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Abstract 

Jimiao Zhang 

OPTIMAL OPERATION AND CONTROL OF EMERGING ELECTRIC 

DISTRIBUTION NETWORKS 

2022 - 2023 

Jie Li, Ph.D. 

Doctor of Philosophy 

 

The growing integration of power-electronics converters enabled components 

causes low inertia in the evolving electric distribution networks, which also suffer from 

uncertainties due to renewable energy sources, electric demands, and anomalies caused by 

physical or cyber attacks, etc. These issues are addressed in this dissertation. First, a virtual 

synchronous generator (VSG) solution is provided for solar photovoltaics (PVs) to address 

the issues of low inertia and system uncertainties. Furthermore, for a campus AC microgrid, 

coordinated control of the PV-VSG and a combined heat and power (CHP) unit is proposed 

and validated. Second, for islanded AC microgrids composed of SGs and PVs, an improved 

three-layer predictive hierarchical power management framework is presented to provide 

economic operation and cyber-physical security while reducing uncertainties. This scheme 

provides superior frequency regulation capability and maintains low system operating costs. 

Third, a decentralized strategy for coordinating adaptive controls of PVs and battery energy 

storage systems (BESSs) in islanded DC nanogrids is presented. Finally, for transient 

stability evaluation (TSE) of emerging electric distribution networks dominated by EV 

supercharging stations, a data-driven region of attraction (ROA) estimation approach is 

presented. The proposed data-driven method is more computationally efficient than 

traditional model-based methods, and it also allows for real-time ROA estimation for 

emerging electric distribution networks with complex dynamics.
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Chapter 1 

Introduction  

1.1 Background and Overview 

Across the globe, most people agree that global climate change is a pressing 

concern that demands swift solutions. Rising sea levels, shrinking mountain glaciers, more 

frequent and longer droughts, more severe hurricanes, and other extreme weather events 

have resulted from global warming. The main culprit for global warming is greenhouse 

gasses (GHGs) including carbon dioxide. In the U.S., the electricity generation sector alone 

constitutes up to 25% of all GHG emissions in 2019 [1]. As a result, one strategy for 

lowering GHG emissions is to switch out highly polluting fossil fuel generators with 

sustainable and eco-friendly renewable energy sources (RESs) such as solar and wind. 

However, as with other distributed energy resources (DERs) and loads that are 

geographically dispersed, these RESs are challenging to manage from the perspective of a 

bulk power system. They bring about lower inertia, uncertainties, reverse power flows, etc. 

For these reasons, the concept of active distribution networks (ADNs) came into being 

about two decades ago [2]. In contrast to passive distribution networks (PDNs) that are 

designed conservatively in their component capacities to handle worst-case scenarios, 

ADNs comprehensively embrace technological attempts to address operational issues 

through real-time monitoring and control, enabled by recent advancements in smart grid 

technologies, such as automation, computation, and communication. Specifically, 

microgrids serve as the foundation of ADNs for integrating multiple grid assets. A 

microgrid is defined by the Consortium for Electric Reliability Technology Solutions 
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(CERTS) as a collection of loads and micro-sources that operate as one system to supply 

both electricity and heat [3]. Indeed, a large electrical grid can be structurally split into 

smaller but self-sufficient grids that integrate DERs, energy storage systems (ESSs) 

(batteries, ultracapacitors, flywheels, etc.) and controllable loads (smart buildings, plug-in 

electric vehicles (EVs), etc.). According to Mordor Intelligence, the global microgrid 

market will be worth USD 25.45 billion by 2026, with a compound annual growth rate of 

21.5% from 2021 to 2026 [4]. 

1.1.1 Classification of Microgrids  

Microgrids can mainly be categorized into two types according to their operational 

setups: alternating current (AC) and direct current (DC). An AC microgrid is connected to 

the three-phase utility grid via a static transfer switch at the point of common coupling 

(PCC), while a DC microgrid is interfaced through a bidirectional DC-AC converter for 

common integration. Each type has its pros and cons. The DC microgrids have higher 

conversion efficiency because there are no additional DC-AC and AC-DC power 

conversion stages as seen in the AC microgrids. Furthermore, the transmission losses due 

to reactive current and skin effect in AC microgrids do not exist in the DC microgrids. 

Another advantage of DC microgrids is their controllability. Only the DC bus voltages 

need to be regulated rather than both the voltage magnitude and frequency. Moreover, 

frequency synchronization is no longer a concern to DC microgrids. Nonetheless, relay 

protection system design is more challenging for DC microgrids, since a natural zero-

crossing point does not occur in DC systems. In addition, DC loads are not widely available 

yet because most of the electrical apparatuses are designed for the AC systems. 
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Other of microgrid variants are also noteworthy: the hybrid AC/DC microgrids [5], 

the networked microgrids (or ADNs) [6] and the nanogrids. A hybrid microgrid enjoys the 

combined benefits of individual AC and DC microgrids. In the concept of networked 

microgrids, multiple microgrids are operated in coordination with the distribution network 

to further enhance the shared reliability and resiliency of the power supply. Moreover, the 

nanogrids are considered as the building cells of a microgrid and have a wide range of 

applications. 

1.1.2 Operating Modes of Microgrids 

There are two basic operating modes for microgrids. i) A microgrid normally 

connects to the utility main grid and thus operates in the grid-connected node. In this case, 

the microgrid balances the electricity supply and demand by either purchasing electricity 

from the main grid or selling excess electricity to the main grid to maximize its operational 

benefits. The frequency and/or voltage stabilities rely on the main grid. ii) However, in the 

event of faults, scheduled maintenance, etc. on the main grid, the microgrid is expected to 

seamlessly transition to the islanded mode, and the DERs and ESSs should be dispatched 

to maintain the microgrid frequency and/or voltage stability in a self-governed manner. It 

should be noted that islanded microgrids are a highly viable option for isolated rural areas 

that lack or have expensive access to electricity and modern energy services. 

1.1.3 Control Strategies for Microgrids 

The implemented system control strategies play an enormous role in ensuring the 

power quality and efficiency of microgrids in both microgrids’ operating modes. The 

hierarchical control architecture [8, 9] has been around for more than a decade, originally 
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inspired by the operation of bulk power systems [10], for which the system control 

architecture is commonly divided into three levels: primary, secondary, and tertiary, as 

shown in Figure 1.1. The primary level operates on the fastest timescale and automatically 

maintains frequency and voltage stabilities when there is an instantaneous imbalance 

between generation and demand. Primary control commonly relies on the local droop 

control, which utilizes only the local measurements without the need for additional 

communication links, thus making the system simple and reliable. The secondary control 

aims to eliminate the steady-state deviations in frequency (f) and voltage (v) caused by 

primary control, and it also handles restoration and synchronization. The tertiary level 

oversees economic dispatch (ED) and manages the active (P) and reactive (Q) power flows 

between the microgrid and the main grid. It is noted that the same control architecture also 

applies to the DC microgrids [11]. However, there would be no reactive power control and 

frequency control involved; instead, only the DC bus voltages are considered.  
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Figure 1.1. Hierarchical control architecture of AC microgrids. 

Furthermore, the secondary control can be designed and implemented as a 

centralized control [12] or distributed control [13] manner . In the centralized control, a 

central controller collects system measurement information from all the nodes in the 

microgrid and executes the prescribed control algorithm before sending back the 

commands. Nevertheless, the centralized controller is eliminated in the distributed control, 

within which only local controllers communicate with their neighbors to execute local 

behaviors to achieve global optimal consensus. The distributed control strategies have 

well-recognized advantages including scalability, high reliability without a single point of 

failure, privacy preservation, low communication latency, etc. In comparison, the 

centralized control has higher observability and is structurally simpler with more 
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guaranteed convergence to the optimal solution. It was specifically pointed out in [14] that 

centralized control is better suited for an islanded microgrid with critical demand-supply 

balances as well as limited and fixed infrastructure, whereas distributed control could be a 

better fit for a grid-connected microgrid with expanding and/or dynamic infrastructure. 

1.1.4 Major Challenges in ADNs and Microgrids 

The implementations of ADNs and their building blocks, i.e., microgrids are faced 

with various technical challenges, some of which are intertwined. They are briefly 

summarized as follows: 

• Economic loss: The voltage limits and the power line limits could be violated more 

easily with an increasing penetration of RESs in ADNs and microgrids, which may 

further introduce large system disturbances, preventing the local component 

controllers to closely follow the economic power setpoints. 

 Low inertia: More DERs and ESSs are being integrated to the ADNs and 

microgrids through the interface of power-electronics converters, but these devices 

have no rotational kinetic energy as in the conventional synchronous generators 

(SGs). The ADNs and microgrids thus lack spinning reserves and experience 

decreasing system inertia. Consequently, considerable frequency and/or voltage 

deviations as well as system instability are likely to occur, particularly when ADNs 

and microgrids are islanded. 

 Uncertainty: The system uncertainties introduced by the intermittency in RESs 

such as solar and wind due to varying meteorological conditions along with the 
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stochasticity in electricity consumptions make the reliable and economic operation 

of ADNs and microgrids more difficult.  

 Cyber-physical threats: In the ADNs and microgrids, the cyber components and 

the underlying physical systems are tightly coupled. More frequent potential cyber-

physical threats could disrupt the normal operation of ADNs and microgrids, 

causing system collapse, cascading failure, etc. Thus, advanced monitoring and 

control are critical to ensuring cyber-physical security and resiliency. 

 Transient instability: Integration of RESs reduces the system’s inertia, while the 

power electronics converters interface loads such as EV chargers and introduce 

negative damping. Both pose a new challenge to the transient stability of ADNs and 

microgrids, which is not common in conventional bulk power systems. In addition, 

system modeling of ADNs and microgrids is made more difficult by the increasing 

number of distributed power-electronics-based devices, their intricate control loops, 

and the broad time scales of control dynamics. Hence, systematic and efficient 

transient stability studies should be conducted for the safe and stable operation of 

ADNs and microgrids. 

1.2 State of the Art in Addressing Distribution Network Operational Challenges 

1.2.1 Control of Solar PV Systems in ADNs and Microgrids 

Solar PV systems, one of the key components of emerging ADNs and microgrids, 

are traditionally operated in maximum power point tracking (MPPT) mode to take full 

advantage of the free and clean solar energy and thereby minimize the levelized cost of 

energy (LCOE) of local supply, particularly when the ADNs or microgrids are connected 
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to an AC main grid. In this case, frequency and voltage of the ADNs or microgrids are 

supported by the external AC grid. As more solar generations are integrated, the existing 

distribution lines and substations are being stressed out. One solution is to upgrade the 

infrastructure of the electric grids; yet the associated exorbitant costs pose an economic 

hurdle. Another potential challenge facing the power system operation is the sudden ramp 

up or down of electricity net demand (i.e., total demand minus generation) during certain 

periods of time in one day, giving rise to large grid voltage fluctuations. Resolution of this 

issue requires other dispatchable energy sources to respond fast to meet the sharp 

fluctuations when solar power is under-supplied or over-supplied. A similar issue has been 

reported by the California Independent System Operator (CAISO) in its bulk system [15]. 

When there is an oversupply of solar power, some system operators may opt to limit PV 

installations, which however runs counter to the national and state level long-term energy 

strategies. Alternatively, the generated solar power could be curtailed, as is CAISO’s 

current practice. This option is not economically sound, though. For these reasons, it is 

desired that the PV systems be flexibly controlled instead of being controlled only in MPPT 

mode. In addition, without support from a stiff external grid during emergencies when 

islanding is enforced, the high penetration of renewables including solar PVs has presented 

an even greater operational challenge to ADNs and microgrids. Conventionally, the SGs 

provide damping, and absorb or release the kinetic energy stored in the rotating masses to 

arrest sudden frequency deviations once there is an active power imbalance [16]. Since 

inverter-based resources (e.g., solar PV) are replacing SGs while not providing the same 

natural inertia as the SGs, the ADNs and microgrids are experiencing greater frequency 

excursions and higher rates of change of frequency (RoCoF) especially when operated in 
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islanded mode. Frequency-related generator/load protection tripping has been increasingly 

frequent. All these challenges call for advanced control strategies to improve the stability 

and reliability of emerging renewable-dominated grid systems. 

In principle, the PV systems operated in MPPT mode are controlled using grid-

following inverters, which rely heavily on the grid voltage and angle measurements to 

remain synchronized with the rest of the grid [17]. Hence, the small-signal stability margins 

could be greatly reduced with sudden changes in the measured grid signals. Droop control, 

on the other hand, is normally implemented for grid-supporting inverters. Droop control is 

equivalent to the primary frequency regulation of SGs governed by a speed governor with 

a slow response. However, it does not contribute to the system’s inertia and damping and 

cannot respond to fast grid frequency swings during transient states. To date, some efforts 

have been directed towards controlling the PV systems to mimic the electromechanical 

characteristics of conventional SGs for improved damping and inertial response. Figure 1.2 

illustrates the frequency response improvements with virtual inertia in the event of a 

generation loss, as well as the typical corresponding timescales of different power system 

controls. 
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Figure 1.2. Multiple time-frame frequency response following a frequency event [18]. 

In virtual SG (VSG) technologies, an additional inertia control loop is commonly 

integrated into the control loops of grid-supporting inverters [19] to emulate inertia. There 

are primarily two types of PV-VSG approaches depending on whether ESSs are utilized. 

In some studies, ESSs and their bi-directional DC-DC converters are placed at the DC link 

to stabilize the voltage [20, 21]. Nevertheless, the addition of ESSs would incur additional 

operation and maintenance costs. In addition, the contribution of PV cannot be explicitly 

justified because the primary regulation is only provided by the ESSs. Other methods 

eliminate ESSs, and the PV-VSGs are controlled away from the MPP to provide active 

power reserve [22-24] or using the DC-link capacitor of the inverter to provide inertia 

support [25, 26]. However, a phase-locked loop (PLL) was required in [21-23, 26], which 

might cause instability issues, particularly in a non-stiff grid [27]. Further, some papers 

such as [22, 28] adopted a single-stage topology and limited the PV voltage operating range 
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to the right side of the MPP for stability concerns. Also, the dynamics of the PV are affected 

by those of the inverter. To this end, the addition of a DC-DC stage is preferred. Moreover, 

the proposed PV-VSG schemes in [25, 26] were validated only in a single-ESS system. 

Since solar power shortage is possible, control of a PV-VSG without ESSs needs to be 

coordinated with other DERs, particularly in islanded microgrids. Combined heat and 

power (CHP) units [29-33] could bring significant energy cost savings to the electricity 

consumers and reduce carbon emissions. Therefore, they are an ideal candidate to 

coordinate with the operation of PV-VSGs. For CHP modeling, Rowen's model is well 

known for being more explicit in terms of control functions than the others. It was 

originally created for industrial heavy-duty gas turbines (GTs). However, one limitation to 

the Rowen’s model is that system and control parameters need to be customized based on 

the actual CHPs. 

1.2.2 Power Management of Microgrids with Uncertainties 

Uncertainty management is a challenge for the operation of microgrids and other 

electric power systems due to the prevalence of RESs and demand variation. Along with 

the intermittency in RESs, the randomness in electricity consumption behaviors 

compounds the uncertainties in microgrids, particularly when the microgrids are in 

islanded mode. The difficulty of coping with the adverse impacts of RESs and local loads 

on the power quality poses severe challenges to the system's power management. For 

instance, the local controllers acting on frequency and voltage deviations need to respond 

more quickly and frequently due to high uncertainties. Apart from the commonly observed 

high deviations in system frequency and voltage, real-time ED of distributed generators 
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inside the microgrid may also be compromised, because the actual power outputs will 

deviate greatly from the optimal power commands. Meanwhile, for an islanded microgrids 

with low inertia, unpredictable demand responses, and high penetrations of RESs, the 

system’s states could be extremely volatile. Moreover, microgrids, as one type of cyber-

physical systems, are becoming increasingly vulnerable to extreme weather events, 

component outages, and cyber-physical attacks [34], which are generally termed as 

anomalies. These anomalies may lead to unreliable transmission of sensor measurements 

and control signals, thus threatening microgrid security. 

Whether a microgrid is islanded or connected to the main grid, the primary 

operational goal of the microgrid control system is to ensure stable delivery of electrical 

power to its local loads using DERs in a reliable and cost-effective manner in the face of 

uncertainties. The uncertainties in generation and demand can be managed or mitigated by 

using energy storage systems (ESSs) to achieve power balance [35], implementing 

demand-side management [36] or improving generation and load forecasting techniques 

[37, 38]. A host of studies have tried to address this challenge via advanced modeling 

approaches, e.g., stochastic programming (SP) [39, 40], robust optimization (RO) [41-43], 

or chance-constrained programming (CCP) [44, 45], wherein the microgrid system 

uncertainties are explicitly modeled. Nonetheless, performance of these methods is highly 

constrained by the accuracy of the uncertainty modeling, and they are based on offline 

open-loop optimization, which may have limited robustness to external disturbance or 

noise compared with the closed-loop feedback mechanism. Hence, potential performance 

degradation and computational complexity are commonly criticized in practical 

applications.   
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Advanced control strategies, such as model predictive control (MPC), are the 

subject of another line of research [46]. MPC provides an inherent feedback mechanism, 

which makes the system more robust against uncertainties. Furthermore, the ability of MPC 

to explicitly incorporate physical constraints alongside forecasting information enables 

constrained optimal control. The rising popularity of MPC theories has indeed spurred a 

growing interest in their applications in microgrid power management [47-50]. Velasquez 

et al. [51] presented a single-level distributed MPC for solving the intra-hour ED of a 

microgrid. The controller keeps adjusting the generation schedules in real time along with 

updated forecasting. To cope with inevitable forecast errors, a two-level stochastic MPC 

scheme was proposed in [52] to minimize the discrepancy between the actual energy 

exchange and the optimally planned one. A supervisory MPC was presented in [53] to 

ensure reliable and economic operation of islanded hybrid AC/DC microgrids. In [54], a 

hierarchical predictive controller executed daily scheduling and real-time control of a PV 

microgrid, with ESSs and diesel generators making up for the load and RES fluctuations. 

Among all these MPC-based research, linear MPC is preferred for its capability of 

dramatically reducing the complexities in controller design and control signal computation. 

Furthermore, the designed controllers can still provide corrective actions for enhanced 

system robustness in the presence of disturbances [55, 56]. 

It should be noted that the performance of MPC depends highly on the prediction 

model’s accuracy, which in turn relies on the system’s current states. Aside from cost 

optimization, the control system should also encompass monitoring functions. Monitoring 

provides overarching information about the current system’s states for increased situational 

awareness. This information supports not only optimal control decisions but also prediction 
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of the system’s future states and events. However, one common assumption in all the above 

works is that the system states are already known or directly measurable when MPC is 

implemented, which is not necessarily the case when the states are volatile. Furthermore, 

state variables of conventional SGs, such as rotor angle and field winding voltage, cannot 

be directly measured in practice [57-59]. Although the Kalman filter and its variants have 

been adopted to detect anomalies in sensor readings by means of analytical redundancy 

[60] and to estimate unmeasurable system states [61], they are unable to detect such 

anomalies in the manipulation of control signals. Lastly, many MPC-based approaches, 

e.g., [47] and [51], employed static system models for secondary control, following the 

convention of bulk power systems that this control level is implemented on a timescale of 

minutes. However, forecasting errors of load and renewables will increase when the 

secondary control is executed on a longer timescale. Thus, to simultaneously track the 

economic power commands from the tertiary controller and react to high fluctuations on 

the grid, it is desired for the secondary controller to operate in shorter time control intervals 

(i.e., several seconds) using near real-time forecasting techniques with reduced prediction 

errors. On the other hand, unlike power electronics converters whose dynamics may decay 

quickly in several milliseconds, conventional DGs such as electrically excited SGs have 

relatively slow dynamics that cannot be ignored on the timescale of a few seconds. On this 

timescale, a dynamic system model would be preferred. To ensure the economic benefits 

and security of microgrids, an advanced MPC control system is thus necessary. 
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1.2.3 Decentralized Control  

Decentralized control is advantageous because the active elements of emerging 

electrical distribution networks can operate in concert with one another using locally 

available information. No complex communication is required. Due to their system 

efficacy, size, and cost, DC electrical networks are more attractive than their AC 

counterparts. In islanded DC microgrids/nanogrids, the PV MPPT strategies will not work 

properly unless additional battery energy storage systems (BESSs) are available to regulate 

the common DC bus voltage. Even if the PVs can operate in the MPPT mode, the grid may 

experience DC bus overvoltage and overcharging of batteries in view of the increasing 

penetration of PVs and the limited state of charge (SoC) of BESSs. In the other extreme 

case, the BESSs could over-discharge to supply the loads once the on-site PVs become 

unavailable. In either case, the lifespan of BESSs will be shortened and the grid voltage 

stability will be adversely affected. Hence, it is desired that PVs possess a certain degree 

of voltage regulation capabilities. 

Coordinated control between PVs and BESSs is critical to maintaining the common 

DC bus voltage and the power balance. Indeed, there has been extensive research in 

operating PVs also in a power-limiting mode such that they can regulate the common DC 

bus voltage along with BESSs [62, 63]. Nevertheless, these methods rely heavily on 

communications links for smooth mode switching, thus decreasing the system reliability 

with potential communication failure. For this reason, communication-less decentralized 

control methods such as droop control have been favored for PV-BESS coordination [64, 

65]. In [66], cooperative adaptive droop was employed for BESSs to design a unified 
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energy management system. However, the criteria for operating mode switching were 

complicated and the transient performance was limited between switches. The 𝑣 − 𝑑𝑝

𝑑𝑣
 

droop methods [67, 68] sensed the DC bus voltage and integrated the MPPT and the DC 

bus voltage regulation into a single control configuration. However, this scheme might 

suffer from slow transient responses in the case of a sudden change in environmental 

conditions because it utilized a fixed PV voltage search step. To this end, [69] presented a 

𝑣 − 𝑑𝑝

𝑑𝑖
 droop strategy with improved dynamic responses and power quality. But as with 

[67], this technique necessitates accurate measurements, and differentiation of the PV 

mathematical model may result in severely incorrect control set-points in practice. Paper 

[70] reported a proportional droop index algorithm to adjust the droop coefficient of a PV 

unit, yet it still requires real-time measurements of each load demand to implement the 

operating mode selection. A PV-BESS coordinated control method was proposed in [71]. 

The SoC-based droop control allowed the BESSs to provide DC bus voltage regulation 

with balanced SoCs. However, overcharging BESSs also poses hazards, and their 

protection was not considered in this study. Overall, most of this line of research in the 

existing literature relies heavily either on reliable communication links or on complicated 

mode switching criteria that are hard to implement in practice. Hence, it is desired to have 

a simple and efficient decentralized control scheme that accounts for BESS over-

discharging and over-charging protection. 

1.2.4 System Stability Evaluation 

With the widespread deployment of power-electronics devices into ADNs and 

microgrids to integrate renewables, ESSs, EV charging stations, etc., the emerging electric 
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power grid’s functionality has been considerably enriched. However, the ADNs and 

microgrids differ from conventional bulk power systems on several fronts. Firstly, they 

have different dynamic characteristics. In the bulk systems, the main system state variables 

are invulnerable to disturbances due to the wide presence of SGs which possess large 

inertia and damping capabilities. In contrast, the dynamics of ADNs and microgrids are 

more susceptible to high volatility due to lower inertia and higher stochasticity in 

renewables and loads. Additionally, the electromechanical stability of SGs is of major 

concern in bulk systems, and it is mainly related to slow controls whose dynamics are 

below the fundamental frequency. Nevertheless, in power-electronics-dominated ADNs 

and microgrids, a wider range of dynamics must be taken into account, as shown in Figure 

1.3. Secondly, accelerated deployment of high-power EV charging stations is expected to 

alleviate range anxiety, while imposing stress on the existing ADNs and threatening their 

transient stability. The loads (such as EVs) tightly regulated by power-electronics 

converters behave as constant power loads (CPLs) of the ADNs and microgrids with 

negative impedance characteristics [72], thus further reducing the effective system 

damping. Thirdly, higher complexity in system-level modeling and analysis ensues 

because of an increased uptake of distributed energy assets with dedicated control systems. 

A growing body of research has been conducted on the stability analysis of ADNs 

and microgrids. These methods are based on small-signal modeling or large-signal 

modeling. The small-signal stability evaluation mainly comprises the eigenvalue analysis 

and the impedance-based methods. The time-domain eigenvalue methods obtain a linear-

time invariant (LTI) state-space model by linearizing the system model around an 

equilibrium operating point. Calculating the eigenvalues of the state matrix enables the 
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identification of oscillation modes and instability roots [73]. However, the eigenvalue 

analysis method requires full system information, which may be confidential due to private 

ownership of assets. For the impedance-based methods applicable to the frequency domain, 

the system of interest is simplified as one aggregated source subsystem and one aggregated 

load subsystem. Stability can then be studied using the Nyquist criterion [74]. While the 

impedance-based methods have good scalability in model representation and can be 

implemented based only on measurements with frequency sweeping, they provide highly 

conservative results and cannot identify the oscillation modes. Notably, the aforementioned 

small-signal stability analysis methods may become ineffective for power systems 

characterized by nonlinearity, high orders, and large disturbances due to the 

approximation/simplification inherent in their system modeling. 
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Figure 1.3. Multi-timescale dynamics of power-electronics dominated power systems [75]. 

To this end, large-signal stability (a.k.a. transient stability) is being researched to 

ensure situational awareness for the system operator and stable system operation. Transient 

stability evaluation (TSE) mainly utilizes stability theory by Lyapunov’s direct method to 

quantify how large disturbances a system can tolerate by estimating the region of attraction 

(ROA) of a locally asymptotically stable equilibrium point [76]. The crux of this type of 

research is to find an appropriate Lyapunov function which often lacks a general method. 

The Takagi-Sugeno (TS) multi-modeling method originally proposed in [77] for system 

identification was employed for ROA estimation of an inverter-motor drive system [78] 

and a droop-controlled inverter connected to an infinite bus [79], respectively. In [80], the 
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transient stability of a multi-bus inverter-based dynamic microgrid was analyzed, where 

the adopted T-S multi-modeling further took account of communication delays. Although 

the above T-S multi-modeling works well for small-scale power systems, it will encounter 

the curse of dimensionality when the system orders and nonlinearities increase. While 

model order reduction such as Kron reduction [81] can be performed to reduce computation 

burdens, certain important system dynamics might be lost. In addition, Brayton-Moser’s 

mixed potential theory has been widely applied to ROA estimation of power systems that 

are simplified as RLC networks. The equilibrium of an RLC network is guaranteed to be 

stable if it is a local minimum of the constructed mixed potential function. In [82], a DC 

microgrid under droop control was simplified and its ROA was estimated. However, such 

simplification of models always leads to conservativeness in ROA estimation. To mitigate 

conservativeness and increase scalability, [83] presented a revised mixed potential theory, 

where the operating bounds of practical CPLs were accounted for and the state variables 

with strong and weak correlations to stability were separated. Some works leverage 

mathematical optimization to calculate the maximum ROA from a proper Lyapunov 

function [84]. The transient stability of grid-connected converters with PLLs was studied 

in [85] using an iterative sum-of-squares programming (SOSP) method. Nonetheless, the 

use of SOSP is generally limited to polynomial systems, and the system discussed only 

consisted of one converter. It is thus unclear if the proposed method would be 

computationally efficient for an ADN dominated by many distributed assets such as EV 

charging stations. Reference [86] estimated the ROA of a DC microgrid with CPLs, and 

the proposed SOSP-based method showed higher accuracy than other mainstream model-

based approaches. 
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 As an alternative to the Lyapunov-based approaches, geometric methods such as 

normal form analysis have also been applied to ROA estimation [87]. However, these 

geometry tools are constrained by their locality and low dimensionality [88]. Besides, 

authors of [89] applied the theory of occupation measures to approximate the ROA of 

power systems comprising SGs. Nevertheless, the method’s suitability relies heavily on 

polynomial reformulation of the original dynamical system models. 

It should be noted that all above-mentioned model-based methods only considered 

power systems with homogenous bus dynamics (viz., either all power electronics 

converters or all SGs). However, SGs and power electronics converters, which are key 

components of future ADNs and microgrids, have considerably different dynamic 

characteristics. Another common limitation of these methods is that their ROA estimation 

accuracy hinges on accurate system modeling, which is always compromised by their 

simplified mathematical models in exchange for acceptable solution times. Practical ADNs 

and microgrids are generally highly nonlinear with complex dynamics. The systems are 

exposed to uncertainties in model parameters due to varying operating conditions, let alone 

the high uncertainties attributed to stochasticity of load consumption (such as EV charging) 

and intermittency of renewables. Moreover, the uncertainties could be compounded by the 

fact that control algorithms of the distributed assets are usually proprietary and unknown 

to the user. Meanwhile, with a wealth of operational data available from smart meters and 

micro-phasor measurement units (μPMUs) and advances in data analytics, the data-driven 

TSE becomes more appealing.  
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1.2.5 Data-Driven System Analysis Methods 

Conventionally, the behavior of complex nonlinear dynamical systems including 

electric power grids is analyzed by explicitly solving equations of motion, which can be 

difficult or impossible to solve. Recently, data-driven approaches are more attractive are 

becoming more attractive due to their model-free nature. In emerging electric power 

systems, smart sensors and other advanced monitoring devices are providing large volumes 

of system operation data, which makes data-driven system analysis methods more feasible. 

