
International Journal of Performability Engineering, Vol. 6, No. 4, July 2010, pp. 305-316.

© RAMS Consultants

Printed in India

__

* Communicating author’s email: jherrmann@gmail.com 305

On Augmented OBDD and Performability for Sensor
Networks

JOHANNES U. HERRMANN
*
, SIETENG SOH, SURESH RAI

†
, and GEOFF

WEST

Curtin University of Technology, Perth, Australia
† Louisiana State University, Baton Rouge, L.A., USA

(Received on July 10, 2009, revised on September 2, 2009)

Abstract: The expected hop count (EHC) or performability of a wireless sensor network

(WSN) with probabilistic node failures provides the expected number of operational

nodes a message traverses from a set of sensors to reach its target station. This paper

proposes a novel approach for computing the EHC of a practical communication model

for WSN, k-of-all-sources to any-terminal (k-of-S,t). Techniques based on factoring and

Boolean techniques solve the EHC when k=1 for |S|≥1 However, they fail to scale with

large WSN and are not useful for computing the EHC with k>1. To overcome these

problems, we propose an Augmented Ordered Binary Decision Diagram (OBDD-A)

approach, which obtains the EHC for all cases of (k-of-S,t). We use randomly generated

wireless networks and grid networks having up to 4.61020 (s,t)-minpaths to generate

results. Results show that OBDD-A can obtain the EHC for networks that are unsolvable

with existing approaches.

Keywords: Binary decision diagram, expected hop count, many-to-one communication,

network reliability, sensor network

1. Introduction

Recently, wireless sensor networks (WSNs) have been proposed for various critical

monitoring systems such as military, environment, and security [1-3]. Data dissemination

in WSNs is categorized into tasks (a base station sends tasks to one or more sensors) and

events (one or more sensor nodes send sensor data to the base station) [1] using various

communication models. For tasks, the unicast (s,t), multicast (s,k-of-T), and broadcast

(s,T) from a source base station s are typically used, for tT, all sensors of set T in the

field, and k≥1. For events, the many-to-one communication model (k-of-S,t) is used, for all

sensors of set S in the field and a target base station t. The model (s,t) is used for a single

sensor node. Refer to [2] for multi-modal data acquisition details.

Sensor nodes in a WSN may be subject to random failures [4], or deliberate acts. We

assume that communications will succeed when both communicating nodes are

functioning. To address its reliability (REL), the directed diffusion paradigm [3] includes

an event acquisition mechanism that is robust to node failures. However alternate paths

may increase the number of hops and degrade the system responsiveness or Expected Hop

Count (EHC). As most WSN applications require end-to-end delay-constraints, it is crucial

to develop models to evaluate the performability of such critical systems for the various

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195656507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

306 J. U. Herrmann, S. Soh, S. Rai and G. West

communication models. While two distinct reliability models exist for WSN, this paper

focuses on EHC. This means that the infrastructure reliability [5] model is used.

AboElFotoh, et al. [4] employed the factoring theorem to obtain EHC(k-of-S,t), the EHC

for (k-of-S,t) model for k=1 and |S|≥1 (i.e., EHC(s,t) and EHC(1-of-S,t)) and showed the

problem is #P-hard. Soh, et al. [6] proposed a Boolean technique to compute the EHC.

Brooks, et al. [7] used random graph models to approximate EHC(s,t) in mobile WSN, but

assume link failures. Note, none of the methods [4, 6, 7] are useful for computing the

general REL and EHC metrics (i.e., k>1) when a large number of paths are involved (e.g.,

a 2100 grid network that contains 4.610
20

 (s,t)-minpaths). Since (k-of-S,t) metrics are

applicable in a range of critical applications, including smart houses, earthquake and

tsunami detection as well as perimeter security, improved techniques for their solution are

needed.

This paper proposes an Augmented Ordered Binary Decision Diagram (OBDD-A) to

compute EHC(k-of-S,t) for k≥1 and |S|≥1. Our OBDD-A is an extension of the OBDD[8]

in that it stores network state information in each diagram node. References [9, 10] use

OBDD techniques to solve reliability problems such as REL(s,t), REL(s,k-of-T), and

REL(s,T). The approaches in [9, 10] generate OBDD nodes to take advantage of

isomorphism through hash table lookups, but they do not explicitly link them into a

diagram. However these nodes contain no information on path length and as a result, these

methods cannot be used to calculate the network EHC (refer to Section 3). Our OBDD-A

method generates network information as part of the creation of each node. This additional

information enables our OBDD-A to solve the EHC as well as REL.

The layout of the paper is as follows. Section 2 gives a definition of the network

model and reviews OBDDs, especially their use for calculating the reliability of a network.

In Section 3 we introduce the EHC problem. We propose an OBDD-A to solve the EHC

problem in Section 4. In Section 5, we apply OBDD-A to a number of networks and

present the results. Finally, Section 6 concludes the paper.

