LV connected microgeneration interfaced by different technologies. The possible local impacts of unnecessary disconnection of large amount of microgeneration on the performance of the host distribution network are also quantified. The thesis proposes a network solution based on using resistive-type superconducting fault current limiters (RSFCLs) to prevent the impact of local transient disturbances from expanding and enhance the fault ride through capabilities of a high penetration of microgeneration connected to low voltage distribution networks. A new mathematical approach is developed within the thesis to identify at which condition RSFCL can be used as a significant device to maintain the transient stability of large numbers of LV connected microgeneration. The approach is based on equation solution to determine the minimum required value of the resistive element of RSFCL to maintain microgeneration transient stability, and at the same time additional headroom against switchgear short-circuit ratings is provided. Remote disturbances or a failure to clear remote faults quickly are shown to no longer result in complete unnecessary disconnection of substantial amount of microgeneration

    Advanced Controls Of Cyber Physical Energy Systems

    Get PDF
    Cyber system is a fairly important component of the energy systems. The network imperfections can significantly reduce the control performance if not be properly treated together with the physical system during the control designs. In the proposed research, the advanced controls of cyber-physical energy systems are explored in depth. The focus of our research is on two typical energy systems including the large-scale smart grid (e.g. wide-area power system) and the smart microgrid (e.g. shipboard power system and inverter-interfaced AC/DC microgrid). In order to proactively reduce the computation and communication burden of the wide-area power systems (WAPSs), an event/self-triggered control method is developed. Besides, a reinforcement learning method is designed to counteract the unavoidable network imperfections of WAPSs such as communication delay and packet dropout with unknown system dynamics. For smart microgrids, various advanced control techniques, e.g., output constrained control, consensus-based control, neuro network and game theory etc., have been successfully applied to improve their physical performance. The proposed control algorithms have been tested through extensive simulations including the real-time simulation, the power-hardware-in-the-loop simulation and on the hardware testbed. Based on the existing work, further research of microgrids will be conducted to develop the improved control algorithms with cyber uncertainties

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    On augmented OBDD and performability for sensor networks

    Get PDF
    The expected hop count (EHC) or performability of a wireless sensor network (WSN) with probabilistic node failures provides the expected number of operational nodes a message traverses from a set of sensors to reach its target station. This paper proposes a novel approach for computing the EHC of a practical communication model for WSN, k-of-all-sources to any-terminal (k-of-S,t). Techniques based on factoring and Boolean techniques solve the EHC when k=1 for |S| greater than/equal to 1 However, they fail to scale with large WSN and are not useful for computing the EHC with k>1. To overcome these problems, we propose an Augmented Ordered Binary Decision Diagram (OBDD-A) approach, which obtains the EHC for all cases of (k-of-S,t). We use randomly generated wireless networks and grid networks having up to 4.6x1020 (s,t)-minpaths to generate results. Results show that OBDD-A can obtain the EHC for networks that are unsolvable with existing approaches

    Integrity Protection of the DC Microgrid

    Get PDF
    The direct current (DC) microgrid has attracted great attention in the recent years due to its significant advantages over the alternating current (AC) microgrid. These advantages include elimination of unnecessary AC/DC power converters, lower investment cost, lower losses, higher reliability, and resilience to utility-side disturbances. A practical DC microgrid requires an effective control strategy to regulate the DC bus voltages, enable power sharing between the distributed energy resources (DERs), and provide acceptable dynamic response to disturbances. Furthermore, when the power demand of the loads is higher than the power generation of the DERs in the DC microgrid, the power balance cannot be maintained by control actions and the DERs fail to regulate the DC bus voltages. Under such conditions, it is necessary to shed some of the non-critical loads in order to protect the integrity of the DC microgrid. Thus, the DC microgrid also requires an effective load shedding scheme. This thesis is focused on developing advanced control and load shedding strategies for integrity protection of the DC microgrid. The studies reported in this thesis include developing (i) a versatile DC bus signaling control strategy to achieve coordinated decentralized control of the DERs and loads in the DC microgrid without utilizing costly high-bandwidth communication systems, (ii) an improved mode-adaptive droop control strategy to enable desirable and reliable control mode switching by the DERs under various operating conditions, and (iii) adaptive non-communication based load shedding schemes to enable the DC microgrid to ride through the disturbances that cause large power deficit and voltage sags. The performances of the proposed integrity protection schemes are investigated under various generation and load disturbances in both grid-connected and islanded operation modes of the DC microgrid. Comprehensive time-domain simulation studies are conducted on a detailed DC microgrid study system using the PSCAD/EMTDC software. The study results indicate that the proposed control strategies: (i) improve power sharing between the DERs, (ii) effectively regulate the DC bus voltages under various operating conditions, (iii) improve the DC microgrid stability and its dynamic response to large disturbances, (iv) do not require an excessively large grid-tie converter or energy storage systems, and (v) enhance the DC microgrid reliability, flexibility, modularity, and expandability. The study results also indicate that the proposed adaptive load shedding schemes (i) effectively maintain the power balance in the DC microgrid through fast and coordinated shedding of non-critical loads, (ii) prevent the bus voltages in the microgrid from falling below predetermined lower limits, (iii) ensure that the critical loads do not experience excessive steady-state voltage deviations, (iv) minimize the magnitudes and durations of temporary voltage sags caused by sudden disturbances, and (v) increase the reliability of the power supplied to the loads, by preventing over-shedding
    • 

    corecore