Specifically, the prominent features of the Koopman operator theory have lent itself to a 

wide range of data-driven applications in electric power systems, such as dynamic state 

estimation [90], power flow calculations [91], system identification [92], and model 

predictive control (MPC) of wind farms [93], etc.  The Koopman operator theory is an 

operator-theoretic formalism of classical dynamical system theory, which enables a 

scalable reconstruction of the underlying dynamical system using only measurement data. 

In addition, it provides a principled linear embedding of nonlinear dynamics, which can 

reduce computational complexities. Using the Koopman Operator theory, information 

regarding the system's behavior can be extracted directly from data.  Most notably, this 

theory finds its application in TSE, since its spectral properties could properly capture the 

system’s stability properties [94]. In [95], unstable power flow patterns were detected by 

applying the Koopman mode analysis (KMA) to historical power flow data, while the 

characteristics of mutual interference between microgrid voltage stability and frequency 

stability were extracted from simulation data in [96]. However, both studies employed the 

Arnoldi-type method to approximate the Koopman operator, where linear basis functions 

were utilized which cannot sufficiently capture the system’s strong nonlinear behavior 
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sufficiently. Further, the spectral analysis results are generally posterior, and thus not as 

comprehensible and straightforward as the ROA visualization. Reference [97] proposed a 

ROA estimation scheme using the extended dynamic mode decomposition (EDMD) 

method [98], which was heuristic and lacked rigorous theoretical guarantees for system 

stability. Moreover, the EDMD method could lead to instability and long-term 

approximation errors in the learned Koopman operator due to its single-time-step 

approximation [99]. To overcome the aforementioned deficiencies and pursue rigorous 

theoretical guarantees for system stability without compromising computational efficiency, 

further research is required to develop an efficient data-driven TSE approach. 

1.3 Research Motivation and Objectives 

To fill the gaps identified in the state-of-the-art research, this dissertation 

focused on addressing the following challenges: 

• Control of solar PV systems as VSGs to address the challenges of low inertia, 

uncertainty, and transient instability that are common to ADNs and microgrids. 

Specifically, the researcher proposes a double-stage PV-VSG model that can be 

flexibly controlled away from the MPP. The PV-VSG only uses its DC-link capacitor to 

simulate inertia, and even small capacitances can be used to make a large amount of virtual 

inertia. Furthermore, the PV-VSG does not necessitate PLLs to avoid PLL-associated 

instability issues. Rowen’s single-shaft GT prototype model will also be modified to more 

closely resemble the common GTs used in CHPs. Lastly, coordinated control between a 

PV-VSG and a CHP unit will be conducted under large solar irradiance intermittency for 

the stable operation of an AC microgrid in islanded mode.  
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• Predictive hierarchical power management to address the challenges of economic 

loss, uncertainty, and cyber-physical threats in islanded microgrids. 

An enhanced predictive hierarchical power management framework is proposed to 

systematically integrate and coordinate the core system operational functions of microgrids, 

i.e., frequency regulation, optimal power flow, and state estimation via an enhanced 

predictive hierarchical power management framework for the economic and secure 

operation. Specifically, an MPC controller is proposed for the secondary control, which is 

highly responsive to system frequency fluctuations and renewable power variations. The 

controller is designed based on a linearized dynamic system model that is periodically 

updated at runtime for uncertainty mitigation. Furthermore, an optimal recursive filter is 

proposed for joint estimation of the system states and the control signals received by 

primary controllers in an unbiased minimum-variance (UMV) sense for cyber-physical 

resilient MPC control capabilities.  

• Coordinated and decentralized control of PVs and BESSs to tackle the challenges 

of low inertia and uncertainty in islanded DC power grids. 

A simple adaptive control scheme is proposed for the PVs to switch seamlessly 

between the V-P droop mode and the MPPT mode with satisfactory dynamic response. 

When the DC bus voltage is high enough, the PVs follow the droop curve and limit their 

power outputs, thus participating in DC voltage regulation. If the DC bus voltage decreases 

below a certain threshold, PVs will adaptively switch to the MPPT mode to provide full 

power support. In addition, an SoC-based adaptive droop control technique is implemented 

for the BESSs interfaced by the dual-active bridge (DAB) DC-DC converters. The 
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proposed technique can mitigate overcharging and over-discharging of the batteries by 

adaptively adjusting the DC bus voltage references. Lastly, the proposed coordination 

scheme will be rigorously simulated, which allows enhanced voltage regulation and power 

sharing among PVs and BESSs in a plug-and-play fashion, without the need to measure 

loads. 

• Data-driven transient stability evaluation of ADNs and microgrids dominated by 

EV supper charging stations to combat the issues of low inertia, uncertainty, and 

transient instability. 

To address the limitations of the model-based ROA estimation methods, a data-

driven approach to estimating ROAs based on the Koopman operator theory is proposed. 

Specifically, a stable Koopman operator is first learned by imposing stability constraints in 

a data-driven gradient-descent algorithm (the SOC), instead of applying the EDMD. 

Numerically stable Koopman eigenfunctions are approximated from the ADN/microgrid 

operating data and then employed to establish a set of linearly parameterized Lyapunov 

candidate functions. Such a design can reduce the number of decision variables for 

improved computational efficiency, compared with other optimization-based methods such 

as the SOSP. And it is also directly interpretable from the perspective of Koopman spectral 

analysis and stability properties. Various trajectory data are then rigorously applied to form 

a tight feasible polytope. Through efficient sampling and linear optimization, the union of 

invariant sublevel sets of the determined Lyapunov functions can constitute a tight inner 

approximation to the actual ROA in real-time. 
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1.4 Dissertation Structure 

Below, Figure 1.4 shows the structure of this Ph.D. dissertation. Chapter 1 

introduces the state of the art in operation and control of emerging electric distribution 

networks (microgrids, nanogrids, and ADNs) and sets forth the major challenges, research 

motivation and objectives. In Chapters 2 through 5, four major projects conducted during 

the author’s Ph.D. studies are discussed, which try to address the major challenges of 

emerging electric distribution networks in different system settings. Chapter 6 concludes 

the findings of the Ph.D. projects and discusses the future work along this line of research. 

 

Figure 1.4. Dissertation structure. 
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Chapter 2 

Control of Solar PV Systems in Emerging Distribution Networks 

 2.1 Introduction 

Using RESs such as solar and wind to generate electricity rather than fossil fuels 

drastically reduces GHG emissions from the electric power sector and helps to mitigate the 

impacts of climate change. However, these types of renewables are highly weather-

dependent. For instance, due to variability and intermittency in solar irradiation, solar PVs 

may frequently experience high output power fluctuations, which can cause grid frequency 

fluctuations. Furthermore, in ADNs and microgrids with resistive distribution lines, the 

rapid change in active power outputs also causes grid voltage fluctuations. Such adverse 

impacts will become more pronounced as PV systems become more widely deployed and 

are expected to dominate future electric power distribution networks. Thus, high-

performance controls of solar PV systems are crucial to the reliable operation of emerging 

ADNs and microgrids. The principles of PV and their commonly used MPPT control 

strategies are reviewed, and the modeling and control of a grid-connected PV-BESS system 

are implemented when PV penetration in the grid is low. The PV-VSG strategy and its 

coordinated control with CHP units are then presented as PV penetration increases in 

ADNs and microgrids. 

2.1.1 Modeling of Solar PV Systems 

For a solar PV system, the effective utilization of its solar cells depends not only 

on the internal characteristics but also on external factors such as solar radiation, 

temperature, and loading conditions. The PV cells are constructed using differently doped 
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semiconducting materials with the p-n junction exposed to light. Equivalent electrical 

circuit-based models are commonly used to simulate PV cells. Figure 2.1 presents the 

equivalent circuit of a practical PV cell, which is sometimes termed as the five-parameter 

model [100]. 

 

Figure 2.1. Single-diode model of a practical PV cell. 

In the absence of solar irradiation, the PV cell behaves as a simple p-n junction 

diode, and its characteristics is governed by the well-known Shockley diode equation: 

 
𝐼𝑑,𝑐 = 𝐼𝑜,𝑐 [exp (

𝑞(𝑉𝑝𝑣,𝑐 + 𝑅𝑠,𝑐 ⋅ 𝐼𝑝𝑣,𝑐)

𝑎𝑘𝑇
) − 1] 

(2.1) 

 

where the subscript c stands for “cell”, 𝐼𝑜,𝑐 is the diode saturation current (A), a is the 

ideality factor, and k is the Boltzmann’s constant (−1.380653 × 10−23J/K). Furthermore, 

q means the absolute value of electron’s charge (−1.60217646 × 10−19 C) and T denotes 

the cell temperature (K). 𝑅𝑠,𝑐 depicts the losses due to the contact resistance between the 
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silicon and electrode surfaces, the current flow resistance in the silicon material and the 

resistance of the electrodes.  

In Figure 2.1, the following current relationship holds: 

𝐼𝑝𝑣,𝑐 = 𝐼𝐿,𝑐 − 𝐼𝑑,𝑐 − 𝐼𝑠ℎ,𝑐  

= 𝐼𝐿,𝑐 − 𝐼𝑜,𝑐 [exp (
𝑞(𝑉𝑝𝑣,𝑐 + 𝑅𝑠,𝑐 ⋅ 𝐼𝑝𝑣,𝑐)

𝑎𝑘𝑇
) − 1] −

𝑉𝑝𝑣,𝑐 + 𝑅𝑠,𝑐 ⋅ 𝐼𝑝𝑣,𝑐

𝑅𝑠ℎ,𝑐
 

(2.2) 

 

where 𝐼𝑝𝑣,𝑐 is the cell terminal current (A) and 𝑉𝑝𝑣,𝑐 is the cell terminal voltage (V). 𝐼𝐿,𝑐 

represents the photo-generated current (A). 𝑅𝑠ℎ,𝑐 is used to account for the leakage current 

in the p-n junction. 

In practice, multiple PV cells are configured in parallel and series connections to 

constitute a PV module. Furthermore, PV modules are assembled as a PV panel or even a 

PV array. Without loss of generality, it is assumed that a PV array consists of 𝑁𝑝 strings 

connected in parallel, and each string contains 𝑁𝑠 PV cells connected in series. 𝑅𝑠ℎ and 𝑅𝑠 

are the equivalent shunt and series resistances of the PV array, respectively. Thus, the 

equivalent terminal current-voltage relationship for the PV array is expressed as: 

𝐼𝑝𝑣 = 𝑁𝑝 ⋅ 𝐼𝐿,𝑐 − 𝑁𝑝 ⋅ 𝐼𝑜,𝑐 [exp (
𝑞(𝑉𝑝𝑣 + 𝑅𝑠 ⋅ 𝐼𝑝𝑣)

𝑁𝑠𝑎𝑘𝑇
) − 1] −

𝑉𝑝𝑣 + 𝑅𝑠 ⋅ 𝐼𝑝𝑣

𝑅𝑠ℎ
 

(2.3) 

 

When the effects of solar irradiance (G) and cell temperature (T) are considered, 

the photo-generated current becomes 

 
𝐼𝐿 =

𝐺

𝐺𝑆𝑇𝐶
[𝐼𝐿,𝑆𝑇𝐶 + 𝐾𝑖(𝑇 − 𝑇𝑆𝑇𝐶)] 

(2.4) 
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where the subscript STC refers to the Standard Test Conditions defined by IEC-60904-3, 

where 𝐺𝑆𝑇𝐶 = 1000 W/m2  and 𝑇𝑆𝑇𝐶 = 298.15 K (25𝑜C). 𝐾𝑖 is a temperature coefficient. 

The diode saturation current only depends on the cell temperature:  

 
𝐼𝑜 = 𝐼𝑜,𝑆𝑇𝐶(

𝑇𝑆𝑇𝐶

𝑇
)3exp [

𝑞 ⋅ 𝐸𝑔

𝑎 ∙ 𝑘
(

1

𝑇𝑆𝑇𝐶
−

1

𝑇
)] 

(2.5) 

 

where 𝐸𝑔 is the band gap energy of the semiconductor. 

2.1.2 MPPT Control  

Figure 2.2 shows how the electrical characteristics of a typical PV module are 

affected by the cell temperature and the solar irradiance. These curves can be derived from 

the above-mentioned mathematical equations or from field experiments; PV module 

manufacturers also often provide them. It could be observed that under different 

circumstances (i.e., cell temperature and solar irradiance), the PV system can operate at 

various but unique maximum power points (MPPs): the knees of those P-V curves. The PV 

module terminal current at MPP is almost directly proportional to the solar irradiance. 

However, an increase in the cell temperature causes a slight reduction in the PV module 

terminal voltage at MPP, and thereby leads to a lower power output at the same solar 

irradiation level. As the meteorological conditions may change throughout the course of a 

day, so does the MPP. Hence, it is important to maintain the PV system operating at its 

MPP regardless of the varying environmental conditions. The control techniques that 

maximize the PV power outputs are thus referred to as maximum power point tracking 

(MPPT). The core of MPPT techniques are impedance matching based on the maximum 

power transfer theorem. The equivalent impedance of a PV source can be considered as the 
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ratio between the voltage and the current at MPP. To maximize the power withdrawal from 

a PV system, its load characteristics need to be adjusted such that the equivalent load 

impedance matches the PV’s.  

 

Figure 2.2. I-V and P-V Characteristics curves of a typical PV module. 

Reference [101] conducted a comprehensive review of the existing MPPT methods, 

where those algorithms were compared in terms of tracking speed, algorithm complexity, 

dynamic tracking under partial shading, and hardware implementation. In comparison with 

the soft computing approaches, the traditional extremum-seeking algorithms such as the 

perturb and observe (P&O) and the incremental conductance (IC) have lower 

computational complexity at the cost of reduced tracking accuracy. Given the fact that each 

P-V curve normally has a unique MPP as shown in Figure 2.3, both P&O and IC aim to 

find the point where 
𝑑𝑃𝑝𝑣

𝑑𝑣𝑝𝑣
  equals 0. However, P&O approximates 𝑑𝑃𝑝𝑣  based on the 
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difference between the PV powers sampled in two consecutive time steps, which has 

limited accuracy and tracking performance. Alternatively, IC approximates 𝑑𝑃𝑝𝑣 using the 

total derivative.  

 

Figure 2.3. Slopes of the P-V characteristic curve. 

The main idea is briefly illustrated here. The instantaneous PV power output is 

 𝑃𝑝𝑣 = 𝑣𝑝𝑣𝑖𝑝𝑣 (2.6) 

 

Differentiating both sides with respect to 𝑣𝑝𝑣 yields 

 𝑑𝑃𝑝𝑣

𝑑𝑣𝑝𝑣
= 𝑖𝑝𝑣 + 𝑣𝑝𝑣

𝑑𝑖𝑝𝑣

𝑑𝑣𝑝𝑣
   (2.7) 

 

When 
𝑑𝑃𝑝𝑣

𝑑𝑉𝑝𝑣
= 0, the operating point should satisfy the following V-I relationship: 

 𝑑𝑖𝑝𝑣

𝑑𝑣𝑝𝑣
= −

𝑖𝑝𝑣

𝑣𝑝𝑣
 (2.8) 
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In practice, 
∆𝑖𝑝𝑣

∆𝑣𝑝𝑣
 is used to approximate 

𝑑𝑖𝑝𝑣

𝑑𝑣𝑝𝑣
. The logic behind IC is presented as 

below: 

 ∆𝑖𝑝𝑣

∆𝑣𝑝𝑣
> −

𝑖𝑝𝑣

𝑣𝑝𝑣
 

 

on the left side of the MPP 

 ∆𝑖𝑝𝑣

∆𝑣𝑝𝑣
= −

𝑖𝑝𝑣

𝑣𝑝𝑣
 

 

at the MPP 

 ∆𝑖𝑝𝑣

∆𝑣𝑝𝑣
< −

𝑖𝑝𝑣

𝑣𝑝𝑣
 

 

on the right side of the MPP               

  (2.9) 

 

At each time step, 𝑣𝑝𝑣 is adjusted by a fixed voltage increment or decrement to 

generate the voltage reference for the next time step. This process continues until the 

difference of the measured 𝑣𝑝𝑣 between two consecutive time steps, i.e., ∆𝑣𝑝𝑣, becomes 

close to zero.  

2.2 Modeling and Control of Grid-Connected PV-BESS Systems 

PV systems alone would not be able to operate at night or on cloudy days. Paring 

with battery energy storage systems (BESSs) can add more power control flexibility to the 

PV systems. They can smooth out the potential fluctuations in solar power output. In 

addition, a BESS might be an economically viable option since it stores excess solar power 

on-site and can choose to sell electricity to the main grid or consume locally.  

A conceptual illustration of a grid-connected PV-BESS system is presented in 

Figure 2.4. In the front end of this double-stage configuration, the PV array is operated in 

MPPT mode via a DC-DC boost converter, while the BESS is connected in parallel to the 
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DC link via a synchronous buck converter. Regulation of the DC-link voltage 𝑣𝑑𝑐  at a 

constant is necessary to maintain a dynamic balance between the DC input power and the 

AC output power. In the rear end, the inverter delivers the extracted maximum DC power 

from the PV system to the AC grid. The corresponding control loops are elaborated as 

follows. 

 

Figure 2.4. Diagram of PV-BESS system connected to a grid. 

2.2.1 PV MPPT Control 

Figure 2.5 shows the implemented MPPT closed-loop feedback control for the PV 

array. The MPPT algorithm takes in the PV voltage and current measurements filtered by 

low-pass filters (LPFs) and calculates the voltage reference 𝑣𝑚𝑝𝑝 with the help of the boost 

converter. Then the voltage error is fed to the proportional-integral (PI) -based MPPT 

controller which generates the duty cycle through pulse-width modulation (PWM) for the 

boost converter [102].  
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Figure 2.5. MPPT control loop. 

2.2.2 BESS Control 

In general, BESSs are utilized to stabilize the DC-link voltage of the PV-BESS 

system. Since the inverter can also perform this function, only a simple BESS current 

control loop is implemented to absorb and release stored energy, as shown in Figure 2.6. 

𝑃𝑏𝑒𝑠𝑠
∗  denotes a discharging power command if it is positive, and thus the synchronous buck 

converter works in the boost mode. When 𝑃𝑏𝑒𝑠𝑠
∗   is negative, the BESS is charged by 

absorbing power via the DC link. The PI-based BESS controller acts on the BESS current 

error and generates a duty cycle 𝐷𝑏𝑒𝑠𝑠 for the synchronous buck converter. 

 

Figure 2.6. BESS control loop. 

An important criterion for limiting the BESS charging and discharging capacities 
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is the range of the state of charge (SoC). In case the BESS reaches its lower bound of SoC, 

it must stop discharging so that no power should be pumped out of the battery. Likewise, 

if the BESS reaches its higher bound of SoC, it should not be charged further. In both cases, 

the BESS control is blocked simply by switching 𝐷𝑏𝑒𝑠𝑠 and its complement �̅�𝑏𝑒𝑠𝑠 to zero. 

A simple logic module for deactivation (and activation) of BESS control is implemented.   

2.2.3 Inverter Control 

The inverter control is implemented through a dual control loop. The outer control 

loop deals with DC-link voltage control and/or power control, while the inner control loop 

is responsible for current regulation. Figure 2.7 presents the outer control loop. 

 

Figure 2.7. Outer control loop. 

After the Park transformation is applied, the three-phase AC variables (abc) are 

converted to two orthogonal DC variables (d-q), which facilitates the use of PI controllers. 

Furthermore, the inverter instantaneous active power and reactive power on the grid side 

can be calculated based on the instantaneous power theory [103]: 
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{
𝑃𝑔 = 𝑣𝑔𝑑𝑖𝑑 + 𝑣𝑔𝑞𝑖𝑞
𝑄𝑔 = 𝑣𝑔𝑞𝑖𝑑 − 𝑣𝑔𝑑𝑖𝑞

 
 

(2.10) 

 

Since the d-axis of the synchronous rotating reference frame is aligned with the grid 

voltage via a PLL that extracts the grid phase angle (𝜃), 𝑣𝑔𝑑 = 𝑉𝑔𝑚 (𝑉𝑔𝑚 is the magnitude 

of the grid phase voltage) and 𝑣𝑔𝑞 = 0. In terms of the DC link, the DC input power and 

the AC output power should be equal under the assumption that the inverter is lossless: 

 
𝑣𝑑𝑐𝑖𝑑𝑐 − 𝑣𝑑𝑐𝐶𝑑𝑐

𝑑𝑣𝑑𝑐

𝑑𝑡
= 𝑉𝑔𝑚𝑖𝑑 

(2.11) 

 

In the Laplace domain, 

 
𝑣𝑑𝑐(𝑠) ≈ −

𝑉𝑔𝑚

𝑉𝑑𝑐𝐶𝑑𝑐𝑠
𝑖𝑑(𝑠) +

1

𝐶𝑑𝑐𝑠
𝑖𝑑𝑐(𝑠) 

 (2.12) 

 

where 𝑉𝑑𝑐 is the average DC-link voltage and 𝑖𝑑𝑐(𝑠) can be considered as a disturbance. 

From this relationship, the DC-link voltage control can be designed using a PI controller, 

as shown in Figure 2.7. The average DC-link voltage is thus controlled at the reference 𝑣𝑑𝑐
∗ , 

which is usually the nominal value. Meanwhile, reactive power closed-loop control is also 

implemented. If the unity power factor is desired, the power reference 𝑄∗ is set to zero. 

After the outer control loop generates the current commands 𝑖𝑑
∗  and 𝑖𝑞

∗ , the inner 

current controllers should track these references, as shown in Figure 2.8.  
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Figure 2.8. Inner control loop. 

For the three-phase inverter shown in Figure 2.4, the relationship between the 

inverter output voltage 𝑣𝑜𝑎𝑏𝑐  before the LC filter and the grid voltage 𝑣𝑔𝑎𝑏𝑐  can be 

expressed as  

 

[
 
 
 
 
 
𝑑𝑖𝑎
𝑑𝑡
𝑑𝑖𝑏
𝑑𝑡
𝑑𝑖𝑐
𝑑𝑡 ]

 
 
 
 
 

=

[
 
 
 
 
 −

𝑟

𝐿
0 0

0 −
𝑟

𝐿
0

0 0 −
𝑟

𝐿]
 
 
 
 
 

[
𝑖𝑎
𝑖𝑏
𝑖𝑐

] +
1

𝐿
[

𝑣𝑜𝑎 − 𝑣𝑔𝑎

𝑣𝑜𝑏 − 𝑣𝑔𝑏

𝑣𝑜𝑐 − 𝑣𝑔𝑐

] 

 

 

(2.13) 

 

where r and L are the equivalent series resistance and the inductance of the per-phase LC 

filter. 

Application of the Park transformation to the above equations using 𝜃 from the PLL 
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module yields DC quantities in the synchronous rotating d-q reference frame: 

 

{
𝑣𝑜𝑑 = 𝐿

𝑑𝑖𝑑
𝑑𝑡

+ 𝑟𝑖𝑑 − 𝜔𝐿𝑖𝑞 + 𝑣𝑔𝑑

𝑣𝑜𝑞 = 𝐿
𝑑𝑖𝑞

𝑑𝑡
+ 𝑟𝑖𝑞 − 𝜔𝐿𝑖𝑑 + 𝑣𝑔𝑞

 

 

(2.14) 

 

It should be noted that these voltage equations are interdependent due to the cross-

coupling terms 𝜔𝐿𝑖𝑞  and 𝜔𝐿𝑖𝑑 . Moreover, the grid voltage also has an impact on the 

control dynamics. Thus, one feed-forward term and one decoupling term are added to each 

PI controller for improved dynamic responses. The generated voltage reference is 

transformed as 𝑣𝑜𝑎𝑏𝑐
∗   using the inverse Park transformation, which is the input to a 

sinusoidal PWM module. The detailed inner control diagram is displayed in Figure 2.8.  

2.2.4 Case Studies 

Numerical simulations for the proposed grid-connected PV-BESS system in Fig. 

2.4 are conducted in PSCAD. Since the rated output voltage of the simulated three-phase 

inverter is 4.16/2.4 kV, the DC-link voltage is designed as 10 kV for the inverter. 

Furthermore, the simulated PV array is rated 1 MW and comprised of STP 345S-24 PV 

modules. To meet the power and voltage requirements, 86 PV modules are connected in 

series per string and 34 strings in parallel. IC is selected as the MPPT algorithm, and the 

PV array is operated at unit power factor. The AC main grid is represented by an ideal 

voltage source, rated at 13.8/7.97 kV. Therefore, a wye-wye transformer is employed to 

match the voltages and provide galvanic isolation. The BESS is configured as two strings 

and each string contains 100 V-LFP48100 battery modules, amounting to 1.024 MWh and 

5.12 kV. Since the 100 V-LFP48100 battery module has a C-rate of 0.2 at 25 ℃, the 
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nominal power of the BESS is 0.2048 MW. In the simulations, the upper and lower SoC 

bounds of the BESS are set as 0.85 and 0.2 respectively. In addition, switching models of 

power converters are utilized to account for the inevitable harmonics in practice. The 

switching frequencies are set as 10 kHz for the boost converter and 5 kHz for the 

synchronous buck converter. At the start of the following simulations (i.e., before 0.2 sec), 

the DC-link capacitor is pre-charged by a paralleled 10-kV DC voltage source to avoid 

large power transients. The BESS control is activated at t = 1 sec. 

2.2.4.1 Performance of the PV-BESS System When Charging. The BESS’s SoC 

is set as 0.849 at the beginning of the simulation, while the solar radiation is initially 1000 

W/m2 and the cell temperature is 25 ℃. Solar radiation rises to 1500 W/m2 at t = 4.33 sec 

while the temperature is kept constant. Figure 2.9 illustrates the active and reactive power 

outputs of the inverter in an 8-sec simulation. The PV array puts out around 1 MW before 

the BESS starts to work in the charging mode at t = 1 sec. The charging power command 

to the synchronous buck converter is set as 0.1 MW to protect the BESS from high currents. 

Since the SoC of the BESS reaches its upper limit of 0.85 at t = 5 sec as shown in 

Figure 2.10, the BESS control loop is deactivated afterwards, and all the active power 

generated by the PV array is delivered to the main grid. Figure 2.11 displays the three-

phase inverter output voltages beyond the LC filter, while the frequency measured near the 

LC filter is given in Figure 2.12. The PV-BESS system has fast dynamic responses and low 

ripples in its outputs. 
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Figure 2.9. Inverter power outputs. 

 

Figure 2.10. SoC of the BESS. 
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Figure 2.11. Zoomed-in view of the three-phase voltages beyond the LC filter. 

 

Figure 2.12. System frequency. 

2.2.4.2 Performance of the PV-BESS System When Discharging. The dynamic 

performance of this grid-connected PV-BESS system during the discharging process is also 

of interest. This case considers a decrease in solar radiation in that it has a greater impact 

on the PV system’s power output than the temperature. The operating temperature remains 

as 25 ℃, while the solar irradiance is initially set as 1500 W/m2. The SoC of the BESS is 
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pre-set at 0.8. At t = 1 sec, the BESS control starts to operate the synchronous buck 

converter in the charging mode because of sufficient solar power generation. Nevertheless, 

the solar radiation decreases to 833 W/m2 at t = 1.68 sec when the cloud cover occurs. Then 

the BESS is controlled to feed the scheduled 0.1 MW to the main grid. The active and 

reactive powers fed into the AC grid are shown in Figure 2.13. It is worth noting that 

reactive power output is kept almost as zero due to good decoupling from active power. 

This dynamic process is also illustrated by the SoC curve in Figure 2.14.  

 

Figure 2.13. Inverter power outputs. 
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Figure 2.14. SoC of the BESS. 

In Figure 2.15, it is observed that the three-phase output voltages of the inverter are 

almost sinusoidal with low harmonic content. Additionally, the frequency measured near 

the LC filter oscillates around 60 Hz with very small ripples, shown in Figure 2.16. The 

frequency support is completely dependent on the external AC grid, the same as in the case 

shown in Section 2.2.4.1.. 

 

Figure 2.15. Zoomed-in view of the three-phase voltages beyond the LC filter. 
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Figure 2.16. System frequency. 

2.3 PV-VSG Modeling and Control 

VSG technologies provide a promising solution for integrating power-electronics-

converter-based RESs into the power systems with improved frequency and voltage 

stabilities, as the proportion of RESs continues to rise. The VSG mimics the dynamic 

characteristics of conventional SGs. Figure 2.17 shows a typical SG regulated by excitation 

and governor control systems. The speed governor varies prime mover output (torque or 

power) automatically for changes in system speed (frequency). Typical prime movers are 

diesel engines, gasoline engines, steam turbines, hydro-turbines, and gas turbines [104]. 

The excitation system provides the necessary field current to the SG’s rotor winding and 

regulates the SG’s stator terminal voltage.  
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Figure 2.17. Schematic diagram of a SG and its control systems. 

The swing equation of the SG based on rotor motion equation [105] is: 

 𝐽𝜔𝑚�̇�𝑚 + 𝐷𝑑(𝜔𝑚 − 𝜔𝑠) = 𝑝𝑖𝑛 − 𝑝𝑜𝑢𝑡 (2.15) 

 

where 𝐽 is the combined moment of inertia of the prime mover and SG rotor, 𝜔𝑚 is the 

rotor shaft velocity, and 𝜔𝑠 is the rotor synchronous speed. 𝑝𝑖𝑛 is net shaft power input to 

the SG, while 𝑝𝑜𝑢𝑡  is the electrical air-gap power corresponding to the counteracting 

electromagnetic torque 𝑇𝑒. 𝐷𝑑 denotes the damping coefficient that accounts for the effect 

of damper winding. More specifically,  

 𝑝𝑖𝑛 = 𝑃𝑐 − 𝑅𝐷(𝜔𝑚 − 𝜔𝑠) (2.16) 

 

where 𝑅𝐷 is the speed droop and 𝑃𝑐 is a control input to the speed governor, which can 

either be a constant or the output of automatic generation control (AGC) [104]. Since 𝑝𝑖𝑛 

is generated by the speed governor and prime mover which generally have a relatively large 

time constant, it reacts only to the frequency swings in the range of 0.3-3 Hz [106]. In 
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contrast, 𝐽𝜔𝑚�̇�𝑚 is due to the inertia and responds to faster frequency swings, normally in 

the range of 3-30 Hz. 