2. Background

2.1 Network Model and Terminology

We model a WSN using a graph G(V,E), where each vertex in V represents a computer,

router or sensor, and every edge in E denotes a wired/wireless communication medium

between the vertices. Communication occurs by a set S of source devices (e.g., sensors)

sending messages towards a target device (e.g., a monitoring station). A vertex vj is said to

be UP (DOWN) if it is functioning (failed). Let pj (qj=1-pj) be the operational (failure)

probability of vj. We assume: that vertex failures are statistically independent and that the

edges are always functioning. If edges are also prone to failure the multivariate form [11]

of the algorithm given in this paper should be used.

Let n=|V|, and let the vertices (v0, v1, …, vn-1) of V be ordered in increasing distance

to target vertex v0, except that the source vertices, S, are always labelled vn-|S| to vn-1. The

width of G(V,E) is defined as W=MAX(|i – j|: e=(vi,vj) or {vi,vj}E). For example, a 2M

grid WSN has W=2, and the network in Figure 1 has W=3. Larger width increases the

number of nodes generated in OBDD-A, and reduces the efficiency of our approach. In

this paper, directed and undirected edges are sorted in increasing order of vj and, then, in

increasing order of vi. Such an ordering helps minimize W and the number of reverse

directed edges (vi,vj) where i>j. Figure 1 shows such a vertex and edge ordering.

On Augmented OBDD and Performability for Sensor Networks

307

A (s,t)-minpath Pi between a source vsS and v0 in G(V,E) traverses a loop-free path

and is formed by a sequence of UP vertices. A reaching path from vertex vx is a minpath,

but leading from vx to v0, where vx may not be a source vertex. We write a minpath or

reaching path using its sub-scripts; e.g., the minpath (v9, v6, v3, v1,v0,) is written as 96310.

Figure 1: Sample Network

2.2 Ordered Binary Decision Diagram (OBDD)

The OBDD represents Boolean functions [8]. Figure 2(a) is an OBDD for function

3231 xxxx  where a solid (dashed) line denotes xi = 1 (xi = 0). Here circles (squares)

are non-terminal (terminal) nodes. Note that a terminal with 1 (0) is a success (failure)

node. To reduce the number of nodes, remove duplicate (isomorphic) nodes whose sub-

trees are identical (Figure 2(b)). Utilizing isomorphism between nodes is one of the

strengths of OBDD because it prevents sub-trees from being re-evaluated. Further, when

the evaluation of a particular variable (node) does not affect the sub-tree, the redundant

node can be removed as shown in Figure 2(c). The size of the OBDD that represents a

function is dependant on the ordering of the variables [8]. Finding an optimal ordering for

OBDDs is a NP-Complete problem [12], and thus several non-optimal ordering techniques

are used [13].

 (a) (b) (c)

Figure 2: An Example for OBDD[8]

In the application of the OBDD technique to reliability [9], each variable (node)

represents a vertex vi or an edge ei that is either UP with pi or DOWN with qi = 1 – pi. The

probability that the network is connected is then given by tracing paths upwards from the

success terminal nodes and multiplying the reaching path probabilities by pi (qi) for a

positive (negative) sub-tree. Since each traversed path represents a disjoint event the

probability of each such path is added to give the network reliability.

3. Reliability and Expected Hop Count

Let =(U) represent a state of a network G(V,E) when all vertices in UV (V-U)) are UP

(DOWN). The REL(k-of-S,t) is computed from the set of all success states g. This

J. U. Herrmann, S. Soh, S. Rai and G. West

308

model allows multiple source vertices and the system is successful only if at least k of the

duplicate messages from distinct sources are received by the target station. In other words,

a success state g contains at least k (si,t)-minpaths of G(V,E), for distinct siS. In

addition to the success state information, computing the EHC requires the length of each

g denoted as 1≤L(g)≤n-1. We consider L(g) to be the k
th

 shortest distinct (s-t)-

minpath; that is, the longest of the k shortest distinct (s,t)-minpaths. For example, consider

S={v8,v9}, k=2 and t=v0 in Figure 1. The network state g=(v0, v1, v2, v4, v5, v6, v7, v8, v9)

contains the two (s,t)-minpaths 97420 and 985420 from v9 and minpath 85420 from v8.

The shortest minpath from v9 has length 4 and the one from v8 also has length 4. It is a

success state since it contains (s,t)-minpaths from k=2 distinct source vertices. Since k=2,

L(g)=4, the second-shortest of the two lengths.

EHC(k-of-S,t) is computed as:

 

 

 


)Pr(

)Pr()(L
EHC

g

gg (1)

Note that Pr(g)=

 

 U-VvUv

qp
ii

ii
, and that the denominator in Eq. (1) is REL(k-of-S,t). The

problem of computing EHC(s,t) and EHC(1-of-S,t), i.e., EHC(k-of-S,t) with k=1 and |S|=1,

and k=1 and |S|>1 respectively, have been shown #P-hard [4].