To emulate the electromechanical behaviors of the above SG system, a double-stage 

PV-VSG model is proposed. Figure 2.18 illustrates the topology and control diagram of the 

proposed PV-VSG. The front-end DC-DC boost converter is controlled to mimic the prime 

mover of a conventional SG, while the rear-end DC-AC inverter is controlled to mimic the 

SG. In the following subsections, the control modules relevant to the two stages are 

elaborated respectively. 

 

Figure 2.18. Control diagram of the proposed PV-VSG. 

2.3.1 Front-End Control 

To avoid over-modulation of the boost converter, the PV array is operated on the 

right side of the MPP based on the P-V characteristic curve which can be estimated via the 
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measured solar irradiance and PV cell temperature [107]. Thus, the following equation is 

introduced to resemble (2.16): 

 𝑉𝑝𝑣
𝑟𝑒𝑓

= 𝑉𝑝𝑣,𝑛 − 𝐷𝑝𝑣(𝜔𝑛 − 𝜔𝑚) (2.17) 

 

where 𝑉𝑝𝑣,𝑛 matches the desired active power reserve (corresponding to 𝑃𝑐 in Figure 2.17) 

to provide the speed governor and prime mover response, and 𝐷𝑝𝑣 is the droop coefficient. 

These two parameters can be readily determined from the estimated P-V characteristics 

curve. In addition, 𝐷𝑝𝑣 and 𝑉𝑝𝑣,𝑛 are periodically updated to keep track of the PV system’s 

real-time operating conditions. 𝜔𝑛 is the nominal angular frequency, and 𝜔𝑚 is the virtual 

angular frequency generated in the rear end that will be introduced later. A PI controller is 

designed with a large time constant to mimic the slow response of the speed governor and 

prime mover. The duty cycle of the boost converter is adjusted via the PI controller so that 

𝑉𝑝𝑣  closely tracks 𝑉𝑝𝑣
𝑟𝑒𝑓

 . This negative feedback mechanism automatically balances the 

load if the available solar power is sufficient for active power reserve. 

2.3.2 Rear-End Control 

An analogy can be made between the combined moment of inertia 𝐽 and the DC-

link capacitor 𝐶𝑑𝑐 of the inverter in terms of power. If the damping effect is ignored for the 

time being, the swing equation is written as follows: 

 𝑝𝑖𝑛 − 𝑝𝑜𝑢𝑡 = 𝐽𝜔𝑚�̇�𝑚 = 𝐶𝑑𝑐𝑉𝑑𝑐�̇�𝑑𝑐 (2.18) 

 

Furthermore, a linear mapping is adopted between the DC-link voltage 𝑉𝑑𝑐 and 𝜔𝑚: 
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𝜔𝑚 = 𝜔𝑛 +

1

𝐷𝑑𝑐
(𝑉𝑑𝑐 − 𝑉𝑑𝑐,𝑛) 

(2.19) 

 

where 𝑉𝑑𝑐,𝑛 is the nominal DC-link voltage, and 𝐷𝑑𝑐 is the droop coefficient. 

Taking derivative of both sides of (2.19) and comparing with (2.18) yields 

 
𝐽 = 𝐷𝑑𝑐

𝑉𝑑𝑐,𝑛

𝜔𝑛
𝐶𝑑𝑐 

(2.20) 

 

Thus, proper selection of 𝐷𝑑𝑐 is permitted given a desired 𝐽. Moreover, this relationship 

indicates that 𝐽 can be augmented when only a limited capacitance is available.  

The reactive power controller in Figure 2.18 is similar to the 

automatic voltage regulator (AVR) [105] plus a reactive power-voltage droop controller. 

The reference output voltage magnitude is obtained by integration: 

 
𝑉𝑜,𝑟𝑒𝑓 = 𝐾𝑖𝑞 ∫[𝑄𝑛 + 𝐷𝑞(𝑉𝑛 − 𝑉𝑜) − 𝑄] 𝑑𝑡 

(2.21) 

 

where 𝑄 and 𝑉𝑜 are the measured/calculated output reactive power and the output voltage 

magnitude at the LC filter. 𝑄𝑛 and 𝑉𝑛 are their nominal values; 𝐷𝑞 is a droop coefficient, 

which is designed following [108]. 

As for the damping term in (2.15), it is not straightforward to apply since 𝐽 has been 

represented by 𝐶. Alternatively, the damping method proposed in [109] is adopted. This 

method can flexibly improve the damping of responses without compromising the desired 

inertial response. Define 𝐬𝐢𝐧⃗⃗⃗⃗⃗⃗ (𝜃) ∶= [sin (𝜃) sin (𝜃 −
2𝜋

3
) sin (𝜃 +

2𝜋

3
)]  and 

𝐜𝐨𝐬⃗⃗ ⃗⃗ ⃗⃗  (𝜃) ∶= [cos (𝜃) cos (𝜃 −
2𝜋

3
) cos (𝜃 +

2𝜋

3
)]. Assuming the actual output voltage 
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𝒗𝑜 = 𝑉𝑜 𝐬𝐢𝐧⃗⃗⃗⃗⃗⃗ (𝜃𝑜) , the derivative of the inner product readily yields the difference between 

𝜔𝑜 and 𝜔𝑚: 

 𝑑

𝑑𝑡
(〈𝒗𝑜 , 𝒄𝒐𝒔⃗⃗⃗⃗⃗⃗  ⃗(𝜃𝑚)〉) =

3

2
𝑉𝑜(𝜔𝑜 − 𝜔𝑚)𝑐𝑜𝑠(𝜃𝑜 − 𝜃𝑚) 

(2.22) 

 

Therefore, the damping term 𝑉𝑑𝑚𝑝 = −
2

3
𝐷

𝑑

𝑑𝑡
(〈𝒗𝑜 , 𝒄𝒐𝒔⃗⃗⃗⃗⃗⃗  ⃗(𝜃𝑚)〉)  is added to 𝑉𝑜,𝑟𝑒𝑓  to 

generate the modified reference voltage magnitude 𝑉𝑜−𝑑,𝑟𝑒𝑓 ; 𝐷  is the corresponding 

damping coefficient. A low-pass filter (LPF) is also employed because the derivative 

operation can amplify high-frequency noises. The inverter reference voltage is then 

generated via two sets of cascaded PI controllers working in the synchronous rotating d-q 

reference frame, which form the outer voltage control loop and the inner current control 

loop.  

2.4 Coordinated Control of PV-VSG and CHP 

The solar PV system can operate alone when the solar irradiance is sufficient, while 

the CHP unit provides frequency-responsive spinning reserves for the solar PV. 

2.4.1 CHP Modeling and Control of the CHP Unit 

Figure 2.19 displays a typical single-shaft GT-based CHP unit with its major 

components: a compressor, a combustor, and an expansion turbine (ET). The heated flow 

expanded in the ET drives the compressor and the generator (G), while the heat recovery 

steam generator (HRSG) recovers waste heat from the exhaust gases. The steam produced 

by the HRSG can be used for heating/cooling or to drive a steam turbine. 
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Figure 2.19. Single-shaft GT-based CHP unit. 

2.4.1.1 Gas Turbine Thermodynamics. In essence, all GTs are based on the 

Brayton cycle [30]. The temperature-entropy diagram of the Brayton cycle is illustrated in 

Figure 2.20.  

 

Figure 2.20. Brayton cycle temperature-entropy diagram. 

Ambient air comes into contact with the compressor at Point 1 and is then 
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compressed in an irreversible process to Point 2. Input heat in the combustor increases the 

temperature to point 3 where the combustion product and compressor discharge air enter 

the ET and expand to Point 4. For simplicity, the processes 2-3 and 4-1 are assumed to be 

isobaric. While the processes in the compressor (i.e., 1-2) and the ET (i.e., 3-4) are 

irreversible and non-isentropic, they are assumed to be isentropic as 1-2s and 3-4s in order 

to approximate the compressor and ET irreversible adiabatic efficiencies 𝜂𝑐  and 𝜂𝑡 , 

respectively: 

 
𝜂𝑐 =

ℎ2𝑠 − ℎ1

ℎ2 − ℎ1
≈

𝑇2𝑠 − 𝑇1

𝑇2 − 𝑇1
 

(2.23) 

 
𝜂𝑡 =

ℎ3 − ℎ4

ℎ3 − ℎ4𝑠
≈

𝑇3 − 𝑇4

𝑇3 − 𝑇4𝑠
 

(2.24) 

 

where ℎ is the fluid mixture enthalpy (kJ/kg) and 𝑇 is the absolute temperature in K. 

Two intermediate variables are also defined: 

 
𝑥𝑐 ∶= (𝑃𝑅𝑛 ⋅ 𝑤𝑝𝑢)

𝛾𝑐−1
𝛾𝑐  

(2.25) 

 
𝑥ℎ ∶= (𝑃𝑅𝑛 ⋅ 𝑤𝑝𝑢)

𝛾ℎ−1
𝛾ℎ  

(2.26) 

 

where 𝑃𝑅𝑛 is the nominal compressor pressure ratio, and 𝑤𝑝𝑢 is the airflow rate (𝑤) in per 

unit (pu). 𝛾𝑐 and 𝛾ℎ are the cold-end and hot-end ratios of specific heats, respectively. 

As an irreversible adiabatic process is assumed in the compressor, the compressor 

discharge temperature 𝑇2 (K) can be calculated as: 

 
𝑇2 = 𝑇1 (

𝑥𝑐 − 1

𝜂𝑐
+ 1) 

(2.27) 
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where 𝑇1 (K) is the ambient temperature. 

Likewise, the ET exhaust temperature 𝑇4 (K) is derived as: 

 
𝑇4 = 𝑇3 [1 − (1 −

1

𝑥ℎ
) 𝜂𝑡] 

(2.28) 

 

where 𝑇3 (K) is the ET inlet temperature.  

Assuming an isobaric process in the combustor and considering the heat absorption 

rate (kJ/s) lead to 

 
𝑇3 = 𝑇2 + 𝜂𝑐𝑜𝑚𝑏

𝐻

𝐶𝑝ℎ
⋅
𝑤𝑓𝑛

𝑤𝑛
⋅
𝑤𝑓,𝑝𝑢

𝑤𝑝𝑢
 

(2.29) 

 

where 𝐻 is the lower heating value of the fuel, and 𝜂𝑐𝑜𝑚𝑏 is the combustor efficiency. 𝑤𝑓𝑛 

and 𝑤𝑛 are the nominal fuel flow and airflow rates (kg/s), respectively. 𝐶𝑝ℎ stands for the 

specific heat of hot-end air at constant pressure. 

It is also assumed that 𝑤𝑓 is negligible compared with 𝑤 [110]. The net mechanical 

power produced by the GT can be calculated as  

 
𝑃𝐺,𝑝𝑢 =

𝑃𝐺

𝑃𝐺𝑛
=

𝑤𝑝𝑢 ⋅ 𝑤𝑛 ⋅ [𝐶𝑝ℎ ⋅ (𝑇3 − 𝑇4) − 𝐶𝑝𝑐 ⋅ (𝑇2 − 𝑇1)]

𝑃𝐺𝑛
 

(2.30) 

 

where 𝐶𝑝𝑐 is the specific heat of cold-end air at constant pressure, and 𝑃𝐺𝑛 is the nominal 

gross power output (kW). 

Besides, the thermal power collected by the HRSG is 

 𝑃𝑆𝑇,𝑝𝑢 = 𝐾 ⋅ 𝑤𝑝𝑢 ⋅ 𝑤𝑛 ⋅ 𝐶𝑝ℎ ⋅ 𝑇4 (2.31) 
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where 𝐾 is a system-specific constant coefficient. 

2.4.1.2 Control Loops. The GT-based CHP dynamic model is proposed and 

simulated as shown in Figure 2.21. The speed governor (speed controller) is operated in 

standard droop mode for load sharing. It can also be in the isochronous mode to eliminate 

the error between the rotor speed 𝜔𝑟 and the speed reference 𝜔𝑟𝑒𝑓. 

 

Figure 2.21. Dynamic model of the GT-based CHP. 

The acceleration controller limits the acceleration of the generator rotor during the 

start up or for a sudden loss of load. This controller becomes secondary in normal 

operations. A PI-based temperature controller is employed to adjust the turbine temperature 

𝑇4 by reducing the fuel flow. If the measured 𝑇4 exceeds the reference 𝑇4,𝑟𝑒𝑓, the controller 

will come off the maximum limit and integrate down such that its output starts to act 

through the low value select block, whose output is 𝑤𝑓,𝑝𝑢. In practice, the position g of 
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variable inlet guide vanes (VIGVs) at the front of the compressor should be controlled to 

regulate the airflow drawn into the compressor when the GT is at part load or during start 

up. This way, 𝑇4  can be maintained at an adequate level that benefits the downstream 

HRSG. In this dynamic model, 𝑇4 is kept lower than 𝑇4,𝑟𝑒𝑓 by considering an offset, e.g., 

1% of the rated value. The VIGV controller modulates g, which in turn changes 𝑤𝑝𝑢 along 

with the rotor speed 𝜔𝑟 . The no-load consumption 𝑘𝑁𝐿  ensures satisfaction of the 

minimum fuel requirement for self-sustaining combustion, which is crucial for compressor 

operation. Also, the valve positioner and fuel system dynamics are approximated as first-

order transfer functions. 𝑘𝐹 = 0 if the GT operates on gas fuels. 

2.4.2 Case Studies 

To validate the effectiveness of the proposed PV-VSG and GT-based CHP models 

and demonstrate their coordinated control in an islanded campus microgrid, numerical 

simulations of a prototype campus microgrid as shown in Figure 2.22 are conducted in 

MATLAB/Simulink.  
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Figure 2.22. Single-line diagram of the simulated campus microgrid system. 

During a utility power outage, the campus microgrid will operate in the islanded 

mode, i.e., the static switch at Bus 1 remains open. The capacitor bank (CB) is activated 

for reactive power support. During school days, the loads at Bus 4 and Bus 5 are identified 

as the critical loads, while the other loads are noncritical ones. It is also assumed that 

automatic underfrequency load shedding (UFLS) is in place. The 10-MW PV farm is 

controlled as a PV-VSG. The CHP module represents the 5-MVA Centaur 40 CHP model 

[111] and contains a salient-pole SG fitted with the generic IEEE DC1A exciter. Averaged 

models of the boost converter and the inverter are employed in the PV-VSG model for 

simulation speedup. The detailed control and system parameters are listed in Table 2.1. 
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Table 2.1  

System and Control Parameters 

Centaur 40 CHP Unit Parameters Symbol Value 

Speed droop (pu) 𝑅 0.04 

Speed governor time constant (sec) 𝑇𝐺 0.03 

Acceleration controller gain 𝐾𝑖𝐴𝐶 100 

Maximum acceleration �̇�𝑟,𝑚𝑎𝑥 0.2 

Fuel upper limit (pu) 𝐹𝑑,𝑚𝑎𝑥 1.5 

Fuel lower limit (pu) 𝐹𝑑,𝑚𝑖𝑛 -0.13 

No-load fuel consumption (pu) 𝑘𝑁𝐿 0.24 

Valve positioner time constant (sec) 𝑇𝑉𝑃 0.04 

Fuel system time constant (sec) 𝑇𝐹𝑆 0.18 

Fuel system external feedback loop gain  𝑘𝐹 0 

Radiation shield gain 𝐺𝑆𝐻 0.85 

Radiation shield time constant (sec) 𝑇𝑆𝐻 10.2 

Thermocouple time constant (sec) 𝑇𝑇𝑅 1.2 

Temperature controller constant (℃) 𝑇𝑡 380 

Temperature controller proportional  𝐾𝑝𝑇 3.4 

Temperature controller integral 𝐾𝑖𝑇 1 

Reference exhaust temperature (℃) 𝑇4,𝑟𝑒𝑓 465 

VIGV controller constant (℃) 𝑇𝑤 380 

Gate position upper limit (pu) 𝑔𝑚𝑎𝑥 1.0 

Gate position lower limit (pu) 𝑔𝑚𝑖𝑛 0.72 



 

58 

 

Centaur 40 CHP Unit Parameters Symbol Value 

Nominal compressor pressure ratio 𝑃𝑅𝑛 10 

Nominal airflow rate (kg/sec) 𝑤𝑛 18.98 

Nominal fuel flow rate (kg/sec) 𝑤𝑓𝑛 0.29 

Hot-end ratio of specific heats 𝛾ℎ 1.33 

Cold-end ratio of specific heats 𝛾𝑐 1.4 

Specific heat of hot-end air at constant pressure 

(kJ/kg/K) 

𝐶𝑝ℎ 1.1569 

Specific heat of cold-end air at constant pressure 

(kJ/kg/K) 

𝐶𝑝𝑐 1.0047 

Compressor efficiency 𝜂𝑐 0.86 

Combustor efficiency  𝜂𝑐𝑜𝑚𝑏 0.99 

Expansion turbine efficiency  𝜂𝑡 0.89 

Lower heating value of natural gas (kJ/kg) 𝐻 47130 

HRSG thermal power coefficient  𝐾 0.0003 

PV-VSG Parameters Symbol Value 

DC-link nominal voltage (kV) 𝑉𝑑𝑐.𝑛 10 

Nominal angular frequency (rad/sec) 𝜔𝑛 377 

DC-link capacitor (mF) 𝐶𝑑𝑐 30 

Grid nominal voltage (line-to-line) (kV) - 4.16 

Inverter power rating (MVA) - 10 

Boost converter inductance (mH) - 5 

PV shunt capacitance (μF) 𝐶𝑝𝑣 500 

LC filter inductance (mH) - 5 
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Centaur 40 CHP Unit Parameters Symbol Value 

LC filter capacitance (μF) - 60 

𝜔𝑚 − 𝑉𝑝𝑣 droop 𝐷𝑝𝑣 67.4 

𝑉𝑑𝑐 − 𝜔𝑚 droop  𝐷𝑑𝑐 318 

Damping coefficient 𝐷 0.01 

𝑉 − 𝑄 droop 𝐷𝑞 2944.2 

Nominal reactive power (Mvar) 𝑄𝑛 1 

 

The dynamic active load at Bus 3 is modeled to test the transient performance of 

the proposed PV-VSG under different loading conditions. Specifically, the dynamic active 

load experiences a step increase from 0 to 1.2 MW at t = 10.2 sec and then a step decrease 

to 0.8 MW at t = 18.7 sec. To further explore the effect of solar irradiance on the PV-VSG 

operation, a varying solar irradiance shown in Figure 2.23 is used throughout the simulation. 

 

Figure 2.23.  Solar irradiance curve. 

In order to illustrate the coordinated control of the PV-VSG and the CHP, the 

simulation scenario is designed such that the CHP unit initially only supplies the local load 
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at Bus 5 and can enter the hot standby mode once dispatched. The rest of the campus is 

served by the PV farm with the assumption that the available solar power is initially 

adequate to provide active power reserve. However, since the grid frequency may drop due 

to plunged solar irradiance or increased campus loads, UFLS should prevent the frequency 

from falling below the minimum permissible value, e.g., 59.3 Hz. When the frequency 

stabilizes after some transients, the CHP unit will start to synchronize to deliver reliable 

power and also enhance system inertia. It should be noted that the design of a UFLS scheme 

is system-specific and beyond the scope of this paper. For simplification, the UFLS is set 

such that the load at Bus 2 will be shed when the system frequency reaches 59.7 Hz, and 

the dynamic active load will be shed once the frequency drops below 59.6 Hz. Other loads 

are shed in further steps when lower frequency thresholds are met. In addition, this 

protective relay setting is consistent before and after CHP synchronization. The ambient 

temperature is assumed to be 27.5 °C, and 𝑉𝑑𝑐,𝑛 is 10 kV. 𝑉𝑝𝑣,𝑛 is initially set as 5847 V, 

resulting in an active power reserve of around 5 MW. The total simulation time is 90 sec 

with a time step of 50 μs. 

The DC-link voltage of PV-VSG and the angular frequencies of both DERs during 

the simulation are presented in Figure 2.24. As can be observed, with a constant solar 

irradiance in the first 25 seconds, the PV-VSG solely responds to the change in loads with 

a varied 𝑉𝑑𝑐, which relates to a constantly identical waveform of 𝜔𝑚 due to the introduced 

linear transformation. It is also observed that a change in solar irradiance leads to a 

variation in 𝑉𝑑𝑐 and 𝜔𝑚, e.g., at the transient right after t = 25 sec. However, the frequency 

does not change rapidly due to the inertia emulated by the capacitor. The CHP unit is called 

upon as hot standby at t  = 20 sec. Pre-synchronization is initiated at t  = 27.93 sec when 
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the system frequency stabilizes at 59.75 Hz after the solar irradiance decreases for the first 

time. CHP synchronizes to the rest of the grid at t = 31.06 sec for load sharing. Meanwhile, 

the governor speed reference 𝜔𝑟𝑒𝑓 is adjusted from 1.008 pu to 1.014 pu and remains fixed 

afterwards. Owing to the CHP’s participation in frequency regulation, the grid frequency 

recovers and settles at 59.928 Hz at t = 35.51 sec. As the solar irradiance goes up at t = 50 

s, the PV power is adequate to supply the loads such that the DC-link capacitor is recharged, 

thus increasing both 𝜔𝑚 and 𝑉𝑑𝑐. At t = 65 sec, the solar irradiance plummets from 870 to 

350 W/m2. The UFLS protective relays are automatically triggered at t = 65.37 sec and t = 

65.69 sec to shed the load at Bus 2 and the dynamic active load, respectively. The grid 

frequency finally settles at 59.806 Hz (0.99677 pu).  

 

Figure 2.24. CHP and PV-VSG frequency responses and PV-VSG DC-link voltage. 

Figure 2.25 displays the power outputs of the two DERs throughout the entire 

simulation. Before the CHP is synchronized, the PV-VSG is able to achieve automatic load 

balancing despite variations in the solar irradiance. This capability is ensured by sufficient 

active power reserve. After the CHP unit is synchronized to the microgrid, it begins to pick 

up part of the loads. Interestingly, the active power shared by the CHP and PV systems are 
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not in a fixed proportion at all times but affected by the varying solar irradiance. After the 

solar irradiance plunges at t = 65 sec, the CHP unit takes over too much active power and 

almost reaches its apparent power rating. Consequently, the reactive power capability of 

the CHP unit becomes very limited. It is also worth noting that the CHP unit alone cannot 

serve the entire electrical loads of the campus once the sun stops shining. Hence, uprating 

the existing CHP unit or installing additional CHP units would be favorable to the stable 

and reliable operation of the campus microgrid. 

 

 

Figure 2.25. Active and reactive power outputs of CHP and PV-VSG. 

The variables related to the thermodynamic equations of the CHP’s gas turbine are 

illustrated in Figure 2.26. 
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Figure 2.26. Illustration of the variables in the GT thermodynamic equations. 

Prior to synchronization, the GT exhaust temperature is maintained close to the 

reference value 465 °C, albeit at part load. This is because the VIGV controller is in action, 

which regulates w to a relatively low level. Once the CHP is synchronized, the fuel flow 

rate rises so as to provide a higher mechanical power output. As 𝑇4 surpasses the reference, 

w is controlled to reach a higher level so that 𝑇4 is brought back near the reference again. 

It is also observed from Figure 2.26 that the temperature controller also acts by decreasing 

𝑤𝑓, which is evidenced after the instants t = 31.06 sec and t = 65.69 sec. However, the 

VIGV control has a slower response than the fuel flow rate control. Besides, Figure 2.26 

shows that the mechanical power output 𝑃𝐺  varies almost linearly with 𝑤𝑓, which checks 

with the derived GT thermodynamic equations. 

It has also been verified that the voltage magnitudes at all buses are maintained 

within the typical permissible bounds from 0.95 pu to 1.05 pu, when the campus microgrid 
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is in islanded mode as shown in Figure 2.27. 

 

Figure 2.27. Voltage magnitudes at various buses. 

2.5. Conclusion  

In this chapter, PV system fundamentals and commonly used MPPT techniques 

have been reviewed. In addition, a campus microgrid coordinately supplied and controlled 

by the CHP and PV systems in islanded mode has been modeled with high precision. A 

double-stage PV-VSG control scheme has been proposed to study the integration of a 10-

MW PV farm. This method utilizes the DC-link capacitor for inertia emulation and 

demonstrates satisfactory transient performance under varying operating conditions. 

Moreover, the feasibility and effectiveness of the coordinated control between the CHP and 

PV systems for stable operation of the islanded campus microgrid has been corroborated 

in extensive numerical simulations.  
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Chapter 3 

Predictive Hierarchical Power Management of Islanded Microgrids  

3.1 Introduction 

This chapter presents an enhanced three-layer predictive hierarchical power 

management framework proposed for the secure and economic operation of islanded 

microgrids comprising SGs and PVs. The tertiary control is built upon the centralized semi-

definite programming-based AC optimal power flow (AC-OPF) model from [112], which 

has been adapted to accommodate microgrid operations. The tertiary controller periodically 

sends power commands to the secondary control, aiming to ensure the economic operation 

of the microgrid. A centralized linear model MPC controller is proposed for the secondary 

control to mitigate the uncertainties caused by renewable generation and loads. With low 

computational complexity, the MPC controller can effectively regulate the microgrid 

system frequency and closely track reference signals from the tertiary controller. Besides, 

droop-based primary controllers are implemented to coordinate with the secondary MPC 

controller to balance the systems in real time. The specifics of the hierarchical power 

management framework, as well as the detailed system modeling and simulation are 

provided in the following subsections. 

3.2 Outline of the Hierarchical Power Management Framework 

Figure 3.1 illustrates the proposed three-level predictive hierarchical power 

management framework for islanded microgrids.  
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Figure 3.1. Overall block diagram of the hierarchical power management framework. 

The AC-OPF is implemented as the tertiary controller to set the reference values 

for the secondary and the primary level controllers. Given the dynamics decoupling from 

the dynamical secondary control and also the fact that forecasting error goes down with a 

shortened time scale, the AC-OPF takes load and renewable forecasts in tens of seconds 

and executes in the same time frame. Generally, a microgrid with high renewable 

integration necessitates sufficient reactive power support, without which voltage instability 

may occur during system operation. Static var compensators (SVCs) or static synchronous 

compensators (STATCOMs) are used to underpin the reactive power compensation in our 

simulated system, with voltage references 𝑉𝑟𝑒𝑓  periodically derived from the AC-OPF 

module and applied to the SG excitation systems to regulate their terminal voltages. 

The secondary control is implemented via a linear MPC controller responsible for 

system frequency regulation and active power control in the time frame of several seconds. 
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During each control time interval, MPC will generate an optimal control trajectory by 

solving an optimization problem over an extended time frame, whereas only the solution 

to the first control time interval will be used for actual control. The proposed MPC 

controller is built on a linearized system model (also known as prediction model) that is 

updated at run time to account for nonlinearity and time-varying system states. The 

proposed MPC controller makes sequential control decisions based on the system state 

estimation via a unified linear input-state estimator (ULISE) [113], while taking in 

renewable forecasts within a receding horizon. In addition, the proposed ULISE can 

simultaneously estimate the secondary control signals actually received by the primary 

controllers from MPC. Thus, whether the control signals sent from the secondary MPC 

controller are successfully received by the primary controller without being compromised 

can be effectively identified. This way, not only the system observability but also the 

situational awareness can be greatly enhanced. The primary controllers, consisting of the 

excitation and turbine-governor systems, receive the voltage references from the AC-OPF 

and power settings from the MPC, respectively. 

3.3 Microgrid System Modeling 

An islanded microgrid with dispatchable SGs and intermittent solar PVs is modeled 

based on a practical microgrid system. The PVs are operated in MPPT mode as detailed in 

Chapter 2. SGs, loads, and PV arrays connected to the same bus will be aggregated. The 

microgrid consists of a set of 𝑁𝐺  aggregated SGs (𝓖 represents this set), 𝑁𝑃𝑉 aggregated 

PV arrays (𝓡 ), 𝑁𝐷  aggregated loads (𝓓 ), 𝑁𝑙  lines (𝓛 ), and 𝑁𝑏  buses (𝓝 ). The first 𝑁𝐺  

buses are the generator buses, while the rest are the load buses. The detailed nomenclature 
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is provided in Table 3.1. 

Table 3.1  

Nomenclature 

A. Variables and Constants 

𝜔𝑠 Nominal synchronous velocity (rad/sec) 

𝜔 Rotor angular velocity (rad/s) 

𝛿 Rotor angle (rad) 

𝑇𝑀 Mechanical torque (pu) 

𝐻 Inertia constant (s) 

𝐷 Damping factor 

𝑇𝑑𝑜
′  D-axis transient open-circuit time constant (s) 

𝑅𝑠 Stator resistance (pu) 

𝑋𝑑
′  D-axis transient reactance (pu) 

𝑋𝑑, 𝑋𝑞    D-q axes synchronous reactances (pu) 

𝐸𝑓𝑑, 𝐸𝑞
′   Field winding and q-axis transient voltages 

(pu) 

𝐼𝑑 , 𝐼𝑞   D-q axes stator currents (pu) 

𝐾𝐴 Combined gain of exciter and voltage 

regulator  

𝑇𝐴 Overall time constant (sec) of exciter and 

regulator 

𝑉𝑟𝑒𝑓 Voltage reference to voltage regulator (pu) 

𝑇𝐶𝐻 Overall time constant (sec) of turbine and 

governor  

𝑅𝐷 Droop gain 
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A. Variables and Constants 

𝑃𝐶 Power change setting to governor (pu) 

𝑉, 𝜃   Bus voltage magnitude (pu) and angle (rad) 

𝑃𝑔, 𝑄𝑔 Active and reactive powers (pu) of SG 

𝑃𝐷 , 𝑄𝐷  Aggregate active and reactive loads (pu) 

𝑃𝑃𝑉 , 𝑄𝑃𝑉  Active and reactive powers (pu) of PV array 

𝑃𝑟𝑒𝑓 Economic dispatch set-point (pu) of SG 

𝑖, 𝑗 Index of Buses  

𝜃 Bus angle (rad) 

𝐘𝑏 Bus admittance matrix 

𝑇𝑠, 𝑇𝑐 Model update period and control interval 

𝑁𝑝, 𝑁𝑐 Prediction horizon and control horizon 

B. Symbols 

(∙)𝑇 Transpose 

trace(∙) Trace 

(∙) ≻ 0 Positive semi-definite matrix 

diag(∙) Diagonal matrix 

var(∙) Variance 

𝔼[∙] Expectation 

(∙)† Moore-Penrose pseudoinverse 

(∙)̂ Estimate 
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3.3.1 Microgrid Component Modeling  

3.3.1.1 SG Model. Given the trade-off between model accuracy and computation 

speed, the simplified third-order one-axis model (3.1-3.3) is used to represent the SG at 

bus i for its good dynamic decryption [104], assuming that the d-axis component of the 

internal voltage behind the transient reactance has vanished and that each SG is installed 

with a non-reheat steam turbine and a fast excitation system. 

 𝛿�̇� = 𝜔𝑖 − 𝜔𝑐𝑜𝑚  (3.1) 

 
𝜔𝑖̇ =

𝑇𝑀𝑖

𝑀𝑖
−

𝐸𝑞𝑖
′ 𝐼𝑞𝑖

𝑀𝑖
−

(𝑋𝑞𝑖−𝑋𝑑𝑖
′ )

𝑀𝑖
𝐼𝑑𝑖𝐼𝑞𝑖 −

𝐷𝑖(𝜔𝑖−𝜔𝑐𝑜𝑚)

𝑀𝑖
  

(3.2) 

 
𝐸𝑞𝑖

′̇ = −
𝐸𝑞𝑖

′

𝑇𝑑𝑜𝑖
′ −

(𝑋𝑑𝑖−𝑋𝑑𝑖
′ )

𝑇𝑑𝑜𝑖
′ 𝐼𝑑𝑖 +

𝐸𝑓𝑑𝑖

𝑇𝑑𝑜𝑖
′   

(3.3) 

 

where 𝜔𝑐𝑜𝑚 is the angular velocity of the common reference frame conventionally chosen 

as the nominal synchronous speed 𝜔𝑠  in a large system [114]. However, 𝜔𝑐𝑜𝑚  usually 

deviates from the nominal frequency in the context of islanded microgrids. 𝑀𝑖  denotes the 

constant 
2𝐻𝑖

𝜔𝑠
 , and the time is in seconds. Since the governor dynamics usually dies out 

much faster than the turbine dynamics [115], the governor valve position is not considered 

as a state variable. Each SG is expressed in a d-q reference frame rotating with its own 

rotor.  

The overall high-gain static excitation system model of the SG is: 

 
�̇�𝑓𝑑𝑖 = −

𝐸𝑓𝑑𝑖

𝑇𝐴𝑖
+

𝐾𝐴𝑖(𝑉𝑟𝑒𝑓,𝑖−𝑉𝑖)

𝑇𝐴𝑖
  

(3.4) 

 

The turbine-governor model of the SG is: 
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 �̇�𝑀𝑖 = −
𝑇𝑀𝑖

𝑇𝐶𝐻𝑖
+

𝑃𝐶𝑖

𝑇𝐶𝐻𝑖
−

1

𝑅𝐷𝑖𝑇𝐶𝐻𝑖
(

𝜔𝑖

𝜔𝑠
− 1)   (3.5) 

 

For the SG at bus i, its stator voltage equations are: 

 𝑉𝑖 sin(𝛿𝑖 − 𝜃𝑖) + 𝑅𝑠𝑖𝐼𝑑𝑖 − 𝑋𝑞𝑖𝐼𝑞𝑖 = 0 (3.6) 

 𝑉𝑖 cos(𝛿𝑖 − 𝜃𝑖) + 𝑅𝑠𝑖𝐼𝑞𝑖 + 𝑋𝑑𝑖
′ 𝐼𝑑𝑖 − 𝐸𝑞𝑖

′ = 0 (3.7) 

 

The active and reactive power outputs of the SG when the stator resistance is 

neglected are: 

 𝑃𝑔𝑖 = 𝑋𝑞𝑖𝐼𝑑𝑖𝐼𝑞𝑖 + 𝐼𝑞𝑖(𝐸𝑞𝑖
′ − 𝑋𝑑𝑖

′ 𝐼𝑑𝑖) (3.8) 

 𝑄𝑔𝑖 = −𝑋𝑞𝑖𝐼𝑞𝑖
2 + 𝐼𝑑𝑖(𝐸𝑞𝑖

′ − 𝑋𝑑𝑖
′ 𝐼𝑑𝑖) (3.9) 

 

3.3.1.2 PV Model. The PV array is modeled as a controlled AC current source 

operating with time-varying power generation at unity power factor. 

3.3.1.3 Load Model. A static ZIP load (3.10- 3.11) is modeled: 

 𝑃𝐷𝑖 = 𝑃𝐷𝑛𝑖(𝑎1𝑖𝑉𝑖
2 + 𝑎2𝑖𝑉𝑖 + 𝑎3𝑖) (3.10) 

 𝑄𝐷𝑖 = 𝑄𝐷𝑛𝑖(𝑏1𝑖𝑉𝑖
2 + 𝑏2𝑖𝑉𝑖 + 𝑏3𝑖) (3.11) 

 

where n stands for the nominal value of the aggregated load at bus i. Each load is comprised 

of constant impedance (Z), constant current (I), and constant power (P) components. The 

coefficients a1i to a3i and b1i to b3i define the proportions of each component. 

3.3.1.4 Network Model. The nominal π model [116] is used for the microgrid 

network modeling, and the power balance for bus i is shown in (3.12- 3.13): 

𝐼𝑑𝑖𝑉𝑖 sin(𝛿𝑖 − 𝜃𝑖) + 𝐼𝑞𝑖𝑉𝑖 cos(𝛿𝑖 − 𝜃𝑖) + 𝑃𝑃𝑉𝑖 − 𝑃𝐷𝑖 = ∑ 𝑉𝑖
𝑁𝑏
𝑗=1 𝑉𝑗𝑌𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗 − 𝛼𝑖𝑗)  

(3.12) 
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𝐼𝑑𝑖𝑉𝑖 cos(𝛿𝑖 − 𝜃𝑖) − 𝐼𝑞𝑖𝑉𝑖 sin(𝛿𝑖 − 𝜃𝑖) + 𝑄𝑃𝑉𝑖 − 𝑄𝐷𝑖 = ∑ 𝑉𝑖
𝑁𝑏
𝑗=1 𝑉𝑗𝑌𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗 − 𝛼𝑖𝑗)  

(3.13) 

 

where 𝛼𝑖𝑗 and 𝑌𝑖𝑗 denote the angle and magnitude of the 𝑖𝑗𝑡ℎ element of the bus admittance 

matrix 𝐘𝑏, respectively. The corresponding terms will be zero when a grid component is 

absent from the above two equations. 

3.3.2 Linearization of the Microgrid System Model 

Linearization of the above differential-algebraic equations (DAEs) that model the 

microgrid system lays the foundation for the design of the secondary MPC controller. Since 

the d-q coordinates of each SG should have a reference angle, all the SG and bus angles 

are defined relative to the rotor angle of the SG at bus 1 as: 

  𝛿𝑖
′ ≔ 𝛿𝑖 − 𝛿1                  𝑖 = 1,… ,𝑁𝐺   

  𝜃𝑖
′ ≔ 𝜃𝑖 − 𝛿1                    𝑖 = 1,… ,𝑁𝑏 (3.14) 

 

Vectors of state variables ∆𝑿, output variables ∆𝒀 etc. are defined as below: 

 ∆𝑿  ≔ [∆𝛿1
′ , ∆𝜔1, ∆𝐸𝑞1

′ , ∆𝐸𝑓𝑑1, ∆𝑇𝑀1, … , ∆𝐸𝑓𝑑𝑁𝐺
, ∆𝑇𝑀𝑁𝐺],  

 ∆𝒀  ≔ [∆𝑃𝑔1, ∆𝑄𝑔1, … , ∆𝑃𝑔𝑁𝐺
, ∆𝑄𝑔𝑁𝐺],  

 ∆𝑰𝑔  ≔ [∆𝐼𝑑1, ∆𝐼𝑞1, … , ∆𝐼𝑑𝑁𝐺
, ∆𝐼𝑞𝑁𝐺]𝑇,  

 ∆𝑽𝑔 ≔ [∆𝜃1
′ , ∆𝑉1, … , ∆𝜃𝑁𝐺

′ , ∆𝑉𝑁𝐺
]
𝑇
,  

 ∆𝑽𝑙  ≔ [∆𝜃𝑁𝐺+1
′ , ∆𝑉𝑁𝐺+1, … , ∆𝜃𝑁𝑏

′ , ∆𝑉𝑁𝑏
]
𝑇
,  

 ∆𝑼𝑐 ≔ [𝛥𝑼1
𝑇 , 𝛥𝑼2

𝑇]𝑇,  (3.15) 

 

where 

Δ𝑼1 ≔ [𝛥𝜔1, 𝛥𝑉𝑟𝑒𝑓1, 𝛥𝑉𝑟𝑒𝑓2, … , 𝛥𝑉𝑟𝑒𝑓𝑁𝐺
]
𝑇
, 
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Δ𝑼2 ≔ [Δ𝑃𝐶1, 𝛥𝑃𝐶2, … , Δ𝑃𝐶𝑁𝐺
]
𝑇
, 

∆𝑺1𝑃𝑉 ≔ [∆𝑃𝑃𝑉1, ∆𝑄𝑃𝑉1, … , ∆𝑃𝑃𝑉𝑁𝐺
, ∆𝑄𝑃𝑉𝑁𝐺

 ]𝑇, 

and ∆𝑺2𝑃𝑉 ≔ [∆𝑃𝑃𝑉𝑁𝐺+1, ∆𝑄𝑃𝑉𝑁𝐺+1, … , ∆𝑃𝑃𝑉𝑁𝑏
, ∆𝑄𝑃𝑉𝑁𝑏

 ]𝑇. 

 

Linearization of (3.1)- (3.5) leads to the compact form (3.16): 

 ∆�̇� = 𝑨1∆𝑿 + 𝑩1∆𝑰𝑔 + 𝑩𝟐∆𝑽𝑔 + 𝑬1∆𝑼𝑐 (3.16) 

 

where [𝑨1](5𝑁𝐺×5𝑁𝐺), [𝑩1](5𝑁𝐺×2𝑁𝐺) and [𝑩2](5𝑁𝐺×2𝑁𝐺) are block diagonal matrices. 

Linearizing (3.6- 3.7) yields the augmented form of (3.17): 

 𝑪1∆𝑿 + 𝑫1∆𝑰𝑔 + 𝑫2∆𝑽𝑔 = 𝟎 (3.17) 

 

where [𝑪1](2𝑁𝐺×5𝑁𝐺), [𝑫1](2𝑁𝐺×2𝑁𝐺), and [𝑫2](2𝑁𝐺×2𝑁𝐺) are block diagonal matrices. 

Linearizing the network equations (3.12- 3.13) of generator buses yields: 

 𝑪2∆𝑿 + 𝑫3∆𝑰𝑔 + 𝑫4∆𝑽𝑔 + 𝑫5∆𝑽𝑙 + 𝑭1∆𝑺1𝑃𝑉 = 0 (3.18) 

 

where [𝑪2](2𝑁𝐺×5𝑁𝐺)  and [𝑫3](2𝑁𝐺×2𝑁𝐺)  are block diagonal matrices,[𝑫4](2𝑁𝐺×2𝑁𝐺)  and 

[𝑫5](2𝑁𝐺×2(𝑁𝑏−𝑁𝐺)) are full matrices, and [𝑭1](2𝑁𝐺×2𝑁𝐺) is a sparse incidence matrix with 

diagonal entries of 1 if a PV is present on the corresponding bus. 

Likewise, for load buses, (3.12- 3.13) are linearized as: 

 𝑫6∆𝑽𝑔 + 𝑫7∆𝑽𝑙 + 𝑭2∆𝑺2𝑃𝑉 = 0 (3.19) 

 

where [𝑫6](2(𝑁𝑏−𝑁𝐺)×2𝑁𝐺)  and [𝑫7](2(𝑁𝑏−𝑁𝐺)×2(𝑁𝑏−𝑁𝐺))  are full matrices, and 

[𝑭2](2(𝑁𝑏−𝑁𝐺)×2(𝑁𝑏−𝑁𝐺)) is a sparse incidence matrix with entries either 0 or 1. ∆𝑄𝑃𝑉 at all 
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buses is 0 since PV is modeled at unity power factor. 

∆𝑰𝑔  in (3.16) and (3.18) is eliminated via (3.17). Then 𝑬1 in (3.16) could be 

partitioned as 𝑬11  and 𝑬12  according to ∆𝑼1  and ∆𝑼2 , and [∆𝑽𝑔
𝑇 ∆𝑽𝑙

𝑇]
𝑇

is further 

eliminated.    After some algebra, 𝑬11 is contained in a new matrix 𝑩𝑠𝑦𝑠 and the linearized 

state equations could be represented as (3.20) based on (3.16- 3.19):       

 ∆�̇� = 𝑨𝑠𝑦𝑠∆𝑿 + 𝑩𝑠𝑦𝑠∆𝑺 + 𝑬12∆𝑼2 (3.20) 

 

where ∆𝑺 ≔ [∆𝑼𝟏
𝑇 ∆𝑺𝑃𝑉

𝑇 ]𝑇 and ∆𝑺𝑃𝑉 ≔ [∆𝑺1𝑃𝑉
𝑇 ∆𝑺2𝑃𝑉

𝑇 ]𝑇. 

Similarly, after ∆𝑰𝑔 is eliminated from the linearized form of (3.8- 3.9), the system 

output equations result: 

 ∆𝒀 = 𝑪𝑠𝑦𝑠∆𝑿 + 𝑫𝑠𝑦𝑠∆𝑺 (3.21) 

 

The linear time-varying microgrid system modeled as (3.20) and (3.21) is 

discretized for digital control. In what follows, the subscripts are dropped, and the 

discretized system model is formulated as: 

 ∆𝑿(𝑘 + 1) = 𝑨∆𝑿(𝑘) + 𝑩∆𝑺(𝑘) + 𝑬∆𝑼(𝑘) (3.22) 

 ∆𝒀(𝑘) = 𝑪∆𝑿(𝑘) + 𝑫∆𝑺(𝑘)   (3.23) 

 

where ∆𝑺(𝑘) represents the vector of known inputs, and ∆𝑼(𝑘) denotes the vector of 

unknown inputs at time instant k, which are also known as the manipulated inputs in MPC. 

3.4 AC-OPF Problem Formulation – Tertiary Control 

The AC-OPF problem seeks decision variable values that lead to an optimal 

operating point for an electrical power system in terms of a specified objective function 
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that can be minimum total generating cost, network losses, etc., subject to network equality 

constraints (power flow equations) and engineering inequality constraints such as physical 

limits on active/reactive power generations of distributed generators and power flows on 

the lines. Let 𝑉𝑖 = 𝑉𝑑𝑖 + 𝑗𝑉𝑞𝑖 represent the bus voltage phasors in rectangular coordinates, 

and 𝑠𝑙𝑚 represents the apparent power flow along the nominal π model line (𝑙, 𝑚) ∈ 𝓛. In 

addition, the bus admittance matrix 𝐘𝑏 = 𝐆 + 𝑗𝐁. 

3.4.1 Classical AC-OPF Problem 

A quadratic operating cost function is commonly adopted for each SG 𝑖 ∈ 𝓖. 

 𝐶𝑖(𝑃𝑔𝑖): = 𝑐𝑖2 ∙ 𝑃𝑔𝑖
2 + 𝑐𝑖1 ∙ 𝑃𝑔𝑖 + 𝑐𝑖0 (3.24) 

 

where𝑐𝑖2 ($/(hour ∙ MW2)), 𝑐𝑖1($/(hour ∙ MW)) , and 𝑐𝑖0 ($/hour)  are the quadratic, 

linear and constant cost coefficients, respectively. 𝑃𝑔𝑖 is the active power output in MW. 

The AC-OPF problem is formulated as follows: 

min
𝑃𝑔,𝑄𝑔,𝑉𝑑,𝑉𝑞,𝑆

∑ 𝐶𝑖(𝑃𝑔𝑖)𝑖∈𝓖   (3.25.1) 

  s.t.         𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥         ∀𝑖 ∈ 𝓖 (3.25.2) 

                𝑄𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥       ∀𝑖 ∈ 𝓖 (3.25.3) 

   (𝑉𝑖
𝑚𝑖𝑛)2 ≤ 𝑉𝑑𝑖

2 + 𝑉𝑞𝑖
2 ≤ (𝑉𝑖

𝑚𝑎𝑥)2  ∀𝑖 ∈ 𝓝 (3.25.4) 

                        |𝑆𝑙𝑚| ≤ 𝑆𝑙𝑚
𝑚𝑎𝑥                   ∀(𝑙,𝑚) ∈ 𝓛 (3.25.5) 

𝑃𝑔𝑖 − 𝑃𝐷𝑖 = 𝑉𝑑𝑖 ∑ (𝐆𝑗𝑖𝑉𝑑𝑗 − 𝐁𝑗𝑖𝑉𝑞𝑗) + 𝑉𝑞𝑖 ∑ (𝐁𝑗𝑖𝑉𝑑𝑗 + 𝐆𝑗𝑖𝑉𝑞𝑗)
𝑁𝑏
𝑗=1

𝑁𝑏
𝑗=1   (3.25.6) 

𝑄𝑔𝑖 − 𝑄𝐷𝑖 = 𝑉𝑑𝑖 ∑ (−𝐁𝑗𝑖𝑉𝑑𝑗 − 𝐆𝑗𝑖𝑉𝑞𝑗) + 𝑉𝑞𝑖 ∑ (𝐆𝑗𝑖𝑉𝑑𝑗 − 𝐁𝑗𝑖𝑉𝑞𝑗)
𝑁𝑏
𝑗=1

𝑁𝑏
𝑗=1   (3.25.7) 

 

The above AC-OPF problem is non-convex due to the nonlinear power flow 
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equations (3.25.6) and (3.25.7) and is generally NP-hard. 

3.4.2 SDP Relaxation of the AC-OPF Problem 

Using SDP to solve nonlinear AC OPF problems provides several advantages, such 

as a guarantee of global optimality and fast computation. A formulation based on SDP will 

be presented, which derives from [112]. In addition, forecasted solar PV generation will be 

considered in this formulation. The classical AC-OPF problem is reformulated with bus 

voltages defined in rectangular coordinates as 𝐕 = [𝑉𝑑1, 𝑉𝑑2, … , 𝑉𝑑𝑁𝑏
, 𝑉𝑞1, 𝑉𝑞2, … , 𝑉𝑞𝑁𝑏

]
𝑇
. 

Let 𝒆𝑖 denote the ith standard basis vector in ℝ𝑁𝑏 . Define the matrix 𝒀𝑖 = 𝒆𝑖 ∙ 𝒆𝑖
𝑇 ∙ 𝐘𝐛 and 

the matrix 𝒀𝑙𝑚 = (𝑦𝑙𝑚 +
𝑗𝑏𝑙𝑚

2
) 𝒆𝑙 ∙ 𝒆𝑙

𝑇 − 𝑦𝑙𝑚𝒆𝑙 ∙ 𝒆𝑚
𝑇 , where 𝑦𝑙𝑚  is the series admittance 

and 𝑏𝑙𝑚 is the total shunt susceptance of line (l, m) ∈ 𝓛. The matrices that will be used in 

the SDP formulation are given as follows: 

𝐘𝑖 =
1

2
[
Re(𝒀𝑖 + 𝒀𝑖

𝑇) Im(𝒀𝑖
𝑇 − 𝒀𝑖)

Im(𝒀𝑖 − 𝒀𝑖
𝑇) Re(𝒀𝑖 + 𝒀𝑖

𝑇)
]    

 

(3.26.1) 

   �̅�𝑖 = −
1

2
[
Im(𝒀𝑖 + 𝒀𝑖

𝑇) Re(𝒀𝑖 − 𝒀𝑖
𝑇)

Re(𝒀𝑖
𝑇 − 𝒀𝑖) Im(𝒀𝑖 + 𝒀𝑖

𝑇)
]   

 

(3.26.2) 

       𝐘𝑙𝑚 =
1

2
[
Re(𝒀𝑙𝑚 + 𝒀𝑙𝑚

𝑇 ) Im(𝒀𝑙𝑚
𝑇 − 𝒀𝑙𝑚)

Im(𝒀𝑙𝑚 − 𝒀𝑙𝑚
𝑇 ) Re(𝒀𝑙𝑚 + 𝒀𝑙𝑚

𝑇 )
] 

 

(3.26.3) 

           �̅�𝑙𝑚 = −
1

2
[
Im(𝒀𝑙𝑚 + 𝒀𝑙𝑚

𝑇 ) Re(𝒀𝑙𝑚 − 𝒀𝑙𝑚
𝑇 )

Re(𝒀𝑙𝑚
𝑇 − 𝒀𝑙𝑚) Im(𝒀𝑙𝑚 + 𝒀𝑙𝑚

𝑇 )
] 

 

(3.26.4) 

𝐌𝑖 = [
𝒆𝑖 ∙ 𝒆𝑖

𝑇 𝟎

𝟎 𝒆𝑖 ∙ 𝒆𝑖
𝑇]    

 

(3.26.5) 

 

Admittance matrices in (3.26.1)- (3.26.2) are used to calculate power injections at 

each bus, admittance matrices in (3.26.3)- (3.26.4) are defined to calculate line power flows, 
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and matrix in (3.26.5) is used to obtain bus voltage magnitudes. Then define the rank one 

matrix 𝐖 = 𝐕 ∙ 𝐕𝑇 , which is equivalent to constraints 𝐖 ≻ 𝟎 and rank(𝐖) = 1. This 

rank constraint leads to nonconvexity. Removing rank(𝐖) = 1 enables the semidefinite 

relaxation. The semidefinite relaxation has zero relaxation gap if the matrix W of a globally 

optimal solution has rank one. The relaxed SDP formulation of the ACOPF problem is 

shown as below: 

min 𝐖 ∑ 𝛽𝑖𝑖∈𝓖   (3.27.1) 

𝑠. 𝑡.  𝑃𝑔𝑖
𝑚𝑖𝑛 − 𝑃𝐷𝑖 + 𝑃𝑃𝑉𝑖 ≤ trace(𝐘𝑖 ⋅ 𝐖) ≤ 𝑃𝑔𝑖

𝑚𝑎𝑥 − 𝑃𝐷𝑖 + 𝑃𝑃𝑉𝑖   ∀𝑖 ∈ 𝓝 (3.27.2) 

                   𝑄𝑔𝑖
𝑚𝑖𝑛 − 𝑄𝐷𝑖 ≤ trace(�̅�𝑖 ⋅ 𝐖) ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥 − 𝑄𝐷𝑖              ∀𝑖 ∈ 𝓝 (3.27.3) 

                          (𝑉𝑖
𝑚𝑖𝑛)2 ≤ trace(𝐌𝑖 ⋅ 𝐖) ≤ (𝑉𝑖

𝑚𝑎𝑥)2                  ∀ 𝑖 ∈ 𝓝 (3.27.4) 

[

(𝑠𝑙𝑚
𝑚𝑎𝑥)2 −trace(𝐘𝑙𝑚 ⋅ 𝐖) −trace(�̅�𝑙𝑚 ⋅ 𝐖)

−trace(𝐘𝑙𝑚 ⋅ 𝐖) 1 0

−trace(�̅�𝑙𝑚 ⋅ 𝐖) 0 1

] ≻ 0  ∀(𝑙,𝑚) ∈ 𝓛 

 

 

 

(3.27.5) 

[
𝛽𝑖 − 𝑐𝑖1 ⋅ [trace(𝐘𝑖 ⋅ 𝐖) + 𝑃𝐷𝑖 − 𝑃𝑃𝑉𝑖] − 𝑐𝑖0 −√𝑐𝑖2 ⋅ [trace(𝐘𝑖 ⋅ 𝐖) + 𝑃𝐷𝑖 − 𝑃𝑃𝑉𝑖]

−√𝑐𝑖2 ⋅ [trace(𝐘i ⋅ 𝐖) + 𝑃𝐷𝑖 − 𝑃𝑃𝑉𝑖] 1
] 

≻ 0        ∀𝑖 ∈ 𝓖   (3.27.6) 

𝐖 ≻ 0 (3.27.7) 

 

The objective function (3.27.1) seeks to minimize the total operating cost of the 

microgrid in islanded mode, representing the tertiary-level control objective; the scalar 𝛽𝑖 

is an auxiliary variable that converts the operating cost function for SG 𝑖 ∈ 𝓖 from (3.24) 

to (3.27.6) using the Schur complement formula. The constraints on the active and reactive 

power outputs of each SG are enforced as (3.27.2) and (3.27.3), respectively. Note that 

trace(𝐘𝑖 ⋅ 𝐖) equals the net active power injection at each bus, while trace(�̅�𝑖 ⋅ 𝐖) is the 
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net reactive power injection. With a slight abuse of notation, 𝑃𝐷𝑖 and 𝑃𝑃𝑉𝑖 represent the 

forecasted solar power load at bus i if they are present. Constraint (3.27.4) limits the bus 

voltage magnitudes, which corresponds to (3.25.4). The original apparent power flow limit 

(3.25.5) is converted as (3.27.5) using the Schur complement formula again so that the new 

constraint becomes quadratic with respect to 𝐕. Constraint (3.27.7) facilitates semidefinite 

relaxation.  

Only the solution to (3.27) satisfying rank(𝐖) ≤ 2  can be recovered as the 

solution to the original AC-OPF problem. Otherwise, the solution is inexact but provides 

a lower bound on the objective value of the original AC-OPF problem. After periodically 

solving the AC-OPF problem on the tertiary level, the optimal active and power set-points 

and the terminal voltage references are derived, which will be dispatched to the centralized 

MPC controller and the local controllers accordingly for secondary and primary control. 

3.5 MPC Problem Formulation  - Secondary Control 

3.5.1 Linear MPC Controller 

Building on the linearized microgrid system model (3.22- 3.23), a linear centralized 

MPC controller formulated as (3.28) is designed to solve a multi-objective quadratic 

optimization problem over a prediction horizon. For an islanded microgrid, frequency 

regulation is of critical significance. Hence, the main goal of the secondary MPC controller 

is to minimize the accumulated frequency deviations not handled by primary controller, 

i.e., the first component of (3.28.1), while managing the generation dispatch of SGs 

following the active power set-points from tertiary controller, i.e., the second component 

of (3.28.1). 
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min∑ [∆𝑠𝝎(𝑡 + 𝑘|𝑡)𝑇𝑮∆𝑠𝝎(𝑡 + 𝑘|𝑡) + ∆𝑛𝑷𝑔(𝑡 + 𝑘|𝑡)𝑇𝑯∆𝑛𝑷𝑔(𝑡 + 𝑘|𝑡)]
𝑁𝑝

𝑘=1 + 𝜌𝜖𝜖
2  

 (3.28.1) 

𝑠. 𝑡.  ∆𝑿(𝑡 + 𝑘|𝑡) = 𝑨∆𝑿(𝑡 + 𝑘 − 1|𝑡) + 𝑩∆𝑺(𝑡 + 𝑘 − 1|𝑡) + 𝑬∆𝑼(𝑡 + 𝑘|𝑡) 

 (3.28.2) 

∆𝒀(𝑡 + 𝑘|𝑡) = 𝑪∆𝑿(𝑡 + 𝑘|𝑡) + 𝑫∆𝑺(𝑡 + 𝑘|𝑡) (3.28.3) 

0.99𝜔𝑠 ≤ ∆𝜔𝑖(𝑡 + 𝑘|𝑡) + 𝜔𝑖(𝑡) ≤ 1.01𝜔𝑠 (3.28.4) 

𝑈𝑖
𝑚𝑖𝑛 ≤ ∆𝑈𝑖(𝑡 + 𝑘|𝑡) + 𝑈𝑖(𝑡) ≤ 𝑈𝑖

𝑚𝑎𝑥 (3.28.5) 

𝑌𝑖
𝑚𝑖𝑛 − 𝜖𝟏 ≤ ∆𝑌𝑖(𝑡 + 𝑘|𝑡) + 𝑌𝑖(𝑡) ≤ 𝑌𝑖

𝑚𝑎𝑥 + 𝜖𝟏 (3.28.6) 

 

where t refers to the current control time instant, and the duration of each control interval 

is Tc. k denotes the kth control interval; Np is the prediction horizon, defined as the number 

of Tc the MPC executes in a forward-looking manner. Nc, a portion of Np, is defined as the 

control horizon such that 𝛥𝑼(𝑡 + 𝑗) ≡ 𝛥𝑼(𝑡 + 𝑁𝑐) for 𝑗 ∈ [𝑁𝑐 + 1,𝑁𝑝]. The reason for 

introducing Nc is to reduce the number of control variables for a faster computational speed 

while avoiding potential numerical issues.  ∆𝑠𝝎 := [∆𝑠𝜔1, ∆𝑠𝜔2 … , ∆𝑠𝜔𝑚]𝑇 𝜔𝑠 ⁄ is the 

normalized vector of the rotor speed deviations from 𝜔𝑠 , and ∆𝑛𝑷𝑔: =

 [∆𝑛𝑃𝑔1, ∆𝑛𝑃𝑔2 … , ∆𝑛𝑃𝑔𝑚]𝑇 refers to the vector of power output deviations from 𝑷𝑟𝑒𝑓. For 

predictions at control time instant t + k, ∆𝑠𝜔𝑖(𝑡 + 𝑘|𝑡): = ∆𝜔𝑖(𝑡 + 𝑘|𝑡) + 𝜔𝑖(𝑡) − 𝜔𝑠 and 

 ∆𝑛𝑃𝑔𝑖(𝑡 + 𝑘|𝑡): = ∆𝑃𝑔𝑖(𝑡 + 𝑘|𝑡) + 𝑃𝑔𝑖(𝑡) − 𝑃𝑟𝑒𝑓,𝑖 . 𝑮 ≔ 𝑑𝑖𝑎𝑔(𝑔1, 𝑔2, … , 𝑔𝑚)  and 𝑯 ≔

𝑑𝑖𝑎𝑔(ℎ1, ℎ2, … , ℎ𝑚) are diagonal weighting matrices; weights in 𝑮 are set greater than 

those in 𝑯 since frequency regulation is more crucial for an islanded microgrid’s secondary 

control. The first two constraints (3.28.2) and (3.28.3) represent the prediction model based 

on (3.22) and (3.23). The coefficient matrices 𝑨, 𝑩, 𝑬, 𝑪 and 𝑫 are updated at each model 

update period 𝑇𝑠 to adapt the prediction model to the varying system operating conditions 

and are assumed constant over the prediction horizon. The MPC is executed in every 
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control interval over the prediction horizon, based on the updated inputs including the 

system state, measurements, and the PV forecasts. The proposed ULISE works at a higher 

sampling rate to provide the MPC controller with system state estimations for each control 

interval, and the rotor speed 𝜔1 can be obtained using a simple frequency estimator based 

on a phasor demodulation principle [57]. Constraint (3.28.4) requires the rotor speeds to 

stay within the permissible bounds, i.e., ±1% 𝜔𝑠 , whereas (3.28.5) constrains the 

manipulated inputs. In (3.28.6), 𝑌𝑖
𝑚𝑖𝑛 and 𝑌𝑖

𝑚𝑎𝑥 are the vectors representing per unit active 

and reactive power limits for SG i. The non-negative slack variable ϵ is introduced to relax 

(3.28.6), as hard output constraints may cause infeasibility owing to unpredicted 

disturbances or model mismatch. 𝟏 is a column vector of 1s with dimension 2, while the 

weight 𝜌𝜖  in the objective function penalizes the violation of this constraint. Micro-

synchrophasors can be used to provide measurements of voltage magnitudes, phase angles, 

active and reactive powers, allowing us to derive an initial condition of the original 

nonlinear DAE system by referring to the dynamic circuit of the flux-decay model in [104] 

such that the numerical simulations can initially converge fast. 

3.5.2 ULISE 

To enhance the performance of the MPC controller, ULISE is proposed to 

simultaneously estimate the system states and the control signals actually received by 

primary controllers. This state estimator is built upon the unified filter for general linear 

discrete-time stochastic systems in [113]. Furthermore, integrating ULISE into the 

feedback loop of MPC can effectively reduce the controller’s sensitivity to output 

disturbances. Moreover, different from the Kalman filter [59], which can only detect 
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inconsistency in sensor measurement readings through analytical redundancy approaches, 

the proposed ULISE can also detect whether control signals sent from the secondary MPC 

controller are compromised, and thus, the capability of the proposed MPC controller and 

even the system stability could be enhanced. The control signals received by the primary 

controllers are estimated and compared with the actual control signals calculated by the 

MPC, and a considerable deviation suggests the presence of anomalies. Mitigation schemes 

can be further explored to compensate for the error and thus to guarantee the MPC control 

performance. It should be emphasized that the proposed filter can generate a UMV estimate 

(that is, the estimate �̂�’s variance 𝑣𝑎𝑟(�̂�) = 𝔼[(�̂� − 𝔼[�̂�])𝑇(�̂� − 𝔼[�̂�])] is the smallest 

out of all unbiased estimates) only when strong detectability is satisfied [113]. 

For conciseness, the microgrid system model utilized by the ULISE within each 

model update period Ts is rewritten as: 

                   𝑿𝑘+1 = 𝑨𝑿𝑘 + 𝑩𝑺𝑘 + 𝑬𝑼𝑘 + 𝒘𝑘 (3.29) 

           𝒀𝑘 = 𝑪𝑿𝑘 + 𝑫𝑺𝑘 + 𝒗𝑘 (3.30) 

 

Here k refers to the sampling instant of the unified filter. The process noise 𝒘𝑘 ∈ ℝ5𝑁𝐺 

and the measurement noise 𝒗𝑘 ∈ ℝ2𝑁𝐺  are assumed to be mutually uncorrelated, zero-

mean, white random signals with known bounded covariance matrices 𝑸𝑘 ≔ 𝔼[𝒘𝑘 ⋅

𝒘𝑘
𝑇] ≻ 0  and 𝑹𝑘 ≔ 𝔼[𝒗𝑘 ⋅ 𝒗𝑘

𝑇] ≻ 0. The initial state 𝑿0  has mean �̂�0|0  and covariance 

𝑷0|0
𝑥 , and is independent of 𝒘𝑘 and 𝒗𝑘 for all k. The ULISE, detailed in below Table 3.2, 

is recursively implemented in three steps: i) The “unknown input estimation” uses the 

current measurements and the state estimates to estimate the unknown inputs in the best 

linear unbiased sense; ii) the “time update” propagates the state estimates using the system 
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dynamics; and iii) the “measurement update” updates the state estimates based on the 

current measurements. 

Table 3.2 

ULISE Algorithm in the Case of No Direct Feedthrough 

1: Initialize: �̂�0|0, 𝑷0|0
𝑥

 etc. 

2: for k = 1 to 𝑛𝑖𝑡𝑟 do 

 ⊳ Unknown input estimation of 𝑼𝑘−1 

3: �̃�𝑘 = 𝑨𝑷𝑘−1|𝑘−1
𝑥 𝑨𝑇 + 𝑸𝑘−1  

4: �̃�𝑘 = 𝑪�̃�𝑘𝑪
𝑇 + 𝑹𝑘 

5: 𝑷𝑘−1
𝑑 = (𝑬𝑇𝑪𝑇�̃�𝑘

−1𝑪𝑬)
−1

 

6: 𝑴𝑘 = 𝑷𝑘−1
𝑑 𝑬𝑇𝑪𝑇�̃�𝑘

−1  

7: �̂�𝑘|𝑘−1 = 𝑨�̂�𝑘−1|𝑘−1 + 𝑩𝑺𝑘−1 

8: �̂�𝑘−1 = 𝑴𝑘(𝒀𝑘 − 𝑪�̂�𝑘|𝑘−1 − 𝑫𝑺𝑘) 

 ⊳ Time update 

9: �̂�𝑘|𝑘
∗ = �̂�𝑘|𝑘−1 + 𝑬�̂�𝑘−1 

10: 𝑷𝑘|𝑘
∗𝑥 = 𝑬𝑴𝑘𝑹𝑘𝑴𝑘

𝑇𝑬𝑇 + (𝑰 − 𝑬𝑴𝑘𝑪)�̃�𝑘(𝑰 − 𝑬𝑴𝑘𝑪)𝑇  

11: �̃�𝑘
∗ = 𝑪𝑷𝑘|𝑘

∗𝑥 𝑪𝑇 + 𝑹𝑘 − 𝑪𝑬𝑴𝑘𝑹𝑘 − 𝑹𝑘𝑴𝑘
𝑇𝑬𝑇𝑪𝑇 

 ⊳ Measurement update 

12: 𝑲𝑘 = 𝑷𝑘|𝑘
∗𝑥 𝑪𝑇 − 𝑬𝑴𝑘𝑹𝑘 

13: 𝑳𝑘 = 𝑲𝑘�̃�𝑘
∗† 

14: �̂�𝑘|𝑘 = �̂�𝑘|𝑘
∗ + 𝑳𝑘(𝒀𝑘 − 𝑪�̂�𝑘|𝑘

∗ − 𝑫𝑺𝑘) 

15: 𝑷𝑘|𝑘
𝑥 = 𝑷𝑘|𝑘

∗𝑥 + 𝑳𝑘�̃�𝑘
∗𝑳𝑘

𝑇 − 𝑲𝑘𝑳𝑘
𝑇 − 𝑳𝑘𝑲𝑘

𝑇 

16: end for 
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Here, 𝑛𝑖𝑡𝑟 refers to the maximum number of iterations for each 𝑇𝑠. All coefficient 

matrices are updated every 𝑇𝑠, and the covariance matrices of process and measurement 

noises are assumed to be constant throughout the simulation. 𝑷𝑘−1
𝑑  is the covariance matrix 

of the optimal input error estimates, �̂�𝑘−1 is the unknown input estimates at time instant 

𝑘 − 1, 𝑴𝑘 is the filter gain matrix which is chosen to minimize the state and input error 

covariances, and 𝑷𝑘|𝑘
∗𝑥  represents the propagated state estimate error covariance matrix. 

𝑷𝑘|𝑘
𝑥  is the updated covariance matrix of state error. The estimated states �̂�𝑘|𝑘 in the last 

iteration together with system measurements are used to update the coefficient matrices for 

the next 𝑇𝑠. In normal conditions, e.g., when no external manipulation is altered, �̂� yielded 

in the first step should be close to zero during each 𝑇𝑠. It is noted that the case in our 

framework represents a special case of the general ULISE algorithm because there is no 

direct feedthrough, i.e., the term related to 𝑼𝑘 is absent in (3.30) because the coefficient 

matrix of 𝑼𝑘  is zero. In this regard, no transformation of the output equations and no 

decomposition of the unknown input vector are necessary. Further, the algorithm will 

reduce to the conventional Kalman filtering if both the coefficient matrices of 𝑼𝑘 in (3.29) 

and (3.30) are empty.  

3.6 Case Studies 

3.6.1 Simulation Setup 

Figure 3.2 illustrates the single-line diagram of a simulated microgrid built on a 

13.2-kV practical distribution network. This 13-bus microgrid connects 11 entities on a 

dedicated ring. When disconnected from the main grid, these entities are powered by four 

on-site SGs. Two STATCOMs are installed at buses 2 and 10 for reactive power 



 

84 

 

compensation. Besides, a 2-MW PV farm is integrated into the microgrid at bus 11. The 

power factor of the ZIP loads ranges from 0.85 to 0.9 lagging, and the total active load is 

around 8.12 MW. The detailed system and control parameters are available in Tables 3.3- 

3.6, respectively. The system base power, voltage, and nominal frequency are 10 MVA, 

13.2 kV, and 60 Hz, respectively. SGs are simulated using MATLAB/Simulink’s existing 

modules. The components of 𝒘𝑘 and 𝒗𝑘 used in the unified filter are set to be Gaussian 

random variables with zero mean and standard deviation σ =  10−2. The initial vector of 

system states is set as  �̂�0|0 = 𝟎(5𝑚×1) , while the covariance matrix of state error is 

initialized as 𝑷0|0
𝑥 = diag([10−1, … , 10−1](5𝑚×1)) . The communication latency is 

neglected considering the microgrid does not span a large geographical area.  

 

Figure 3.2. Single-line diagram of the islanded microgrid test system. 
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Table 3.3  

Line Data for the 13-Bus Test System 

From To r (pu) x (pu) b (pu) 𝑠𝑙𝑚
𝑚𝑎𝑥(MVA) 

1 5 0.00525 0.00649 0.003 5.7333 

1 13 0.00330 0.00409 0.002 5.9043 

2 3 0.01389 0.01718 0.007 5.6830 

2 10 0.01190 0.01472 0.006 4.7878 

2 11 0.01372 0.01697 0.007 0.5432 

3 12 0.00064 0.00079 0.000 6.0149 

4 5 0.00703 0.00869 0.003 0.3621 

5 6 0.00703 0.00869 0.003 5.8439 

6 7 0.00021 0.00026 0.000 6.0149 

7 8 0.00567 0.00702 0.003 5.6830 

8 9 0.00737 0.00911 0.004 5.0594 

9 10 0.00919 0.01137 0.005 4.9286 

12 13 0.00068 0.00084 0.000 5.9546 

 

Table 3.4 

 Load Data for the 13-Bus Test System 

Loads 𝑃𝐷𝑁 𝑄𝐷𝑁 𝑎1 𝑎2 𝑎3 𝑏1 𝑏2 𝑏3 

L1 3.6 2.13 0.4 -0.41 1.01 4.43 -7.98 4.56 

L2 3.3 2 0.38 -0.39 1.01 4.4 -7.92 4.52 

L4 0.084 0.05 1.21 -1.61 1.41 4.35 -7.08 3.72 

L5 0.048 0.028 0.27 -0.33 1.06 5.48 -9.7 5.22 

L6 0.144 0.086 0.3 -0.42 1.12 5.39 -9.4 5.03 
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Loads 𝑃𝐷𝑁 𝑄𝐷𝑁 𝑎1 𝑎2 𝑎3 𝑏1 𝑏2 𝑏3 

L7 0.054 0.031 0.55 0.24 0.21 0.55 -0.09 0.54 

L8 0.504 0.299 0.76 -0.52 0.76 6.92 -11.75 5.83 

L9 0.123 0.074 1.24 -1.62 1.38 4.31 -6.96 3.65 

L10 0.142 0.0842 0.77 -0.84 1.07 8.09 -13.65 6.56 

L12 0.048 0.0284 0.69 0.04 0.27 1.82 -2.24 1.43 

L13 0.048 0.0285 0.28 -0.35 1.08 5.32 -8.9 4.59 

Note. 𝑃𝐷𝑁 is in MW and 𝑄𝐷𝑁 is in Mvar. 

Table 3.5  

SG Data for the 13-Bus Test System 

DGs SG1 SG2 SG3 SG4 

Rating (MVA) 3.45 6.3 0.825 0.96 

H (sec) 1.93 2.81 0.9 0.778 

D 0.0023 0.0023 0.0015 0.0015 

𝑋𝑑 (pu) 3.1 2.4 2.95 2.89 

𝑋𝑞 (pu) 1.75 1.77 2.36 1.72 

𝑋𝑑
′  (pu) 0.316 0.27 0.14 0.25 

𝑇𝑑𝑜
′  (sec) 3.5 2.3 1.7 1.46 

𝐾𝐴 300 300 300 300 

𝑇𝐴 (sec) 0.01 0.01 0.01 0.01 

𝑇𝐶𝐻 (sec) 0.4 0.4 0.2 0.2 

𝑅𝐷 0.05 0.05 0.05 0.05 

𝐶2 18.7 18.5 18.6 18.9 

𝐶1 62 64 63 62 

𝐶0 9 9 10 10 
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Table 3.6  

Control Parameters 

MPC PI 

𝑔1 = 18.94     𝑔2 = 18.94 

𝑔3 = 16.3       𝑔4 = 16.3 

ℎ1 = 0.947     ℎ2 = 0.947 

ℎ3 = 0.815     ℎ4 = 0.815 

𝜌𝜖 = 106 

𝑃1 = 0.07    𝐼1 = 0.0032 

𝑃2 = 0.07    𝐼2 = 0.0032 

𝑃3 = 0.08    𝐼3 = 0.0045 

𝑃4 = 0.08    𝐼4 = 0.0045 

 

 

All the simulations are carried out on a PC with an Intel Core i7 at 3.8 GHz (Quad-

Core) and 64-GB RAM. The MPC controller is designed using the MPC Toolbox in 

MATLAB. When the controller detects infeasibility, the latest successful control outputs 

will be retained. Also, the controller will issue a time-out error and terminate the 

optimization problem if it is not solved within the prescribed control interval. The 

coordination period between the tertiary AC-OPF and the secondary MPC has an impact 

on the overall performance of the proposed hierarchical control framework. A greater 

coordination period could compromise the MPC’s power tracking abilities, while a smaller 

coordination period could cause greater system frequency deviations at transients. 

Therefore, it is empirically set that the tertiary control executes AC-OPF and updates power 

set-points every 15 sec. The average computational overhead for obtaining an optimal 

solution to the AC-OPF of the 13-bus system is 0.542 sec. During each 15-sec interval, the 

secondary MPC controller keeps solving the receding optimization problem every 𝑇𝑐 over 

the prediction horizon (𝑁𝑝 of  𝑇𝑐) until the new power references for the next 15 sec are 
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received from tertiary control. The choices of secondary control interval and prediction 

horizon are based on the tradeoff between performance and computational effort. In the 

following tests, 𝑁𝑝 = 5,𝑁𝑐 = 3 and 𝑇𝑐 = 1 sec are chosen. The average computation time 

per step for this setting is 0.307 sec. To better capture system dynamics while reducing 

computational overhead, the model update period 𝑇𝑠 is set as 0.02 sec and the sampling 

time for the ULISE is 2 msec in the simulations. 

To assist the MPC and AC-OPF executions, auto-regressive integrated moving 

average (ARIMA) models [117] are utilized to provide solar power predictions at different 

timescales. Specifically, as regards the secondary level, historical solar power outputs with 

a 1-sec sampling rate is used to train the corresponding ARIMA(p, d, q) model, where p 

denotes the order of auto-regressive (AR), d is the number of nonseasonal differences, and 

q means the order of moving average (MA). The sample autocorrelation coefficient (ACC) 

and partial autocorrelation coefficient (PACC) are calculated to determine the nonseasonal 

differencing before p and q are identified using properly transformed time series. The 

model orders are determined as (7, 1, 0) via time series analysis in R programming. This 

model is utilized at each control interval to predict over the prediction horizon using the 

last 7 (p) measurements of actual solar power outputs. It can be regularly trained with new 

data. As shown in Figure 3.3, a segment of the actual historical power output of the PV 

farm in 1-sec resolution is used for simulation purposes. The corresponding forecasted 

solar power generated by this ARIMA model is also given. The error metrics of root mean 

square error (RMSE) and mean absolute percentage error (MAPE) as defined in [117, 118] 

are leveraged to evaluate different datasets. With respect to the actual solar power curve, 

the forecasted curve has an RMSE of 0.0416 MW and a MAPE of 3.84%. Likewise, using 
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the 15-sec resolution historical solar power data, an ARIMA(3, 1, 1) model is used to 

forecast solar power of the next 15 sec for the AC-OPF module, and the RMSE and MAPE 

for the forecasts are found to be 0.1547 MW and 12.41%, respectively. 

 

Figure 3.3. Solar power variation curves. 

The total load and system net load (i.e, the total load minus the PV output) profiles 

for the simulations are illustrated in Figure 3.4.  

 

Figure 3.4. Actual total load and net load curves. 
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3.6.2 MPC Performance Evaluation 

Case studies are conducted to evaluate the performance of the proposed MPC 

controller by comparing the transient response and the frequency regulation capacity of the 

proposed MPC controller with decentralized local PI controllers. In addition, the case 

where 𝑇𝑐 = 3 sec is also studied to investigate the effect of control intervals on MPC 

performance. For the three cases, the AC-OPF and the primary droop controllers remain 

the same. The control parameters in the two methods are carefully tuned in the MPC 

Toolbox and the Control System Toolbox of MATLAB, respectively. For comparison 

purposes, the MPC controllers in the two cases utilize the same set of parameters and 

forecast PV power curve except for the difference in control intervals. As highly oscillatory 

responses may arise due to the windup of the integrator, which keeps integrating the 

tracking error even when the output saturates, clamping technique is adopted for PI [119] 

to combat the possible negative effects. The active power outputs of the SGs at buses 1 and 

2 regulated by MPC and PI controllers are given in Figure 3.5 comparing with the 

references from the AC-OPF. 
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Figure 3.5. Power tracking for SGs at buses 1 and 2. 

Figure 3.5 demonstrates that the MPC controller with 𝑇𝑐 = 3 sec generates slightly 

smoother power outputs than the one with 𝑇𝑐 = 1 sec due to less frequent power change 

settings and that they both achieve faster dynamic responses than the PI controller, as 

shown in the enlarged graphs. Both MPC and PI controllers closely track the reference 

power dispatch signals from AC-OPF with some tracking errors as a result of imperfect 

forecasting and controller performance. It is observed that the MPC controllers do not 

consistently outperform the PI controller. For instance, while the MPC controllers track the 

active power reference of SG at bus 2 from t = 45 sec to t = 60 sec better, the PI controller 
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beats the MPC controllers from t = 15 sec to t = 30 sec for the SG at bus 1. Thus, their 

power tracking capabilities are further compared in terms of total operating costs, which 

are determined by the quadratic cost function, as displayed in Figure 3.6. Using the mean 

bias error (MBE) metric, it is found that the proposed MPC method in the case of 𝑇𝑐 =

1 sec and 𝑇𝑐 = 3 sec results in cost savings of $13.62/hour and $12.37/hour, compared 

with PI control, respectively. The average operating cost difference between the MPC 

controller with 𝑇𝑐 = 1 sec and the PI controller is very high ($32.85/hour) when the system 

experiences the highest net load. This is because forecasting information is integrated into 

the MPC prediction model, allowing the MPC controllers to generate efficient control 

signals that can lead to more economic operation despite system uncertainties. 

 

Figure 3.6. Total operating costs. 

The microgrid frequencies measured at bus 6 are presented in Figure 3.7. In 

comparison with the PI controllers, the proposed MPC controller in two control interval 

settings is able to regulate the microgrid frequency well within the range of 59.4- 60.6 Hz 

and always maintain the microgrid frequency closer to the nominal frequency. 
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Quantitatively, the mean absolute errors (MAEs) of the frequencies with respect to 60 Hz 

for MPC with 𝑇𝑐 = 1 sec and 𝑇𝑐 = 3 sec, and PI controllers are 0.1027Hz, 0.1082Hz, and 

0.1707Hz, respectively. The main reason for such performance improvement lies in the 

fact that frequency is rigorously constrained in the MPC problem. Additionally, smaller 

frequency fluctuations, particularly at transients, are observed from the zoomed-in graph 

when the MPC employs a smaller control interval, enabling the controller to react faster to 

mitigate the disturbances from solar PV and loads.  

 

Figure 3.7. System frequencies measured at bus 6. 

Other results related to the case of MPC with 𝑇𝑐 = 1 sec are presented in the rest 

of this study since the MPC with 𝑇𝑐 = 3 sec shows similar results. Voltage regulation of 

the simulated microgrid system is taken care of by the SGs’ excitation systems and the 

STATCOMs. It is observed that voltages at all buses of the simulated microgrid system are 

well regulated within the typical permissible range of 0.95 pu to 1.05 pu. The sample bus 
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voltages are illustrated in Figure 3.8.  

 

Figure 3.8. Voltage magnitudes at selected buses. 

The MPC controller is dynamically executed, and eventually brings the system 

towards a new steady state following any transient, as evidenced in the above case studies. 

Figure 3.9 illustrates the power change settings (Pc), generated by the MPC controller every 

1 sec and sent to the primary droop controllers. It is demonstrated that such control signals, 

during the transient states, are adjusted more aggressively as the operating conditions vary 

greatly, particularly when the PV plunges at t = 62 sec. Even at the steady states, adjustment 

is still being made as a result of the time-varying operating points. Throughout the entire 

simulation, no time-out error was experienced. However, some identical control signals 

over multiple consecutive time steps were observed at the transient states, indicating 

possible infeasibilities of MPC during these control intervals, which might be attributed to 

the large model mismatch at transients due to linear approximation. 
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Figure 3.9. Power change settings to each SG. 

3.6.3 State Estimation Evaluation 

The performance of the proposed secondary MPC controller depends heavily on 

the state estimation accuracy. For SG 4, the estimated states 𝛿′, ω, 𝐸𝑓𝑑, 𝑇𝑀 from the ULISE 

and their recorded actual signals are presented in Figure 3.10, which shows that the 

estimated system states using the proposed ULISE agree closely with the actual signals 

sampled from the numerical simulation.  
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Figure 3.10. State estimation results for the SG at bus 4. 

However, relatively large estimation errors are observed during the transients. 



 

97 

 

These errors are mainly attributed to the low-order approximation in the linear system 

model, as well as the simplified system component models used for state estimation. 

Nevertheless, these estimates converge to the real values accurately in only a few seconds. 

Furthermore, over the entire course of time-domain simulations, the strong detectability of 

the linearized microgrid system was constantly checked, without which unbiased state and 

input estimates cannot be obtained even in the absence of stochastic noise [113]. During 

the transient states, it was also noticed that there are a few cases where the strong 

detectability is not satisfied. That is, the ULISE generates sub-optimal estimates in these 

scenarios. This outcome is also likely due to the linear approximation of a nonlinear system. 

3.6.4 Anomaly Detection Using the ULISE 

To testify to the performance of the ULISE in detecting the system anomaly, a 

scenario where an attacker purposely alters the control signals sent to SGs’ primary 

controllers to disrupt the dynamic performance of the control system is constructed. At t = 

104.2 sec, a ramp signal with a slope of 0.01 is deliberately superimposed to PC of SG at 

bus 4 over the communication link. As shown in Figure 3.11, ULISE estimates the received 

control signal, which is far away from the one calculated and sent by the MCP controller. 

The control signal is supposed to be fixed within the 104th second, while the estimate turns 

out to be a monotonically increasing signal. This function enables us to realize the existence 

of anomalies and to find alternative ways to enhance control. At t = 105.5 sec, a scenario 

was simulated where a mitigation scheme is initiated to tentatively disable all the 

communication links, and the local power settings are henceforth held identical as the 

values at that time instant. In other words, all SGs tentatively operate only in droop mode. 
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The curves in Figure 3.11 drop to zero after t = 105.5 sec, because the MPC controller and 

the ULISE are no longer operative. Other mitigation schemes such as resending the control 

signals via another communication channel could also be implemented.  

 

Figure 3.11. Power change setting of the SG at bus 4 under abnormal condition. 

Figure 3.12 shows the rotor angular velocity and the active power output of SG at 

bus 4 with and without the anomaly. Since the MPC controller is no longer operational 

after t = 105.5 sec, the rotor angular velocity and the active power output tend to converge 

to new values dictated only by the speed-droop characteristics. 
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Figure 3.12. Rotor angular velocity and active power output of the SG at bus 4. 

3.7 Conclusion 

In this chapter, an enhanced predictive hierarchical power management framework 

for islanded microgrids has been proposed, implemented, and evaluated in a simulated 

distribution network. A centralized linear MPC secondary controller is designed for 

microgrid system frequency regulation and active power control. Simulation results have 

demonstrated its consistent control performance, amid system uncertainties due to 

renewable generations and loads. A ULISE in a UMV sense is proposed to simultaneously 

estimate the system states with high precision and the received control signals for enhanced 

MPC performance. Compared with the decentralized PI controllers with well-tuned 
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parameters, the proposed MPC controller not only brings superior frequency regulation 

capability but also reduces the microgrid system operating costs.    
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Chapter 4 

Decentralized Control of DC Power Grids 

4.1 Introduction 

This chapter presents the modeling and decentralized coordinated control of a PV-

BESS system for islanded DC power grids. PVs can switch between the V-P droop mode 

and the MPPT mode adaptively based on the measured DC bus voltages, reducing the 

impact on system operation.  In addition, due to the converters' advantages over other DC-

DC topologies, such as galvanic isolation, high power density, and high-power conversion 

efficiency, the bidirectional DAB DC-DC converters are used to interface BESSs with a 

nanogrid. The DAB’s operating principle will be introduced briefly. A SoC-based droop 

control method for the BESSs is also proposed to prevent battery overcharging/discharging. 

The PVs and BESSs are coordinated in a communication-less manner to maintain load 

balancing and to regulate the common DC bus voltage with reduced control complexity. 

4.2 Operating Principle of DAB Converters 

The schematic diagram of a DAB DC-DC converter is shown in Figure 4.1. The 

electric circuit consists of two H-bridges and a high-frequency transformer. This 

transformer provides galvanic isolation and energy storage through the winding leakage 

inductances on both sides (which have been referred to and lumped as 𝐿𝑡 on the primary 

winding in Figure 4.1). At times, resonant capacitors are also connected in parallel with 

each switch-diode pair to enable zero voltage switching (ZVS) for higher efficiency.  
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Figure 4.1. Topology of a DAB DC-DC converter. 

The DAB converter can be controlled by the phase shift 𝜙  between the two H 

bridges, the duty cycles of switching devices, or the switching frequency. Among them, the 

phase-shift control is the most popular scheme for its simplicity [120]. Conventional phase-

shift control can be further classified as single-phase-shift, extended-phase-shift, dual-

phase-shift, and triple-phase-shift. The control flexibility increases with an increase in the 

control degrees of freedom, but at the cost of higher control complexity. In this work, the 

single-phase-shift scheme is chosen due to its simplicity and effectiveness [121]. Under 

this scheme, the control signals of the two H-bridges in Fig. 4.1 are square waves with a 

constant duty cycle of 50%. Specifically, switches S1 and S4 are simultaneously on only 

for the first half switching period, while S2 and S3 are on for the second half period. 

Therefore, the terminal voltage on the primary side of the transformer is 

 
𝑣𝑝(𝑡) = 𝑠1(𝑡)𝑣𝑖 

 

 

𝑠1(𝑡) = {
1,   0 ≤ 𝑡 <

𝑇𝑠𝑤

2

−1,  
𝑇𝑠𝑤

2
≤ 𝑡 < 𝑇𝑠𝑤

  

 

(4.1) 
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where 𝑇𝑠𝑤 is the switching period. Likewise, the terminal voltage on the secondary side: 

 𝑣𝑠(𝑡) = 𝑠2(𝑡)𝑣𝑜  

 

𝑠2(𝑡) = { 1,
𝑑𝑇𝑠𝑤

2
≤ 𝑡 <

𝑇𝑠𝑤

2
+

𝑑𝑇𝑠𝑤

2
−1,      otherwise

 

 

(4.2) 

 

where d is defined as the phase shift ratio 
𝜙

𝜋
  (−1 ≤ 𝑑 ≤ 1 ), and 𝜙  is the phase shift in 

radians. 

Without loss of generally, it is assumed 𝑣𝑖 ≥ 𝑛𝑣𝑜; n is the turns ratio of the high-

frequency transformer. A pictorial illustration of the relevant waveforms during one 

switching period when the lumped leakage resistance 𝑅𝑡 is ignored is provided in Figure 

4.2. 𝑣𝑡 is the voltage drop across 𝐿𝑡.  

In light of the symmetry of the circuit configuration, the average transferred power 

𝑃 = ∫ 𝑣𝑝(𝑡)
𝑇𝑠𝑤

0
𝑖𝑡(𝑡) is calculated as 

 
𝑃 =

𝑛 ⋅ 𝑉𝑖 ⋅ 𝑉𝑜 ⋅ 𝑑

2 ⋅ 𝑓𝑠𝑤 ⋅ 𝐿𝑡

(1 − 𝑑) 
 

 (4.3) 

 

where 𝑉𝑖  and 𝑉𝑜  are the terminal voltage magnitudes on the primary and secondary 

windings, respectively. The same analysis applies to the case when the power is transmitted 

from the secondary side to the primary side. Hence, they are expressed in a unified way 

[122]: 

 
𝑃 =

𝑛 ⋅ 𝑉𝑖 ⋅ 𝑉𝑜 ⋅ 𝑑

2 ⋅ 𝑓𝑠𝑤 ⋅ 𝐿𝑡

(1 − |𝑑|) 
 

(4.4) 
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Figure 4.2. Waveforms in one switching cycle. 

Eq. (4.4) shows the power to be transferred can be controlled by regulating the 

phase shift ratio or the phase shift. According to (4.4), the relationship between the 

transferred power and the phase shift ratio under the single-phase-shift scheme is plotted 

as Figure 4.3.  



 

105 

 

P

d1

-1

0.50

-0.5

 

Figure 4.3. Power curve with respect to the phase shift ratio. 

When the power is transmitted from the primary to the secondary side (i.e., 0 ≤

𝑑 ≤ 1), the power reaches its peak at d = 0.5, corresponding to 𝜙 =
𝜋

2
. Furthermore, the 

reverse peak power is attained at 𝜙 = −
𝜋

2
. 

4.3 Proposed Control Strategy 

The concept of the DC bus voltage regulation is based on droop control. The 

illustrations of the V-P droop characteristics for the PV and BESS units are given in Figure 

4.4. 
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Figure 4.4. V-P droop curves of a PV unit and a BESS unit. 

𝑣𝐷𝐶
∗   is the nominal voltage of the common DC bus, while [𝑣𝐷𝐶

min, 𝑣𝐷𝐶
max]  is the 

permissible range of the common DC bus voltage. When the DC bus voltage is high enough 

(in the range from 𝑣𝐷𝐶
𝐻  to 𝑣𝐷𝐶

max), the PV units are supposed to limit their power outputs and 

operate in the droop mode. Meanwhile, the batteries should absorb excess PV generation 

to bring down the DC bus voltage. Under this operating condition, PVs and BESSs 

maintain the power balance and regulate the common DC bus voltage together. However, 

when the DC bus voltage drops below 𝑣𝐷𝐶
𝐻 , the PVs seamlessly transition to the MPPT 

mode for full utilization of the solar power at the maximum power point (MPP), i.e., 𝑃𝑚𝑝𝑝. 

Consequently, the BESSs become the only power sources to regulate the common DC bus 

voltage. It is also noted that, apart from the charging/discharging power limits 𝑃𝑏
min and 

𝑃𝑏
max, the batteries are subject to SoC limits. To preserve battery life, the information of 

SoCs is integrated into the BESS droop curves to mitigate overcharging and over-

discharging issues. The decentralized control strategies proposed for the PVs and the 
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BESSs will be elaborated in the following subsections. 

4.3.1 Adaptive Control of PVs 

As shown in Figure 4.5, a DC-DC boost converter is employed to interface between 

the PV panel and the DC nanogrid. The cascade control structure consists of three control 

loops. The V-P droop characteristic curve in Figure 4.4 is realized in the outer control loop, 

which generates the DC bus voltage reference 𝑣𝐷𝐶𝑝𝑣,𝑟𝑒𝑓. A first-order low-pass filter is also 

utilized to suppress fluctuation in solar power and to improve system stability. 𝑃𝑝𝑣  is 

filtered solar power. The voltage reference for a PV unit is given by: 

 𝑣𝐷𝐶𝑝𝑣,𝑟𝑒𝑓 = 𝑣𝐷𝐶
𝑚𝑎𝑥 − 𝑅𝑑,𝑝𝑣𝑃𝑝𝑣 (4.5) 

 

The droop coefficient 𝑅𝑑,𝑝𝑣 is defined as: 

 
𝑅𝑑,𝑝𝑣 =

𝑃𝑚𝑝𝑝

𝑣𝐷𝐶
𝑚𝑎𝑥 − 𝑣𝐷𝐶

𝐻  
 

(4.6) 

 

The intermediate DC bus voltage control loop then acts on 𝑣𝐷𝐶𝑝𝑣,𝑟𝑒𝑓 and produces 

the PV voltage reference 𝑣𝑝𝑣,𝑟𝑒𝑓 for the inner control loop via a proportional-integral (PI) 

controller with integral clamping and a mode switch block. The duty cycle D to the boost 

converter is generated in the inner voltage loop using another PI controller. In the proposed 

control scheme, the PV panel is regulated on the left side of the MPP of its P-V 

characteristic curve in Figure 4.6 to facilitate mode switch. The MPP can be readily 

estimated by combining off-line calculation of PV model parameters from specification 

sheets with real-time readings of temperature and solar irradiance sensors [107]. In addition, 

the mode switch block enables the seamless transition between MPPT and droop modes. 
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When the output of the intermediate control loop varies within the range specified by 0 and 

𝑣𝑚𝑝𝑝, 𝑣𝑝𝑣,𝑟𝑒𝑓 equals this output, and the PV unit works in the droop mode accordingly. 

However, the output will increase and 𝑣𝑝𝑣,𝑟𝑒𝑓  will saturate at 𝑣𝑚𝑝𝑝  once the DC bus 

voltage drops greatly, thus naturally making the PV unit operate in the MPPT mode.  

 

Figure 4.5. Control diagram of a PV unit. 
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Figure 4.6. P-V characteristic curve of a PV panel. 

4.3.2 Adaptive Droop Control of BESSs 

Bidirectional DC-DC converters should be employed to meet the bidirectional 

power flow requirements of the BESSs. In Figure 4.7, a DAB converter connects a BESS 

unit to the common DC bus.  
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Figure 4.7. Control diagram of a BESS unit. 

The proposed cascaded control structure consists of three control loops. The outer 

control loop implements the V-P droop characteristic shown in Figure 4.4 and also takes 

account of an additional voltage correction term 𝛿𝑉: 

 𝑣𝐷𝐶𝑏,𝑟𝑒𝑓 = 𝑣𝐷𝐶
∗ − 𝑅𝑑,𝑏𝑃𝑏 + 𝛿𝑉 (4.7) 

 

where the droop coefficient 𝑅𝑑,𝑏 is defined as: 

 
𝑅𝑑,𝑏 =

𝑣𝐷𝐶
𝑚𝑎𝑥 − 𝑣𝐷𝐶

𝑚𝑖𝑛

𝑃𝑏
𝑚𝑎𝑥 − 𝑃𝑏

𝑚𝑖𝑛
 

 

(4.8) 

 

The charge/discharge protection module provides the adjustment of 𝛿𝑉 to the DC 

bus voltage reference based on the real-time SoC estimate, which can be obtained using 
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several methods [123]. In this work, the commonly used the coulomb counting method is 

employed: 

 
𝑆𝑜𝐶(𝑡2) = 𝑆𝑜𝐶(𝑡1) −

𝜂

𝐶𝑏
∫ 𝑖𝑏(𝜏)𝑑𝜏

𝑡2

𝑡1

 
 

(4.9) 

 

where SoC(𝑡1) and SoC(𝑡2) are the SoCs at time instants 𝑡1 and 𝑡2 respectively. 𝐶𝑏 is the 

battery rated capacity, 𝑖𝑏 is the discharging current, and 𝜂 is the coulombic efficiency. 

Then the modified voltage reference 𝑣𝐷𝐶𝑏,𝑟𝑒𝑓  to the intermediate bus voltage 

control loop is bounded between 𝑣𝐷𝐶
min and  𝑣𝐷𝐶

max for reliable operation. The phase shift 

between the control signals is generated in the inner battery current control loop via a PI 

controller.  

It should be noted that the proposed SoC-based adaptive control is conveniently 

embedded into the BESS V-P droop curve by implementing the charge/discharge protection 

module shown in Figure 4.7. To identify the battery overcharge/over-discharge statuses, 

the researcher denotes the upper and lower thresholds of SoC as SoC𝑢  and SoC𝑙 , 

respectively. The protection mechanism is elaborated in the following: 

 

𝛿𝑉 = {
𝑅𝑙(𝑆𝑜𝐶 − 𝑆𝑜𝐶𝑙),

0,
𝑅𝑢(𝑆𝑜𝐶 − 𝑆𝑜𝐶𝑢),

  

𝑆𝑜𝐶 ∈ [0, 𝑆𝑜𝐶𝑙)

      𝑆𝑜𝐶 ∈ [𝑆𝑜𝐶𝑙 , 𝑆𝑜𝐶𝑢]

𝑆𝑜𝐶 ∈ (𝑆𝑜𝐶𝑢, 1]
 

 

(4.10) 

 

where 𝑅𝑙 =
𝑣𝑑𝑐

∗ −𝑣𝑑𝑐
𝑚𝑖𝑛

𝑆𝑜𝐶𝑙
 and 𝑅𝑢 =

𝑣𝑑𝑐
𝑚𝑎𝑥−𝑣𝑑𝑐

∗

1−𝑆𝑜𝐶𝑢
. 

When the SoC lies within the normal range [𝑆𝑜𝐶𝑙 , 𝑆𝑜𝐶𝑢] , charge/discharge 

protection is unnecessary; hence 𝛿𝑉 = 0. However, the SoC-based adaptive control is 
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enabled when the measured SoC falls outside of this range. The dynamic processes are 

illustrated in Figure 4.8. If the battery is discharging and the SoC decreases below SoC𝑙, 

the droop curve then dynamically shifts downwards by 𝛿𝑉, lowering the DC bus voltage 

reference. Thus, the battery will decrease its discharging power along the translated droop 

curve until a new steady state is reached. Over-discharging is mitigated. The trajectory of 

the changing operating point is illustrated by the red arrows in the left subplot of Figure 

4.8. Likewise, if the battery is charging and the SoC increases above SoC𝑢, the droop curve 

then shifts upwards by 𝛿𝑉, as a way of alleviating the over-charging. In both cases, the 

battery power output is regulated by the modified voltage reference. Moreover, if there are 

multiple BESSs, their SoCs can tend towards a balance (i.e., similar SoC levels) over time, 

since the modified voltage reference of the BESS unit with a high SoC is higher and that 

of the BESS unit with a low SoC is also lower. 

 

Figure 4.8. Curves of SoC-based droop control in the two cases. 
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The above proposed controls of PV units and BESS units are implemented at the 

local level. They are fully decentralized and only require the measurement of DC bus 

voltages, which ensures the plug-and-play function. Besides, at least one type of distributed 

generators is in place to stabilize the common DC bus voltage. Hence, system reliability 

can be improved and control complexity is also decreased. 

4.4 Simulation Results 

4.4.1 Simulation Setup 

The dynamic performance of the proposed control strategy is validated using 

MATLAB/Simulink under varying DC loading and solar irradiance conditions. Figure 4.9 

displays the islanded DC nanogrid test system, which consists of one PV panel, two BESSs, 

one static load, and one dynamic load. 

 

Figure 4.9. Topology of the islanded DC nanogrid test system. 
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In the test system, the nominal value (𝑣𝐷𝐶
∗ ) of the common DC bus voltage is 380 

V, while its permissible limits  𝑣𝐷𝐶
max and 𝑣𝐷𝐶

min are 405 V and 355 V, respectively. The high 

voltage value 𝑣𝐷𝐶
𝐻  is 390 V. For simplicity, the coulombic efficiency of 100% is assumed 

for the BESS units. SoC𝑢 is set as 0.8, while SoC𝑙 is 0.3. Furthermore, the initial SoCs of 

BESS 1 and BESS 2 are set as 0.7995 and 0.3 respectively to demonstrate the effectiveness 

of the proposed charge/discharge protection mechanism. Since the battery dynamics are 

usually slow, the coefficients 𝑅𝑙 and 𝑅𝑢 used in (4.10) are also augmented by 400 times to 

strengthen the effectiveness for limited simulation time. For the PV unit, its cell 

temperature is assumed to be 25 °C throughout the simulation. Figure 4.10 shows the solar 

irradiance variation, while Figure 4.11 depicts the dynamic load change. Controller 

parameters were obtained from small-signal stability analysis and are provided in the 

Appendix along with other system parameters. 

 

Figure 4.10. Solar irradiance curve. 
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Figure 4.11. Dynamic load curve. 

Table 4.1 

 Parameters of the BESS Units 

 

 

Parameters BESS 1 BESS 2 

Battery nominal voltage 51.6 V 51.2 V 

Battery’s 𝑃𝑏𝑚𝑎𝑥 8 kW 1.5 kW 

Battery’s 𝑃𝑏𝑚𝑖𝑛 -8 kW -1.5 kW 

DAB rated power output 10 kW 2 kW 

Transformer’s 𝑅𝑡 2 mΩ 5 mΩ 

Transformer’s 𝐿𝑡 2.85 μH 14.25 uH 

Transformer’s turns ratio n 1/8 1/8 

Switching frequency 𝑓𝑠𝑤 10 kHz 10 kHz 

Droop coefficient 𝑅𝑑,𝑏 3.1 V/kW 16.7 V/kW 

Low-pass filter time constant 𝜏𝑑 0.001 sec 0.001 sec 

Bus voltage controller 8.57 + 2760/s 4.52 + 1310/s 

Battery current controller 11.9/s 59.6/s 
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Table 4.2  

Parameters of the PV Unit 

Parameters PV 

𝑣𝑚𝑝𝑝 in Standard Test Conditions 122.8 V 

𝑃𝑚𝑝𝑝 in Standard Test Conditions 9.958 kW 

Boost converter’s inductance 2.5 mH 

Boost converter’s output capacitance 1 mF 

Low-pass filter time constant 𝜏𝑝𝑣 0.002 sec 

Bus voltage controller 0.21 + 107/s 

PV voltage controller 0.69 + 50/s 

 

4.4.2 Simulation Results 

The DC bus voltages measured at the output terminals of the three distributed 

generators are presented in Figure 4.12. It can be observed that the voltages almost coincide 

and that they are well regulated within the permissible voltage range. Initially, the common 

DC bus voltage stays at around 391 V, slightly above 𝑣𝐷𝐶
𝐻 . Hence, the PV unit limits its 

power output and generates 9.217 kW as opposed to 9.958 kW at MPPT, as shown in Figure 

4.13. Since the common DC bus voltage is high enough, both BESSs operate in the 

charging mode.  
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Figure 4.12. DC bus voltages of the BESS and PV units. 

 

Figure 4.13. Power output of the PV unit. 

Figure 4.14 illustrates the power outputs of the two BESSs over the simulation 

horizon, while Figure 4.15 presents their SoC levels. 
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Figure 4.14. Power outputs and BESS 1 and BESS 2. 

 

 

Figure 4.15. SoC levels of BESS 1 and BESS 2. 

It can be observed from Fig. 4.14 that the actual active powers shared between the 

BESS units in the steady states are directly proportional to their battery power ratings. At 

the beginning, the BESS units are charged at constant powers, thereby absorbing excess 

solar power in the DC nanogrid. At t = 0.37 sec, the SoC of BESS 1 rises beyond 0.8. 

Therefore, the charge protection mechanism is triggered, and the voltage reference of BESS 

1 is adaptively raised according to (4.10). As a consequence, BESS 1 decreases its charging 
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power and its SoC starts to experience a much slower increase. Meanwhile, BESS 2 begins 

to pick up more charging power and its SoC level is still within the normal range. Due to 

the increase in the DC bus voltage, the PV unit provides less power as per its V-P droop 

characteristic curve, as seen in Figure 4.13. However, the PV unit still participates in 

voltage regulation along with the BESSs. 

The solar irradiance plunges at t = 1.1 sec. As the common DC bus voltage 

decreases significantly, the PV unit is forced to operate in the MPPT mode after a small 

transient and yields 3.016 kW at a new steady state. During this process, the two BESS 

units are discharging and put out more active power to compensate for the instantaneous 

power imbalance and also to regulate the common DC bus voltage. From t = 1.6 sec to t = 

2.2 sec, the DC nanogrid experiences the highest net load (i.e., the total electrical demand 

minus the solar power generation), which is reflected by the largest decreasing rates of the 

BESSs’ SoC levels. It should be noted that while the solar irradiance increases after t = 2.2 

sec, the PV unit still operates in the MPPT mode, delivering the highest solar power 

available due to the low DC bus voltage. In the meantime, the two BESSs continue 

discharging to provide power support and voltage regulation. When t = 2.56 sec, the SoC 

of BESS 2 begins to reduce below 0.3, thus automatically triggering the discharge 

protection mechanism. As a result, the DC bus voltage reference of BESS 2 is lowered 

according to (4.10). BESS 2 then generates far less power and sees a slow-down of its SoC 

decline. On the other hand, BESS 1 still operates within the normal SoC range and fulfils 

virtually all the electrical demand afterwards. It is possible that both BESSs will hit the 

lower threshold of SoC and are thus no longer able to power the loads. In this extreme case, 

load shedding should be performed, which, however, is beyond the scope of this work. 
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The above simulation results exhibit good dynamic performance of the proposed 

coordinated control strategy, and the control system is stable. As the DAB topology 

facilitates the bidirectional power flow of the BESS units, the phase shifts generated by the 

inner battery current control loop are also presented in Figure 4.16.   

 

Figure 4.16. Phase shifts generated for BESS 1 and BESS 2. 

The sign of the phase shift angles indicates whether the BESSs are in charging or 

discharging modes. A negative phase shift angle means the charging mode. It can be seen 

that smooth transitions are achieved between charging and discharging operation modes 

during the simulation. Interestingly, the curves of the phase shifts are similar to those of 

the power outputs shown in Figure 4.14. This is because the two BESS units operate with 

phase shifts far away from the extrema ±
𝜋

2
, which lie in an approximately linear region of 

the parabolic function (4.4). 
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4.5 Conclusion 

A fully decentralized coordination strategy for controlling the PV-BESS systems 

in the islanded DC nanogrids has been presented in this chapter. The proposed control 

strategy relies only on the measurements of local DC bus voltages, thus demanding 

minimum communication capabilities. The PV unit is able to provide power and regulation 

support to the DC bus voltage by seamlessly switching between the MPPT mode and the 

droop mode. In addition, a SoC-based adaptive droop control method is proposed for the 

BESS units that are interfaced by DAB DC-DC converters to regulate the DC bus voltages. 

Overcharging and over-discharging protection has been achieved via the proposed SoC-

related voltage control. Simulation results based on MATLAB/Simulink have 

demonstrated good dynamic performance and stability of the proposed coordinated control 

strategy. 
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Chapter 5 

Data-Driven Transient Stability Evaluation of Active Distribution Networks 

Dominated by EV Supercharging Stations  

5.1 Introduction 

Globally, transportation is a major contributor to GHG emissions. In the United 

States, the transportation sector is responsible for 28% of the GHG emissions and has even 

overtaken the electric power sector as the nation’s largest source of GHG emissions in 2020 

[124]. Running on electricity from renewable energy (e.g., solar PV, wind) without direct 

tailpipe emissions, EVs are viewed as a game changer in terms of achieving carbon 

neutrality in the transportation sector, improving community air quality, and consequently 

mitigating the impacts on public health and climate change. The federal government of the 

United States, as well as many state governments, are actively promoting transportation 

electrification efforts. For example, New Jersey has set a bold goal of registering 330,000 

EVs by 2025 and provided different incentive programs to promote the expansion of EV 

charging infrastructure [125]. Aside from government financial incentives, the emerging 

high-power charging technologies aimed at addressing the EV drivers’ range anxiety are 

helping spur EV adoption. The charging power of a Level-3 (DC Fast) charger ranges 

between 50kW and 350kW, while that of the next-generation DC Ultra-Fast chargers can 

even reach at least 400kW [126]. However, it is anticipated that the massive influx of EV 

supercharging stations, which will replace the current gas stations, would strain the existing 

ADNs and introduce negative impedance characteristics. The transient frequency and/or 

voltage stabilities of emerging ADNs could be severely weakened. Thus, developing 

efficient TSE approaches is crucial to ensuring the system situational awareness and stable 
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operation. The ROAs, as a powerful TSE tool, allow the distribution system operator (DSO) 

to gain an understanding of the system operating status and to take appropriate control 

actions. Under this context, the first section of this chapter will present modeling of an 

emerging DC ADN with high penetration of EV charging loads. Afterwards, the Koopman 

operator theory will be introduced. Finally, the ROAs of the DC ADN of interest will be 

estimated using data-driven methods based on the Koopman operator theory. The DSO can 

manage charging requests based on the estimated ROAs to ensure stable ADN operation. 

5.2 DC Active Distribution Network Modeling 

In this subsection, a DC ADN is modeled, which has several advantages over its 

AC counterparts such as higher power conversion efficiencies and lower control 

complexities [127]. Hence, it becomes ideal for hosting EV supercharging stations. Figure 

5.1 illustrates a DC ADN connected to an external AC grid. The modeled ADN comprises 

a BESS, a solar PV, and a few high-power EV chargers, which represent the key 

components of future supercharging stations. The rated common DC bus voltage (𝑉𝑛) of 

the ADN is designed as 2 kV. The external AC grid and the BESS are responsible for DC 

voltage regulation and power balancing. Different types of PWM power converters are 

employed to interface these distributed assets to the common DC bus. The local controls 

of distributed assets are based on PI control. In what follows, the detailed modeling of each 

type of distributed assets will be provided. 
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Figure 5.1.  The tested DC active distribution network. 

5.2.1 Solar PV 

A solar PV array in the MPPT mode is interfaced to the DC ADN through a Boost 

converter, as shown in Figure 5.2. 

 

Figure 5.2. Solar PV interfaced by a Boost converter. 
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The state equations of the Boost converter are obtained: 

 �̇�𝑝𝑣 =
𝑖𝑝𝑣(𝑣𝑝𝑣)

𝐶𝑝𝑣𝑖
−

𝑖𝑝𝑣𝐿

𝐶𝑝𝑣𝑖
        

(5.1) 

 
𝑖𝑝𝑣𝐿̇ =

−𝑅𝑝𝑣 ∙ 𝑖𝑝𝑣𝐿

𝐿𝑝𝑣
+

𝑣𝑝𝑣

𝐿𝑝𝑣
−

[1 − 𝑑𝑝𝑣(𝑣𝑝𝑣)] ∙ 𝑣𝑝𝑣𝑑𝑐

𝐿𝑝𝑣
 

 

(5.2) 

 
�̇�𝑝𝑣𝑑𝑐 =

−𝑖𝑙𝑖𝑛𝑒,𝑝𝑣

𝐶𝑝𝑣𝑜
+

[1 − 𝑑𝑝𝑣(𝑣𝑝𝑣)] ∙ 𝑖𝑝𝑣𝐿

𝐶𝑝𝑣𝑜
 

 

(5.3) 

 
𝑖𝑙𝑖𝑛𝑒,𝑝𝑣̇ =

−𝑅𝑙𝑖𝑛𝑒,𝑝𝑣 ∙ 𝑖𝑙𝑖𝑛𝑒,𝑝𝑣

𝐿𝑙𝑖𝑛𝑒,𝑝𝑣
+

𝑣𝑝𝑣𝑑𝑐

𝐿𝑙𝑖𝑛𝑒,𝑝𝑣
−

𝑣𝑑𝑐

𝐿𝑙𝑖𝑛𝑒,𝑝𝑣
 

 

(5.4) 

 

where 𝑣𝑝𝑣  and 𝑖𝑝𝑣  are the equivalent output voltage and current of the solar PV, 

respectively. As 𝑣𝑝𝑣 and 𝑖𝑝𝑣 satisfy a transcendental equation [128],  𝑖𝑝𝑣 is considered as 

an implicit function of 𝑣𝑝𝑣 , denoted as 𝑖𝑝𝑣(𝑣𝑝𝑣). 𝐶𝑝𝑣𝑖 is the input capacitor, 𝑅𝑝𝑣  is the 

internal resistance of the inductor 𝐿𝑝𝑣, and 𝑣𝑝𝑣𝑑𝑐 is the voltage of the DC-link capacitor 

𝐶𝑝𝑣𝑜. 𝑣𝑑𝑐 is the common DC bus voltage. The P&O technique is employed for MPPT. 

𝑑𝑝𝑣(𝑣𝑝𝑣) denotes the duty cycle to the switch 𝑆𝑝𝑣. It is generated by a local PI controller 

that regulates 𝑣𝑝𝑣 to the MPPT voltage [129]. In practice, a BESS can also be added in 

parallel with this solar PV to form a hybrid system such that the uncertainty in solar 

irradiance is greatly mitigated. As such, this work assumes small variations in solar 

irradiance for the modeled solar PV array. 

5.2.2 BESS 

In Figure 5.3, the bidirectional Buck-Boost converter connects a BESS to the 

common DC bus of the ADN. This BESS can help reduce peak demand charges and 

provide ancillary services for improved grid stability. 
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Figure 5.3. BESS interfaced by a bidirectional DC-DC converter. 

The dynamics are represented by the following equations: 

 
𝑖𝑏𝐿̇ =

𝑉𝑏

𝐿𝑏
−

𝑅𝑏 ∙ 𝑖𝑏𝐿

𝐿𝑏
−

[1 − 𝑑𝑏(𝑣𝑏𝑑𝑐 , 𝑖𝑏𝐿)] ∙ 𝑣𝑏𝑑𝑐

𝐿𝑏
 

 

(5.5) 

 
�̇�𝑏𝑑𝑐 =

−𝑖𝑙𝑖𝑛𝑒,𝑏

𝐶𝑏
+

[1 − 𝑑𝑏(𝑣𝑏𝑑𝑐 , 𝑖𝑏𝐿)] ∙ 𝑖𝑏𝐿

𝐶𝑏
 

 

(5.6) 

 
𝑖𝑙𝑖𝑛𝑒,𝑏̇ =

−𝑅𝑙𝑖𝑛𝑒,𝑏 ∙ 𝑖𝑙𝑖𝑛𝑒,𝑏

𝐿𝑙𝑖𝑛𝑒,𝑏
+

𝑣𝑏𝑑𝑐

𝐿𝑙𝑖𝑛𝑒,𝑏
−

𝑣𝑑𝑐

𝐿𝑙𝑖𝑛𝑒,𝑏
 

 

(5.7) 

 

where 𝑉𝑏 is the BESS terminal voltage, 𝑖𝑏𝐿 is the inductor current, 𝑣𝑏𝑑𝑐 is the voltage of 

the DC-link capacitor 𝐶𝑏, and 𝑖𝑙𝑖𝑛𝑒,𝑏 is the output current. 𝑅𝑙𝑖𝑛𝑒,𝑏 and 𝐿𝑙𝑖𝑛𝑒,𝑏 are the line 

resistance and inductance. Since the BESS generally has a large energy capacity and small 

voltage variations, 𝑉𝑏 can be considered as constant. A dual-loop PI control is implemented 

locally, where the outer loop regulates 𝑣𝑏𝑑𝑐  to (𝑉𝑛 − 𝑟𝑏𝑖𝑙𝑖𝑛𝑒,𝑏)  ( 𝑟𝑏  is the DC droop 

coefficient) and the inner loop regulates 𝑖𝑏𝐿 . 𝑑𝑏(𝑣𝑏𝑑𝑐 , 𝑖𝑏𝐿)  represents the duty cycle 

generated by the inner current loop. The upper and lower switches of the power converter 

are then driven in a complementary manner.  
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5.2.3 EV Charging Load 

Various charging technologies [130] can be utilized to charge EVs, e.g., constant 

power (CP) mode, constant current (CC) mode, constant voltage (CV) mode, and their 

combinations. An EV is charged via a Buck converter, as depicted in Figure 5.4.  

 

Figure 5.4. EV charged via a Buck converter. 

The dynamical model is described as 

 
𝑖𝑙𝑖𝑛𝑒,𝑒𝑣̇ =

−𝑅𝑙𝑖𝑛𝑒,𝑒𝑣 ∙ 𝑖𝑙𝑖𝑛𝑒,𝑒𝑣

𝐿𝑙𝑖𝑛𝑒,𝑒𝑣
+

𝑣𝑑𝑐

𝐿𝑙𝑖𝑛𝑒,𝑒𝑣
−

𝑣𝑒𝑣𝑑𝑐

𝐿𝑙𝑖𝑛𝑒,𝑒𝑣
 

 

(5.8) 

 
�̇�𝑒𝑣𝑑𝑐 =

𝑖𝑙𝑖𝑛𝑒.𝑒𝑣

𝐶𝑒𝑣𝑖
−

𝑑𝑒𝑣(𝑣𝑒𝑣, 𝑖𝑒𝑣𝐿) ∙ 𝑖𝑒𝑣𝐿

𝐶𝑒𝑣𝑖
 

 

(5.9) 

 
𝑖𝑒𝑣𝐿̇ =

−𝑅𝑒𝑣 ∙ 𝑖𝑒𝑣𝐿

𝐿𝑒𝑣
−

𝑣𝑒𝑣

𝐿𝑒𝑣
+

𝑑𝑒𝑣(𝑣𝑒𝑣, 𝑖𝑒𝑣𝐿) ∙ 𝑣𝑒𝑣𝑑𝑐

𝐿𝑒𝑣
 

 

(5.10) 

 
�̇�𝑒𝑣 =

𝑖𝑒𝑣𝐿

𝐶𝑒𝑣𝑜
−

𝑖𝑒𝑣(𝑣𝑒𝑣)

𝐶𝑒𝑣𝑜
 

 

(5.11) 

 

where 𝐶𝑒𝑣𝑖 is the input DC-link capacitor, 𝑣𝑒𝑣𝑑𝑐 is its voltage, 𝑖𝑒𝑣𝐿 is the inductor current, 

𝑖𝑒𝑣 is the charging current, and 𝑣𝑒𝑣 is the EV battery terminal voltage. Depending on the 

charging mode, the local controller executes single-loop or dual-loop PI control to generate 
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the duty cycle 𝑑𝑒𝑣 for the switch 𝑆𝑒𝑣. As 𝑣𝑒𝑣 and 𝑖𝑒𝑣 are solely related to each other in the 

generic battery model [131], 𝑖𝑒𝑣 is considered as an implicit function of 𝑣𝑒𝑣, i.e., 𝑖𝑒𝑣(𝑣𝑒𝑣). 

5.2.4 Grid-Interface Bidirectional AC-DC Converter 

The grid-interface converter is implemented using a voltage source converter 

(VSC) topology. In Figure 5.5, 𝑣𝑔𝑎 , 𝑣𝑔𝑏  and 𝑣𝑔𝑐  are the three-phase AC grid voltages, 

which are assumed to be balanced. 𝐿𝑔 is the inductance of the filter on each phase, and 𝑅𝑔 

is its internal resistance. In addition, 𝑣𝑔𝑑𝑐 is the voltage of the DC-link capacitor 𝐶𝑔. The 

external AC grid can absorb and release DC power to assist in the DC ADN operation. 

 

Figure 5.5. AC grid interfaced to the ADN via an AC-DC converter. 

In the synchronously rotating d-q reference frame, the state equations related to the 

inductor filters are given: 
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𝑖𝐿�̇� = 𝜔 ∙ 𝑖𝐿𝑞 −

𝑅𝑔 ∙ 𝑖𝐿𝑑

𝐿𝑔
+

𝑣𝑔𝑑

𝐿𝑔
−

𝑚𝑑(𝑣𝑔𝑑𝑐, 𝑖𝐿𝑑)  ∙ 𝑣𝑔𝑑𝑐

2𝐿𝑔
 

 

(5.12) 

 
𝑖𝐿�̇� = −𝜔 ∙ 𝑖𝐿𝑑 −

𝑅𝑔 ∙ 𝑖𝐿𝑞

𝐿𝑔
+

𝑣𝑔𝑞

𝐿𝑔
−

𝑚𝑞(𝑖𝐿𝑞) ∙ 𝑣𝑔𝑑𝑐

2𝐿𝑔
 

 

(5.13) 

 

where 𝑣𝑔𝑑  and 𝑣𝑔𝑞  are the grid voltages on the d-q axes. 𝑖𝐿𝑑  and 𝑖𝐿𝑞  are the d-q-axes 

currents flowing through the inductor filters, while 𝜔 is the measured angular frequency of 

the AC grid. Besides, the dual-loop PI control [132] is implemented. In the outer voltage 

control loop, 𝑣𝑔𝑑𝑐  is regulated to its rated value 𝑉𝑛 , which provides the d-axis current 

reference. Since no reactive power is delivered, the q-axis current reference is set as zero. 

The inner current control loop tracks the current references and generates the d-q-axes duty 

cycles 𝑚𝑑(𝑣𝑔𝑑𝑐, 𝑖𝐿𝑑) and 𝑚𝑞(𝑖𝐿𝑞). The dynamics of the DC link can be expressed based 

on the power balance between the AC and DC sides. In addition, the line current at the 

output terminal is obtained. 

 
�̇�𝑔𝑑𝑐 =

3(𝑣𝑔𝑑 ∙ 𝑖𝐿𝑑 + 𝑣𝑔𝑞 ∙ 𝑖𝐿𝑞)

2𝐶𝑔 ∙ 𝑣𝑔𝑑𝑐
−

𝑖𝑙𝑖𝑛𝑒,𝑔

𝐶𝑔
 

 

(5.14) 

 
𝑖𝑙𝑖𝑛𝑒,𝑔̇ =

−𝑅𝑙𝑖𝑛𝑒,𝑔 ∙ 𝑖𝑙𝑖𝑛𝑒,𝑔

𝐿𝑙𝑖𝑛𝑒,𝑔
+

𝑣𝑔𝑑𝑐

𝐿𝑙𝑖𝑛𝑒,𝑔
−

𝑣𝑑𝑐

𝐿𝑙𝑖𝑛𝑒,𝑔
 

 

(5.15) 

 

The dynamics of the AC grid can be represented by the following equations for an 

equivalent SG [104]: 

 
�̇� =

1

𝐽
[𝑇𝑚 −

3

2𝜔
(𝑣𝑔𝑑 ∙ 𝑖𝐿𝑑 + 𝑣𝑔𝑞 ∙ 𝑖𝐿𝑞)] 

 

(5.16) 
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(5.17) 
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where 𝜔 is the angular frequency, 𝐽 is the total moment of inertia of the AC grid, and 𝑇𝑚 

is the mechanical torque provided by the prime mover. Moreover, 𝜏𝑝𝑚 is the time constant 

of the prime mover, while 𝑟𝐷  is the speed droop coefficient. 𝜔𝑠  is the rated angular 

frequency. 𝑃𝑐 is the power change setting typically dispatched by the DSO; in this study, it 

is determined by a PI controller acting on the error between 𝜔𝑠 and 𝜔. 

Because the SG stator terminal voltages are also the grid voltages, 𝑣𝑔𝑑 and 𝑣𝑔𝑞 in 

the above equations can be further expressed as 

 𝑣𝑔𝑑 = −𝑅𝑎 ⋅ 𝑖𝐿𝑑 + 𝜔 ⋅ 𝐿𝑎𝑞 ⋅ 𝑖𝐿𝑞 + 𝑣𝑠𝑑  (5.18) 

 𝑣𝑔𝑞 = −𝑅𝑎 ⋅ 𝑖𝐿𝑞 − 𝜔 ⋅ 𝐿𝑎𝑑 ⋅ 𝑖𝐿𝑑 + 𝑣𝑠𝑞 (5.19) 

 

where 𝑅𝑎 ,  𝐿𝑎𝑑 , and 𝐿𝑎𝑞  are the resistance and d-q-axes inductances of the SG stator, 

respectively. 𝑣𝑠𝑑 and 𝑣𝑠𝑞 are the voltages induced on the stator by the excitation system. 

Since voltage regulation can have fast dynamics, 𝑣𝑔𝑑 and 𝑣𝑔𝑞 are considered as constant 

during the transients. 

Without loss of generality, it is assumed that there are 𝑛𝑝𝑣 solar PVs, 𝑛𝑏 BESSs, 

𝑛𝑒𝑣 EV loads in the DC ADN connected to the external AC grid. Therefore, the common 

DC bus voltage is  

 

𝑣𝑑𝑐 =
1

𝑎
(

𝑣𝑔𝑑𝑐

𝑍𝑙𝑖𝑛𝑒,𝑔
+ ∑

𝑣𝑝𝑣𝑑𝑐,𝑖

𝑍𝑙𝑖𝑛𝑒,𝑝𝑣𝑖

𝑛𝑝𝑣

𝑖=1

+ ∑
𝑣𝑏𝑑𝑐,𝑖

𝑅𝑙𝑖𝑛𝑒,𝑏𝑖

𝑛𝑏

𝑖=1

+ ∑
𝑣𝑒𝑣𝑑𝑐,𝑖

𝑍𝑙𝑖𝑛𝑒,𝑒𝑣𝑖

𝑛𝑒𝑣

𝑖=1

) 

 

(5.20) 

 

where 𝑎:=
1

𝑍𝑙𝑖𝑛𝑒,𝑔
+ ∑

1

𝑍𝑙𝑖𝑛𝑒,𝑝𝑣𝑖

𝑛𝑝𝑣

𝑖=1
+ ∑

1

𝑍𝑙𝑖𝑛𝑒,𝑏𝑖

𝑛𝑏
𝑖=1 + ∑

1

𝑍𝑙𝑖𝑛𝑒,𝑒𝑣𝑖

𝑛𝑒𝑣
𝑖=1 . 𝑍𝑙𝑖𝑛𝑒  denotes a line 

impedance.  
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From the above discussions, the overall DC ADN is a nonlinear dynamical system 

expressed as 

 �̇� = 𝒇𝑎𝑑𝑛(𝒙) (5.21) 

 

where the state vector 𝒙:= [𝒙𝑝𝑣, 𝒙𝑏 , 𝒙𝑒𝑣, 𝒙𝑔𝑖𝑐]
𝑇
. Specifically,  

𝒙𝑝𝑣: = [𝑣𝑝𝑣,1, 𝑖𝑝𝑣𝐿,1, 𝑣𝑝𝑣𝑑𝑐,1, 𝑖𝑙𝑖𝑛𝑒,𝑝𝑣,1, … , 𝑣𝑝𝑣,𝑛𝑝𝑣
, 𝑖𝑝𝑣𝐿,𝑛𝑝𝑣

, 𝑣𝑝𝑣𝑑𝑐,𝑛𝑝𝑣
, 𝑖𝑙𝑖𝑛𝑒,𝑝𝑣,𝑛𝑝𝑣

], ,  

𝒙𝑏: = [𝑖𝑏𝐿,1, 𝑣𝑏𝑑𝑐,1, 𝑖𝑙𝑖𝑛𝑒,𝑏,1, … , 𝑖𝑏𝐿,𝑛𝑏
, 𝑣𝑏𝑑𝑐,𝑛𝑏

, 𝑖𝑙𝑖𝑛𝑒,𝑏,𝑛𝑏
], ,  

𝒙𝑒𝑣: = [𝑖𝑙𝑖𝑛𝑒,𝑒𝑣,1, 𝑣𝑒𝑣𝑑𝑐,1, 𝑖𝑒𝑣𝐿,1, 𝑣𝑒𝑣,1, … , 𝑖𝑙𝑖𝑛𝑒,𝑒𝑣,𝑛𝑒𝑣
, 𝑣𝑒𝑣𝑑𝑐,𝑛𝑒𝑣

, 𝑖𝑒𝑣𝐿,𝑛𝑒𝑣
, 𝑣𝑒𝑣,𝑛𝑒𝑣

],  

and 𝒙𝑔𝑖𝑐: = [𝑖𝐿𝑑, 𝑖𝐿𝑞 , 𝑣𝑔𝑑𝑐 , 𝑖𝑙𝑖𝑛𝑒,𝑔, 𝜔, 𝑇𝑚].  

 

Remark 5.1: A priori knowledge of the nominal model parameters of (5.21) is not 

necessary for a data-driven method. Even if these parameters are available, the actual 

system is likely to experience deviations from them during operations. Besides, detailed 

knowledge of the underlying control algorithms is not needed as long as they are related to 

the system states. However, information on the model structure can reveal the physics of 

the dynamical system and is thus conducive to collecting data for Koopman operator 

approximation. Furthermore, knowledge of the normal operating ranges of the ADN 

dynamic states, which can be estimated empirically or from historical datasets, is helpful 

in implementing the proposed data-driven ROA estimation approach, as will be presented 

in later sections. 
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5.3 Preliminaries of the Koopman Operator Theory 

5.3.1 Koopman Operator and Its Data-driven Approximation Using EDMD 

Consider a general dynamical system of the following form: 

 �̇�(𝑡) = 𝒇(𝒙(𝑡)) (5.22) 

 

where x evolves in a state space 𝓧 ⊂ 𝓡𝑝.  Let 𝑭(𝒙, 𝑡) be the flow of the continuous-time 

system (5.22) starting from an initial state 𝒙0 when 𝑡 ≥ 0, and 𝑔 ∶ 𝓧 → 𝓒  be a measurable 

function referred to as the observable or the basis function. All observables constitute a 

(Banach) space of observables 𝓕. The Koopman operator 𝑲𝑡 : 𝓕 → 𝓕 for (5.22) advances 

an observable based on the evolution of the trajectories in 𝓧 such that  

 (𝑲𝑡𝑔 )(𝒙) = 𝑔 ∘ 𝑭(𝒙, 𝑡) (5.23) 

 

where ∘  represents the pointwise function composition. Since the Koopman operator is 

linear over its observables, it can be characterized by eigen-decomposition. In general, an 

eigenfunction 𝜑 ∈ 𝓕 and its eigenvalue 𝜆 ∈ 𝓒 satisfy 

 𝑲𝑡𝜑(𝒙) = 𝑒𝑥𝑝(𝜆𝑡)𝜑(𝒙) (5.24) 

 𝑑𝜑(𝒙(𝑡))

𝑑𝑡
= 𝜆𝜑(𝒙(𝑡)) 

 

(5.25) 

 

Additionally, the Koopman operator embeds the finite-dimensional nonlinear 

dynamics (5.22) to an infinite-dimensional function space, so it is more practical to derive 

matrix representation of the Koopman operator projected onto a finite-dimensional 

subspace. The data-driven methods to approximate the spectral properties of this operator 
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include dynamic mode decomposition (DMD) [133], EDMD [98], generalized Laplace 

averages [134], deep neural networks (DNNs) [135], etc. Among them, EDMD is most 

widely applied because it uses an extended basis to capture nonlinearities and only needs 

one-step iteration. More details on the Koopman operator theory and its data-driven 

methods can be found in [136]. 

Let 𝓕𝑁 ⊂ 𝓕  be an N-dimensional Koopman invariant subspace, i.e., 𝑲𝑡 𝑔 ∈ 𝓕𝑁 

for any 𝑔 ∈ 𝓕𝑁. When EDMD is applied to (5.22), the basis functions are functions of the 

states, denoted as 𝜓𝑖(𝒙) ∈ 𝓕𝑁 , 𝑖 = 1, 2, … , 𝑁 . Assuming (𝑀 + 1)  snapshots of data are 

available from the DC ADN (5.21) at uniform time intervals ∆𝑡, the EDMD constructs a 

finite-dimensional approximation �̃�  of the Koopman operator by solving the following 

least-squares problem: 

 

𝑚𝑖𝑛
�̃�∈𝑹𝑁×𝑁

‖𝝍(𝒀) − �̃� ∙ 𝝍(𝑿)‖𝐹
2  = 𝑚𝑖𝑛

�̃�∈𝑹𝑁×𝑁
∑ ‖𝝍(𝒙𝑘+1) − �̃� ∙ 𝝍(𝒙𝑘)‖2

2

𝑀

𝑘=1

 

 

(5.26) 

 

where ‖ ∙ ‖𝐹 refers to the Frobenius norm of a matrix and ‖ ∙ ‖2 is the 2-norm of a vector. 

𝝍(𝒀):= [𝝍(𝒙2) , … , 𝝍(𝒙𝑀+1) ] , 𝝍(𝑿):= [𝝍(𝒙1) , … ,𝝍(𝒙𝑀) ] , and 𝝍(𝒙𝑘):=

[𝜓1(𝒙𝑘) , … , 𝜓𝑁(𝒙𝑘) ]
𝑇 at time instant k. 

The closed-form solution can be readily obtained as 

 �̃� = 𝑨 ∙ 𝑼† (5.27) 

 

where † denotes the Moore–Penrose pseudoinverse, 𝑨:= 𝝍(𝒀) ∙ 𝝍(𝑿)𝑇 and 𝑼:= 𝝍(𝑿) ∙

𝝍(𝑿)𝑇. The basis functions are customized and can have various choices. This study will 

use monomials as the basis functions, for comparison with the SOSP that generally shows 
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less conservativeness than other model-based methods. Once �̃� is obtained, the Koopman 

eigenfunction 𝜑𝑖 corresponding to an eigenpair (𝜇𝑖 , 𝒗𝑖) of �̃�𝑇 is obtained as  

 𝜑𝑖(𝒙) = 𝒗𝑖
𝑇 ∙ 𝝍(𝒙) (5.28) 

 

Generally, the eigenvalues 𝜆𝑖  of the continuous-time system are mapped to the 

equivalent discrete-time system as 𝑒𝜆𝑖Δ𝑡  [137]. Therefore, the eigenvalue of 𝑲𝑡 

corresponding to 𝜑𝑖 is 𝜆𝑖 = 
𝑙𝑜𝑔𝜇𝑖

𝛥𝑡
. 

5.3.2 Stable Koopman Operator  

Because �̃�  is used to numerically approximate 𝑲𝑡  via the EDMD, there will 

obviously be errors accumulated over a given time span. The actual value of the basis 

function at certain time step k can be expressed as its approximated value plus an error ℇ𝑘: 

 𝝍(𝒙𝑘) = �̃� ∙ 𝝍(𝒙𝑘−1) + ℇ𝑘 (5.29) 

 

Likewise, 

 𝝍(𝒙𝑘−1) = �̃� ∙ 𝝍(𝒙𝑘−2) + ℇ𝑘−1 (5.30) 

 

Iteratively, a generalized expression at time step k is obtained: 

 
𝝍(𝒙𝑘) = �̃�𝑘 ∙ 𝝍(𝒙0) + ∑ �̃�𝑖

𝑘−1

𝑖=0
∙ ℇ𝑘−𝑖 

 

(5.31) 

 

It follows that the accumulated error ∑ �̃�𝑖𝑘−1
𝑖=0 ∙ ℇ𝑘−𝑖 can be bounded based on the 

norm properties: 
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 ‖∑ �̃�𝑖𝑘−1
𝑖=0 ∙ ℇ𝑘−𝑖‖ ≤ ∑ ‖�̃�𝑖 ∙ ℇ𝑘−𝑖‖

𝑘−1
𝑖=0 ≤ ∑ ‖�̃�𝑖 ∙ ℇ𝑘−𝑖‖ ≤𝑘−1

𝑖=0

∑ ‖�̃�𝑖‖ ∙ ‖ℇ𝑘−𝑖‖
𝑘−1
𝑖=0  ≤ ∑ ‖�̃�𝑖‖ ∙ ‖ℇ𝑘−𝑖‖ ≤ ∑ ‖�̃�‖

𝑖
∙ ‖ℇ𝑘−𝑖‖

𝑘−1
𝑖=0

𝑘−1
𝑖=0  

 

(5.32) 

 

If ‖ℇ𝑖‖ ≤ 𝑒𝑚𝑎𝑥 for any i, then 

 
‖∑ �̃�𝑖

𝑘−1

𝑖=0
∙ ℇ𝑘−𝑖‖ ≤ 𝑒𝑚𝑎𝑥 ∙ ∑ ‖�̃�‖

𝑖𝑘−1

𝑖=0
 

 

(5.33) 

 

Inequality (5.33) shows that the accumulated error could be enlarged exponentially 

if the learned Koopman operator �̃�  is unstable. Inspired by [138] and [139], the SOC 

algorithm is applied to learn a stable Koopman operator in light of its superior numerical 

stability over longer horizons. Specifically, the matrix �̃� is stable if and only if it can be 

expressed as �̃� = 𝑺−1 ⋅ 𝑶 ⋅ 𝑪 ⋅ 𝑺, where S is positive definite, O is orthogonal, and C is 

positive semidefinite contraction (i.e., the singular values of C are less than or equal to 1). 

Hence, the following optimization problem is solved rather than (5.26) that is in the EDMD: 

 inf
�̃�

‖𝝍(𝒀) − �̃� ∙ 𝝍(𝑿)‖𝐹
2 = inf

𝑺,𝑶,𝑪
‖𝝍(𝒀) − 𝑺−1 ⋅ 𝑶 ⋅ 𝑪 ⋅ 𝑺 ∙ 𝝍(𝑿)‖𝐹

2  (5.34) 

 

This way, the stability constraint is naturally imposed on �̃�. Define 𝑓(𝑺, 𝑶, 𝑪):=

‖𝝍(𝒀) − 𝑺−1 ⋅ 𝑶 ⋅ 𝑪 ⋅ 𝑺 ∙ 𝝍(𝑿)‖𝐹
2  . Then, it can be solved using the gradient descent 

algorithm. The gradients with respect to the matrices 𝑺, 𝑶, and 𝑪, originally derived in 

[138], are reproduced as the following compact form: 

    ∇𝑺𝑓(𝑺, 𝑶, 𝑪) = 𝑺−𝑇(𝑾 ⋅ 𝑬𝑇 − 𝑬𝑇 ⋅ 𝑾) (5.35) 

 ∇𝑶𝑓(𝑺,𝑶, 𝑪) = −𝑺−𝑇 ⋅ 𝑾 ⋅ 𝑺𝑇 ⋅ 𝑪𝑇   (5.36) 

 ∇𝑪𝑓(𝑺,𝑶, 𝑪) = −𝑶𝑇 ⋅ 𝑺−𝑇 ⋅ 𝑾 ⋅ 𝑺𝑇 (5.37) 
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where 𝑬 = 𝑺−1 ⋅ 𝑶 ⋅ 𝑪 ⋅ 𝑺  and 𝑾 = [𝝍(𝒀) − 𝑬 ⋅ 𝝍(𝑿)] ⋅ 𝝍(𝑿)𝑇 . Afterwards, (5.28) is 

utilized to derive the Koopman eigenfunctions. 

Remark 2: Under the Koopman operator framework, the Koopman eigenfunctions can be 

leveraged to construct Lyapunov functions in a systematic way with strict stability 

guarantees [136]. In the following section, the Koopman eigenfunctions will be used to 

constitute a linear space of Lyapunov candidate functions, and the union of sublevel sets 

of the decided Lyapunov functions will provide an inner approximation to the actual ROA.  

5.4. Proposed Data-Driven ROA Estimation Method 

The details of the proposed data-driven ROA estimation are elaborated in Fig. 5.6. 

First, the ADN operation data will be collected/simulated for the SOC algorithm to 

approximate the Koopman eigenfunctions as explained in Section 5.3; second, the 

Lyapunov candidate functions are linearly parameterized using the learned Koopman 

eigenfunctions; third, polytope constraints are formed; and fourth, a tight inner estimation 

to the actual ROA is obtained via sampling and linear programming (LP). 
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Figure 5.6. Flowchart of proposed data-driven ROA estimation. 

When an equilibrium state 𝒙∗  of the dynamical system (5.22) is nonzero, any 

system state 𝒙  can be translated to 𝒙 -𝒙∗ . Therefore, 𝒙∗  is assumed as the origin for 

simplicity. If the origin is asymptotically stable but not globally attractive, it is desirable to 

know which trajectories will converge to it as time approaches infinity. The ROA of the 

system equilibrium state 𝒙∗ = 𝟎 for (5.22) is mathematically defined as a set 𝑅𝑂𝐴𝒙∗=𝟎: =

{𝒙 ∈ 𝓡𝑝 : lim
𝑡→∞

𝑭(𝒙, 𝑡) = 𝟎 }. Furthermore, the 𝛾-sublevel set 𝛀𝑉,𝛾 of a Lyapunov function 

𝑉(𝒙) with a positive 𝛾 is defined as 𝛀𝑉,𝛾 = {𝒙 ∈ 𝓡𝑝: 𝑉(𝒙) ≤ 𝛾}, which can practically 

characterize the forward invariant subsets of the actual ROA [76]. If the following 

conditions are satisfied:  

1) 𝛀𝑉,𝛾 is bounded;  

2)  𝑉(𝟎) = 0 and 𝑉(𝒙) > 0 for all 𝒙 ∈ 𝓡𝑝;  
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3)  𝛀𝑉,𝛾 ∖ {𝟎}  ⊂ {𝒙 ∈ 𝓡𝑝: �̇�(𝒙) =
𝜕𝑉(𝒙)

𝜕𝒙
⋅ 𝒇(𝒙) < 0}          (5.38) 

 

then the flow 𝑭(𝒙, 𝑡) of (5.22) exists and 𝑭(𝒙, 𝑡) ∈ 𝛀𝑉,𝛾 holds for all 𝒙 ∈ 𝛀𝑉,𝛾 and 𝑡 ≥ 0. 

In addition, lim
𝑡→∞

𝑭(𝒙, 𝑡) = 𝟎 . Accordingly, 𝛀𝑉,𝛾 is an invariant subset of 𝑅𝑂𝐴𝒙∗=𝟎. 

Under the assumption that large amounts of system historical operation data or 

high-fidelity simulation data are available, our goal is to estimate the ROA of the DC ADN 

(5.21) in a data-driven fashion.  Fig. 5.7 illustrates how to apply the conditions in (5.38) to 

various trajectory data to find a Lyapunov function and its 𝛾-sublevel set. 

 

Figure 5.7. Illustration diagram of ROA inner estimation. 

Suppose there exists a Lyapunov function 𝑉(𝒙) to certify that a set 𝑮 lies inside the 

ROA. As is observed from Fig. 5.7, 𝑉(𝒙) ≤ 𝛾 and �̇�(𝒙) < 0 should hold for a convergent 

trajectory starting from 𝑮, while 𝑉(𝒙) > 𝛾 is satisfied for a divergent trajectory starting 

from 𝑮’s complement 𝑮𝑐. Also, 𝑮 will not be within the ROA if at least one trajectory 
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eventually diverges with initial conditions in 𝑮. Thus, a smaller region of 𝑮 should be 

chosen.  

Conventionally, it is computationally intensive or even intractable for those 

optimization-based methods such as the SOSP to calculate the maximum ROA, when 

dealing with many decision variables due to the high dimension of an ADN, not to mention 

the lifted space 𝓕𝑁. To address this issue, it is proposed to reduce the number of decision 

variables for ROA estimation via linearly parameterizing an arbitrary Lyapunov candidate 

function using the Koopman eigenfunctions from Section 5.3. Specifically, a set of 

Koopman eigenfunctions 𝜑𝑖  (𝑖 = 1, 2, … ,𝑁𝜙) with a sufficiently large negative real part 

Re[𝜆𝑖] are selected to construct the basis 𝜙𝑖(𝒙) of the linear space for Lyapunov candidate 

functions, as such eigenfunctions can capture the stability properties of the underlying 

dynamical system [94]. Further, if the basis is chosen as 𝜙𝑖(𝒙) ≔ 𝜑𝑖(𝒙) ∙ �̅�𝑖(𝒙) =

|𝜑𝑖(𝒙)|2 (the overbar denotes complex conjugation), then 𝜙𝑖(𝒙) ≥ 0  and �̇�𝑖(𝒙) = 2 ⋅

Re[𝜆𝑖] ⋅ |𝜑𝑖(𝒙)|2 = 2 ⋅ Re[𝜆𝑖] ⋅ 𝜙𝑖(𝒙) ≤ 0  hold for 𝑖 = 1, 2, … ,𝑁𝜙 . It follows from the 

following proof that the family of sets 𝓥𝛾 = {𝒙 ∈ 𝓡𝑝 : ∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅ 𝜙𝑖(𝒙) ≤ 𝛾}  with 𝛼𝑖 > 0 

are forward invariant.  

 

Prove that the family of sets 𝓥𝛾 = {𝒙 ∈ 𝓡𝑝 : ∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅ 𝜙𝑖(𝒙) ≤ 𝛾}   with 𝛼𝑖 > 0  are 

forward invariant.  

Proof: 
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According to the spectral property of the Koopman operator in [136], an 

eigenfunction 𝜑(𝒙) and its corresponding eigenvalue 𝜆 ∈ 𝓒 of the Koopman operator 𝑲𝑡 

satisfies  

 

𝑲𝑡𝜑(𝒙) = 𝑒𝜆𝑡 ⋅ 𝜑(𝒙) 

𝑑𝜑(𝒙)

𝑑𝑡
= 𝜆 ⋅ 𝜑(𝒙) 

For each 𝜙𝑖(𝒙) ≔ 𝜑𝑖(𝒙) ∙ �̅�𝑖(𝒙) = |𝜑𝑖(𝒙)|2 (𝑖 = 1, 2, … ,𝑁𝜙),   

�̇�𝑖(𝒙) =
𝑑𝜙𝑖(𝒙)

𝑑𝑡
=

𝑑𝜑𝑖(𝒙)

𝑑𝑡
⋅ �̅�𝑖(𝒙) + 𝜑𝑖(𝒙) ⋅

𝑑�̅�𝑖(𝒙)

𝑑𝑡
 

Note  
𝑑�̅�𝑖(𝒙)

𝑑𝑡
=

𝑑𝜑𝑖(𝒙)

𝑑𝑡

̅̅ ̅̅ ̅̅ ̅
= 𝜆𝑖 ⋅ 𝜑𝑖(𝒙)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜆�̅� ⋅ 𝜑𝑖(𝒙)̅̅ ̅̅ ̅̅ ̅, thus 

�̇�𝑖(𝒙) = (𝜆𝑖 + 𝜆�̅�) ⋅ |𝜑𝑖(𝒙)|2 = 2 ⋅ Re[𝜆𝑖] ⋅ 𝜙𝑖(𝒙) 

Since the Koopman eigenfunctions are approximated using the SoC algorithm, 

there are approximation errors 𝔢𝑖(𝒙)’s. With a mild assumption that the errors are bounded 

such that |𝔢𝑖(𝒙)| ≤ 𝜁𝑖 ⋅ 𝜙𝑖
2(𝒙) + 𝜂𝑖 for some positive constants 𝜁𝑖 and 𝜂𝑖,  

�̇�𝑖(𝒙) = 2 ⋅ Re[𝜆𝑖] ⋅ 𝜙𝑖(𝒙) + 𝔢𝑖(𝒙) ≤ 2 ⋅ Re[𝜆𝑖] ⋅ 𝜙𝑖(𝒙) + |𝔢𝑖(𝒙)| 

= 𝜁𝑖 ⋅ 𝜙𝑖
2(𝒙) + 2 ⋅ Re[𝜆𝑖] ⋅ 𝜙𝑖(𝒙) + 𝜂𝑖 

If  �̇�𝑖(𝒙) ≤ 0 always holds for certain interval (𝛾𝑖, 𝛾𝑖) ⊂ 𝓡>0, the minimum of the 

above quadratic function of 𝜙𝑖(𝒙)  should be negative, which leads to the condition 

(Re[𝜆𝑖])
2 > 𝜁𝑖 ⋅ 𝜂𝑖. It also implies that the 𝛾𝑖-sublevel set of 𝜙𝑖(𝒙) is forward invariant.  
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Further, define 𝛾 ≔ min
𝑖

(𝛼𝑖 ⋅ 𝛾𝑖)  for 𝛼𝑖 > 0  ( 𝑖 = 1, 2, … ,𝑁𝜙) .  From ∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅

𝜙𝑖(𝒙) ≤ 𝛾,  

𝛼𝑖 ⋅ 𝜙𝑖(𝒙) ≤ 𝛾 = min
𝑖

(𝛼𝑖 ⋅ 𝛾𝑖) 

Thus, 𝜙𝑖(𝒙) ≤ 𝛾𝑖 holds for 𝑖 = 1, 2, … ,𝑁𝜙. 

Now, define 𝛽 ≔ 2 ⋅ min
𝑖

|Re[𝜆𝑖]|. Then, 

∑ 𝛼𝑖

𝑁𝜙

𝑖=1
⋅ �̇�𝑖(𝒙) ≤ ∑ 𝛼𝑖 ⋅ (2 ⋅ Re[𝜆𝑖])

𝑁𝜙

𝑖=1
⋅ 𝜙𝑖(𝒙) + ∑ 𝛼𝑖 ⋅ [𝜁𝑖 ⋅ 𝜙𝑖

2(𝒙)
𝑁𝜙

𝑖=1
+ 𝜂𝑖] 

≤ ∑ 𝛼𝑖

𝑁𝜙

𝑖=1
⋅ (−𝛽) ⋅ 𝜙𝑖(𝒙) + ∑ 𝛼𝑖

𝑁𝜙

𝑖=1
⋅ (𝜁𝑖 ⋅ 𝛾𝑖

2
+ 𝜂𝑖) 

Therefore, if 𝛾 ⋅ 𝛽 ≥ ∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅ (𝜁𝑖 ⋅ 𝛾𝑖

2
+ 𝜂𝑖), 

∑ 𝛼𝑖

𝑁𝜙

𝑖=1
⋅ �̇�𝑖(𝒙) ≤ ∑ 𝛼𝑖

𝑁𝜙

𝑖=1
⋅ (−𝛽) ⋅ 𝜙𝑖(𝒙) + 𝛾 ⋅ 𝛽 = 𝛽 ⋅ [𝛾 − ∑ 𝛼𝑖

𝑁𝜙

𝑖=1
⋅ 𝜙𝑖(𝒙)] 

This suggests that the 𝛾-sublevel set of  ∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅ 𝜙𝑖(𝒙) is forward invariant. It 

should also be noted that the condition 𝛾 ⋅ 𝛽 ≥ ∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅ (𝜁𝑖 ⋅ 𝛾𝑖

2
+ 𝜂𝑖) can be easily met if 

𝛽 is large enough, which translates to that all 𝜆𝑖’s (𝑖 = 1, 2, … ,𝑁𝜙) have a sufficiently 

large negative real part.  

Q.E.D. 

 

Consider a Lyapunov candidate function as 𝑉(𝒙) = ∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅ 𝜙𝑖(𝒙) , where the 

coefficients 𝛼𝑖 are to be determined. When the conditions discussed in (5.38) and observed 
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in Fig. 5.7 are strictly imposed on the trajectory data, they could be naturally translated into 

constraints on 𝛼𝑖   in an LP problem. It should also be noted that the above constructed 

Lyapunov candidate function will lead to stronger expressive power and thus a less 

conservative ROA approximation when higher-degree monomials are adopted for 𝜓𝑖(𝒙), 

compared to the conventional quadratic Lyapunov functions used in the T-S multi-

modeling. 

To seek a Lyapunov function whose 𝛾-sublevel set is forward invariant, numerous 

trajectory data need to be sampled initially from a prechosen set 𝑮. In practice, 𝑮 for an 

ADN is related to the allowable operating ranges of each dynamic state variable. For 

instance, the typical frequency of islanded microgrids lies between 59.3 and 60.5 Hz, while 

the DC common bus voltage is ±5%  of the rated value. However, 𝑮  should be shrunk 

accordingly once divergent trajectories beginning from 𝑮  are detected. Based on the 

condition 𝓥𝛾 ∖ {𝟎} ⊂ {𝒙 ∈ 𝓡𝑝: �̇�(𝒙) < 0}, there should be �̇�(𝒙) ≤ 𝛽 ⋅ [𝛾 − 𝑉(𝒙)] for the 

convergent trajectory data with initial conditions in 𝑮, where 𝛽 is a positive constant and 

can be initially set as twice the minimum of |Re[𝜆𝑖]|. Thus, on a convergent trajectory 

[𝒙0, 𝒙1, … , 𝒙𝑇]  with (𝑇 + 1 ) time steps, any data point 𝒙𝑘  should satisfy 1) ∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅

𝜙𝑖(𝒙𝑘) ≤ 𝛾 ; 2) ∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅ �̇�𝑖(𝒙𝑘) + 𝛽 ⋅ [∑ 𝛼𝑖

𝑁𝜙

𝑖=1
⋅ 𝜙𝑖(𝒙𝑘) − 𝛾] ≤ 0 . In compact matrix 

form, the constraints are 

 𝚽 ⋅ 𝛂 ≤ 𝟎 (5.39.1) 

 (𝚽𝑑𝑜𝑡 + 𝛽 ⋅ 𝚽) ⋅ 𝛂 ≤ 𝟎 (5.39.2) 

 𝛂 ≥ 𝜹 (5.39.3) 

 𝛂[1:𝑁𝜙] ≤ 𝟏 (5.39.4) 
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 [1 1… 1 0] ⋅ 𝛂 ≥ 1 (5.39.5) 

 

where 𝚽 ≔ [

𝜙1(𝒙0) 𝜙2(𝒙0) ⋯ 𝜙𝑁𝜙
(𝒙0) −1

⋮ ⋱ ⋮
𝜙1(𝒙𝑇) 𝜙2(𝒙𝑇) ⋯ 𝜙𝑁𝜙

(𝒙𝑇) −1
] ,  𝚽𝑑𝑜𝑡 ≔

[

�̇�1(𝒙0) �̇�2(𝒙0) ⋯ �̇�𝑁𝜙
(𝒙0) 0

⋮ ⋱ ⋮

�̇�1(𝒙𝑇) �̇�2(𝒙𝑇) ⋯ �̇�𝑁𝜙
(𝒙𝑇) 0

], and 𝛂 ∶= [𝛼1  𝛼2 … 𝛼𝑁𝜙
  𝛾]

𝑇

. 𝜹 is a vector with 

all fixed small positive constants 𝛿 for tightness. 

However, a divergent trajectory starting from the complement of G should obey 

 𝚽 ⋅ 𝛂 ≥ 𝜹 (5.39.6) 

 

Each row of the above constraints defines a half-space in 𝓡𝑁𝜙+1  and the 

intersection of these half-spaces defines a feasible polytope [140]. As more trajectories are 

considered, the feasible polytope will be iteratively refined with a monotonic decrease in 

volumes. Theoretically, it will converge to a certain convex polytope 𝓟 as the number of 

iterations approaches infinity. The detailed ROA estimation algorithm is presented as 

follows: 

Table 5.1 

Proposed ROA Estimation Algorithm 

Stage 1: Construct a feasible polytope 𝓟 using data 

Initialize: 𝑮, 𝑨𝑐, 𝑨𝑑, 𝜌, 𝛽, and 𝛿 
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Stage 1: Construct a feasible polytope 𝓟 using data 

Generate 𝐾𝑚𝑎𝑥 simulation trajectories: 

1 𝑘 = 0, 𝐾𝑐 = 0, and 𝐾𝑑 = 0 

2 while 𝑘 < 𝐾𝑚𝑎𝑥: 

3          sample a random initial state 𝒙0𝑘 from 𝑮 

4          if a trajectory from 𝒙0𝑘 converges: 

5                save this trajectory in 𝑨𝑐, and 𝐾𝑐+= 1 

6          else: 

7                save this trajectory in 𝑨𝑑, and 𝐾𝑑+= 1 

8          𝑘 += 1 

Apply constraints (5.39.1~ 5.39.6) to simulated trajectories:  

9 𝓟 = {𝛂 ∈ 𝓡𝑁𝜙+1: (5.39.3) − (5.39.5)} 

10 for 𝑖 = 1: 𝐾𝑐: 

11     form polytope 𝓟𝑖 based on (5.39.1), (5.39.2) using 𝑨𝑐(𝑖) 

12     𝓟𝑖 ⟵ 𝓟 ∩ 𝓟𝑖 

13     if  is_empty(𝓟𝑖): 

14          𝛽 ⟵ 𝜌 ⋅ 𝛽 

15          go to Line 10 

16     𝓟 ⟵ 𝓟𝑖 

17 for 𝑖 = 1: 𝐾𝑑: 

18     use 𝒙0𝑖 of 𝑨𝑑(𝑖) as a new vertex and project as 𝑮𝑖 

19      𝑮 ⟵ 𝑮𝑖 

20     form polytope 𝓟𝑖 based on (5.39.6) using 𝑨𝑑(𝑖) 

21     𝓟 ⟵ 𝓟 ∩ 𝓟𝑖 

 

Stage 2: Determine 𝓥𝛾 via sampling and linear optimization 

Initialize: 𝓥𝛾 = ∅ 

22 𝑗 = 0 



 

145 

 

Stage 2: Determine 𝓥𝛾 via sampling and linear optimization 

23 while 𝑗 < 𝑁𝑚𝑎𝑥: 

24           sample 𝒙𝑗 from 𝑮 

25           solve:   max
𝛂

∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅ 𝜙𝑖(𝒙𝑗) − 𝛾 

26                                 s.t.  𝛂 ⊆ 𝓟 

27   𝓥𝛾,𝑗 = {𝒙 ∈ 𝓡𝑝 : ∑ 𝛼𝑖
𝑁𝜙

𝑖=1
⋅ 𝜙𝑖(𝒙) ≤ max {𝛾 + 𝑜𝑏𝑗𝑚𝑎𝑥 , 𝛾 }} 

28            𝓥𝛾 ⟵ 𝓥𝛾 ∪ 𝓥𝛾,𝑗 

29             𝑗 = 𝑗 + 1 

 

The proposed ROA estimation algorithm consists of two stages, given the already 

learned Koopman eigenfunctions from Section 5.3. In Stage 1, numerical simulations are 

conducted to generate trajectory data when historical operation data of the ADN are not 

readily available. If runtime is of concern, a time limit can be set rather than 𝐾𝑚𝑎𝑥. Then 

the actual number of collected trajectory data will be simulated in this stage. During this 

process, the 𝐾𝑐 convergent and 𝐾𝑑 divergent trajectories are stored in arrays 𝑨𝑐 and 𝑨𝑑, 

respectively. In Line 14, the preset 𝛽  is amplified by a constant parameter 𝜌 once the 

intersection of intermediate polytopes becomes empty. As is shown in Line 18, the 

disqualified initial state is used as a new vertex, whose projections on the coordinate axis 

of each state attain 𝑮𝑖. A tight polytope 𝓟 is finally obtained in Line 21. In Stage 2, a set 

of 𝒙’s are sampled from the refined 𝑮 and LP problems are solved on each 𝒙 to derive the 

invariant sub-level sets 𝓥𝛾  (in Line 27) of each Lyapunov candidate function; 𝑜𝑏𝑗𝑚𝑎𝑥 

represents the maximum of the objective function in Line 25. Theoretically, for a 

sufficiently large number of samples 𝑁𝑚𝑎𝑥, 𝓥𝛾 will converge and cover the largest sub-
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level set of a single Lyapunov function that is based on the SOSP [85]. Furthermore, the 

proposed ROA estimation can be even closer to the actual one if 𝑜𝑏𝑗𝑚𝑎𝑥 is positive. It is 

also noteworthy that different sampling techniques can lead to different convergence rates. 

The efficient high-dimensional sampling method named the Dikin Walk [141] can be 

adopted to generate uniform random samples for Lines 3 and 24. Lastly, both stages in the 

proposed algorithm are highly parallelizable and parallel computing can be leveraged for 

speedup in simulation and optimization.    

5.5. Case Studies 

To verify the effectiveness of the proposed data-driven approach for ROA 

estimation, numerical simulations of the DC ADN shown in Fig. 5.1 are conducted in 

MATLAB/Simulink with a fixed step size of 50 μs. Averaged modeling [142] for the PWM 

power converters is implemented. In addition, Python interacts with Simulink for data 

collection and computations. The experiment platform is a high-performance server with 

an AMD EPYC 7B13 CPU (64 cores) and 512-GB RAM. 

The EV battery models in the simulations have low initial state of charge (SoC) 

values and are only charged in the CP mode for simplicity. Also, an EV’s arrival and 

departure times are assumed to follow the truncated normal distributions suggested by 

[143]. In Fig. 5.1, each simulated charging load represents one charger with variable 

numbers of charging ports. For instance, the Ultra-Fast Charging Load (2) represents three 

charging ports, with possible charging power levels of 0 kW (idle), 400 kW (for 1 EV), 

800 kW (for 2 EVs), or 1200 kW (for 3 EVs). The duration of each level of charging power 

can be determined by the overlapping of EVs’ arrival and departure times. In the preset 𝑮, 
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𝜔 is 0.995𝜔𝑠~1.005𝜔𝑠, 𝑇𝑚  is from 0 to 1.1 times the rated value, the DC-link voltages 

are 0.95𝑉𝑛~1.05𝑉𝑛, the unidirectional inductor currents are from 0 to 1.2 times the rated 

values, and the range of bidirectional inductor currents is ±1.2 times the rated values. 

Besides, an EV battery terminal voltage corresponds to the SoC range of 10%~60%. 

Firstly, simulated system operation data are used to learn the Koopman eigenfunctions via 

the SOC algorithm executed in Python. 100 different trajectories are collected with random 

initial states within 𝑮. Each trajectory lasts for 20 sec and is sampled with ∆𝑡 = 0.01 sec. 

The probability distribution parameters used during each trajectory collection are presented 

in Table 5.2. During operations, the SOC algorithm is executed offline regularly using the 

most recent state measurements to maintain high precision of the learned Koopman 

eigenfunctions. Communication latency is ignored during the simulations because the 

ADNs under consideration usually do not span a large geographic area.  

Table 5.2 

Statistical Distribution of EV Charging Behavior 

 Distribution Boundaries 

Arrival time (sec) 𝒩(3, 12) [0, 6] 

Departure time (sec) 𝒩(15, 12) [13, 18] 

 

There is always a trade-off between computational cost and expressivity in 

designing the Lyapunov candidate function when selecting the monomial basis for the SOC 

algorithm. This study chooses the monomials in 𝒙 of degree up to 4. As the number of 
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states of the simulated DC ADN is 21, there are 12649 (N) monomial functions in the basis 

when the special monomial “1” is removed. It takes on average 791.18 sec for the SOC 

algorithm to obtain the Koopman eigenfunctions based on the concatenated trajectory data. 

5368 (𝑁𝜙) out of 12649 Koopman eigenfunctions are retained after taking |Re[𝜆𝑖]| >
1

3
⋅

max|Re[𝜆𝑖]| to ensure large enough negative real parts, as mentioned in the above proof. 

𝛽 is determined as 0.0561, 𝜌 is set as 1.07, and 𝛿 is 2 ∙ 10−16. 

An extreme scenario is considered, where all EV chargers are in use. At some point, 

the only two idled EV charging ports at the Ultra-Fast Charging Load (1) request 

connection to the DC ADN, equivalent to increasing the power level from 800 kW to 1600 

kW. To ensure transient stability, the DSO wishes to manage this request by estimating the 

ROA. Suppose the equilibrium points before and after enabling these charging ports are 

𝒙0 =[889.8V, 556.2A, 1959.1V, 252.0A 667.5A, 1965.5V, 344.6A, 411.5A, 1947.3V, 

925.2A, 864.7V, 617.4A, 1948.1V, 1373.7A, 873.6V, 884.6A, -0.31A, 2000.0V, 432.3A, 

377.0rad/sec, 2620.2N·m]T and 𝒙𝑒𝑞 = [891.5V, 555.6A, 1932.6V, 255.8A, 1038.7, 

1946.4V, 536.3A, 837.7A, 1915.9V, 1834.2A, 872.3V, 626.1A, 1921.4V, 1371.0A, 

875.2V, 1378.0A, -2.25A, 1998.8V, 671.8A, 376.8rad/sec, 3904.3N·m]T, respectively. In 

practice, however, an absolutely stable equilibrium may never exist due to the uncertainties 

and external disturbances. To this end, the prediction model of Koopman-based MPC 

discussed in [93] along with the sliding-window scheme in [144] could be integrated to 

predict the quasi-equilibrium after assuming an EV charger is connected to the DC ADN. 

Development of such a predictive approach is left for future work.  
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MATLAB Parallel Computing Toolbox and Parallel Server are utilized for faster 

simulations in Stage 1 of ROA estimation. For the ADN Simulink model, a run time of 10 

sec is sufficient to determine the convergence of each simulated trajectory. 20 10-sec 

simulation runs are then conducted, and 127 sec are taken to collect the trajectory data. No 

divergent trajectories commencing from the preset 𝑮 are found. Nonetheless, the initial 𝛽 

is updated twice to generate a non-empty polytope. In Stage 2, the scipy.optimize and 

multiprocessing packages of Python are utilized to solve the LP problems in parallel. In 

addition, the fast and efficient HiGHS solver is chosen. Ideally, if more samples are 

collected to solve the LP problems, the union of the obtained invariant sets will be closer 

to the actual ROA. Given the tradeoff between solution time and accuracy, 500 tasks are 

distributed across all the logical cores. It consumes 1274.87 sec to obtain 500 invariant 

sets. 

For different research focuses, the state variables of interest can be selected from 

the 21 states. In this study, the transient frequency and voltage stabilities are of interest. 

The estimated ROAs are respectively presented in a 2-dimensional plane with the other 

state variables set equal to zero, i.e., 𝑣𝑒𝑣𝑑𝑐,1  versus 𝑖𝑙𝑖𝑛𝑒,𝑒𝑣,1  and 𝜔  versus 𝑣𝑏𝑑𝑐 . The 

proposed data-driven method is also compared with the SOSP approach in [86] due to 

similarities in the tested systems. To apply the SOSP, some simplifications are made to the 

system model (20). Firstly, the solar PV and the BESS are represented by a generic second-

order model [145]. Secondly, the EV charging load is modeled as a CPL which can be 

further reduced as a controlled current source without internal dynamics [86]. Moreover, 

Taylor series expansion is utilized to recast the reduced-order model into a polynomial 

system because it contains rational equations. The scaled-diagonally-dominant sums-of-
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squares programming (SDSOSP) [146] is also leveraged in lieu of the conventional SOSP 

for reduced solution time and improved scalability. The degree of the polynomial 

Lyapunov candidate function is selected as 4, while the degree of the truncated Taylor 

expansion is chosen as 3. In addition, the SPOT Toolbox and the MOSEK solver are used 

to solve the SDSOSP in MATLAB. However, this method still takes as much as 5260.44 

sec to obtain an estimate and thus the real-time applications become impracticable. The 

results of our method and SDSOSP are compared in Fig. 5.8 and Fig. 5.9, wherein the red 

star represents the projection of 𝒙0 and the blue square stands for the 𝒙𝑒𝑞. The blue dashed 

line delineates the boundary of the ROA estimated by the SDSOSP, while each green solid 

line encloses an invariant sublevel set of our linearly parameterized Lyapunov functions. 

 

Figure 5.8. Comparison of estimated ROAs (𝑣𝑒𝑣𝑑𝑐,1 vs. 𝑖𝑙𝑖𝑛𝑒,𝑒𝑣,1). 
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Figure 5.9. Comparison of estimated ROAs (𝜔 vs. 𝑣𝑏𝑑𝑐). 

Both figures show that 𝒙0 lies in the estimated ROAs of 𝒙𝑒𝑞, indicating a large 

transient stability margin for the ADN. However, the proposed data-driven approach 

achieves a better ROA estimation than the SDSOSP. The reason is twofold. First, the 

linearly parameterized Lyapunov candidate functions have a degree of 8, while the 

polynomial Lyapunov candidate function only has a degree of 4. Second, a forward 

invariant subset of the actual ROA is enlarged when the maximum of the corresponding 

LP objective function is positive. Besides, it can be observed that some of the obtained 

forward invariant subsets are quite small and may also coincide. Nonetheless, through an 

increasing number of samplings, the proposed method significantly lessens the 

conservativeness of the ROA estimation. 

A numerical simulation is conducted to further validate the obtained estimation. 

The power level at the Ultra-Fast Charging Load (1) is increased to 1600 kW to mimic the 

connection of another two EV charging ports at t = 11.6 sec. Fig. 5.10 and Fig. 5.11 present 
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the transient responses of the state variables of interest. After the EV charging load is 

increased, the DC-link voltages stabilize to new equilibria very soon, as shown in Fig. 5.10. 

In contrast, Fig. 5.11 shows that the angular frequency of the AC grid settles down after a 

longer transient period. This results from the difference in time scale between 

electromechanical and electromagnetic dynamics.  

 

Figure 5.10. Transient response of DC-link voltages after EV load increases. 

 

Figure 5.11. Transient response of angular frequency and charging current after EV load 

increases. 
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5.6 Conclusion 

This chapter has proposed a Koopman-operator-based data-driven approach to 

estimate the ROA of a future DC ADN dominated by EV supercharging stations. 

Simulation results demonstrated that a less conservative ROA estimation can be obtained 

in a computationally efficient manner, compared with the SOSP-based method (SDSOSP). 

As a result, the proposed ROA estimation has the potential for real-time applications in the 

assessment of future ADN transient stability. In addition, the method is generic and could 

be readily applied to other dynamical systems if the system operation data is readily 

available. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

The overall goal of this Ph.D. dissertation is to study optimal operation and control 

strategies of emerging electric distribution networks, which are subjected to several 

challenges, namely, low inertia, economic loss, uncertainty, cyber-physical threats, and 

transient instability, introduced by increasing integration of distributed renewable energy 

sources. Chapter 1 reviewed the state of the art in the operation and control of emerging 

electric distribution networks and identified the major research gaps as well as motivations 

and objectives. Chapter 2 focused on investigating the control of solar PVs, one of the 

dominating energy sources in the emerging distribution networks. In particular, control 

strategies of a campus microgrid that consists of CHP and PV systems has been designed 

for its islanded operation. A coordinated control was presented for stable operation of the 

campus microgrid. To further study the scenario of high PV penetration microgrids, the 

integration of a 10-MW PV farm into the campus microgrid was investigated, and a double-

stage PV-VSG control strategy has been proposed and implemented for enhanced inertia 

support. This approach emulated inertia using the DC-link capacitor and achieved 

satisfactory transient performance under different operating conditions. In order to further 

explore the economic and secure operation of emerging distribution networks, Chapter 3 

proposed a predictive hierarchical power management framework, which realized its 

economic operation via tertiary control in the time scale of tens of seconds by solving an 

AC-OPF problem computationally efficiently. For economic operation, an AC-OPF 
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problem was solved on the tertiary level. For the regulation of active power and frequency 

in microgrid systems, a centralized linear MPC secondary controller was designed. 

Furthermore, a unified linear input-state estimator in an unbiased minimum variance sense 

was proposed to accurately estimate both the system states and the control signals that are 

sent by the secondary controller and received by the primary controller in order to enhance 

the MPC performance by account for potential system anomalies. Compared with the 

conventional decentralized PI approaches, the proposed framework not only offered 

superior frequency regulation but also lowered the total operating costs. Considering the 

potential limitations of centralized control such as single point failure, limited scalability, 

and high costs of communications, together with increased integration of different DER 

assets in emerging distribution systems, in Chapter 4, a fully decentralized coordinated 

control technique was developed for a PV-BESS hybrid system, which only requires 

measurements of local DC bus voltages. The PV unit can smoothly switch between the 

MPPT mode and the droop mode to supply power and regulate the DC bus voltages. 

Furthermore, a SoC-based adaptive droop control was proposed for the BESSs to achieve 

overcharging and over-discharging protection. Recently, as a result of the availability of 

large amounts of data in power systems via advanced sensors, data analytics and artificial 

intelligence have become more appealing alternatives to traditional power system 

operation and control solutions. In Chapter 5, a data-driven approach based on the 

Koopman operator theory has been developed for transient stability evaluation of emerging 

distribution networks with high penetration of EV supercharging stations, i.e., systems with 

high volatility and reduced stability margin that require more accurate and real-time 

stability evaluation. When compared with the conventional SOSP-based approaches, the 
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proposed method provided a less conservative ROA estimation to a future DC ADN 

dominated by EV supercharging stations in considerably shorter time, thus allowing for 

real-time applications. 

6.2 Future Work 

In this Ph.D. dissertation, a few important research challenges of future electric 

distribution system operation have been addressed, but there are still several open questions 

that merit further research in the future: 

1) The proposed PV-VSG utilizes the DC-link capacitor for inertia emulation. 

However, the capacitors may not always be able to store sufficient energy to support system 

inertia and frequent charging and discharging would shorten their lifespan. A synchronous 

generator powered by concentrated solar power can be integrated with the solar PV to 

provide robust inertia support, reactive power, and even short circuit contribution in 

islanded operation. On the other hand, the PV-VSG stability margin could be reduced when 

it is connected to a strong grid with a low grid impedance. Hence, adaptive virtual inertia 

control based on the identified grid impedance is highly desired to guarantee adequate 

stability margins under varying grid strengths. 

2) The MPC secondary controller in the proposed hierarchical power management 

framework is based on a linearized system model, which only works well in the vicinity of 

a system operating point. It may not function effectively when large disturbances, e.g., a 

fault, occur. Furthermore, the BESSs are not considered in the testing system considering 

the renewable penetration level is relatively low compared with the total loads in most 

existing electric distribution networks. Furthermore, the system uncertainties introduced 
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by flexible loads and RESs also need to be considered, and a distributed stochastic 

nonlinear approach can be explored to further improve operational economics, efficiency, 

and accuracy. 

3) Since the decentralized coordinated control proposed in Chapter 4 is for primary 

control, DC voltage deviations will inevitably occur and accumulate. Secondary control 

needs to be considered to eliminate those voltage deviations. Specifically, a distributed 

event-triggered control can be implemented as the secondary control, which only utilizes 

local information and current measurements from neighbors to help regulate average DC 

voltage. Additionally, the use of aperiodic communications in this method can reduce 

communication traffic. 

4) The data-driven transient stability evaluation approach in Chapter 5 can be further 

enhanced in several aspects. Virtual aggregators can be used to add more EV chargers, and 

modular DNNs can help improve scalability. To anticipate the system's new equilibria only 

based on data, a predictive technique should be developed. Furthermore, dynamic EV 

charging can be optimized while adaptively increasing the estimated ROAs by using 

control-Lyapunov functions. 
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