Continuing the above example with each pi = 0.9 we find that the sum of all Pr(g)

with length 4 is 0.75051279, with length 5 is 0.027221589, and with length 6 is

0.001062882. Thus REL(2-of-S,t)=0.77879726, and

 EHC(2-of-S,t) =
77879726.0

20.00106288690.0272215850.750512794  = 4.0376829.

4. OBDD-A for Computing REL and EHC

4.1 The Mathematical Model of the OBDD-A

Let (N,G) denote an OBDD-A for the graph G(V,E), where N is the set of OBDD-A

nodes {N0, N1, …,
12 ||N
E

}. Without loss of generality, let N0 be the root node. Let N2i+1

(N2i+2) be the left or negative (right or positive) child node of Ni, for i=0, 1, 2, … .

(N,G) is divided into n=|V| levels, where N0 is on level 0, N1 and N2 on level 1, N3, N4,

N5, and N6 on level 2, and so on. Thus any node Ni is on level j if and only if 2
j
-1 ≤ i ≤

2
j+1

-2. Each level j of (N,G) represents a decision on the state (UP for each right child

and DOWN for each left child) of vj, and we say that a node on this level decides variable

vj and call it the decision variable (DV) for Ni.

Our OBDD-A is an OBDD in which each of the nodes NiN contains a pair [VIi, CIi]

representing information used to calculate REL and EHC. In contrast to the two-pass

scheme in [9], our approach generates (N,G), REL, and EHC directly from G(V,E). The

VI/CI notation tracks which vertices have been reached by messages but has no record of

where the messages originated. Hence, to make sure that messages from k distinct sources

have reached the target, we start at the target vertex and backtrack messages to the

sources.

The condition information, CIi, is a set of conditions {C0, C1, … C|CI|-1} of the form

Cx=(va,vb,Lx) where Lx is the length of the shortest path of UP vertices from vertex va to

vertex vb. Each condition represents a path through the network that can be taken if its

endpoint is reached.

On Augmented OBDD and Performability for Sensor Networks

309

The vertex information, VIi, is a set of components {M
0
, M

1
, …, M

|VI|-1
} storing path

length information. Each M
x
=({(v1, L

x
1), (v2, L

x
2), …, (vk, L

x
k)}, P

x
) in VIi contains a

probability P
x
 and a set of ordered pairs of the form (va, L

x
a), where L

x
a is the length of the

shortest reaching path from va to the target vertex v0. If the set of pairs in M
x
 contains (vj,

L
x
j) then we write (vj, L

x
j)M

x
. VIi has the property that if one component of VIi contains a

pair with vertex vj then all components of VIi contain a pair with this vertex.

Given a node Ni, let VSi = {va: (va, L
x
a)M

x
 and M

x
VIi} be the set of undecided

vertices that have known reaching paths to v0. As an example, for N2=[VI2={({(v1,1),

(v2,1) }, 0.9)}, CI1={ })], we have VS2={v1, v2}. Note that decided vertices need not be

stored since the position of the node in (N,G) implicitly encodes all decisions made at

higher levels.

Definition: Components M
x
 and M

y
 are equal (M

x
 = M

y
) if for every pair

(va,L
x
a)M

x
 there exists (va,L

y
a)M

y
 such that L

x
a=L

y
a.

Let the probability that a message takes a path having L hops be denoted as Pr(L). As

successful components are found the probabilities Pr(L) are calculated by the OBDD-A.

When the generation of OBDD-A nodes is complete all Pr(L) are used to calculate REL

and EHC.

4.2 OBDD-A Node Type

An OBDD-A node is terminal (non-terminal) if it does not (does) have children. Our

approach processes each non-terminal node in a breadth-first fashion to better take

advantage of node isomorphism. When a terminal node represents only states that meet the

requirements for the problem, it becomes a success node. The REL and EHC are

computed from the reaching path probabilities contained in all success nodes. When the

requirements cannot be met from the current state it is a failure node. A failure node has

no sub-trees containing a success node. To avoid generating redundant information, it is

favourable to detect failure nodes as early as possible. When VSi=, node Ni must be a

failure node; however, a failure node Ni may have a non-empty VSi, and detecting such

nodes is computationally expensive. Hence the OBDD-A algorithm detects Ni failed only

if VSi=.

A node Ni for which VSiS≠ (i.e. at least one minpath has been found) is not

necessarily successful since the EHC calculation requires the shortest path to the target.

Because one component of a node might be successful while another is not, individual

components are tested for success. A success component representing a state of length L is

removed from the node and its probability is added to Pr(L).

A component is detected as successful only if it has at least k minpaths from distinct

source vertices. If the longest of these k paths is L, no other reaching paths from a non-

target vertex can have length less than L-1. The length of the state represented by the

component is equal to the k
th

 longest of the minpaths. For example if k=2 and there are

minpaths of length 4, 5 and 6 in a component, the component represents a state of length

5. Every reaching path in the component would be required to be length 4 or above.

4.3 Node Isomorphism

Isomorphic nodes have equivalent sub-trees. Merging them into one node avoids the need

to process them separately. Each merge operation effectively prunes one of the sub-trees.

Definition: Nodes Ni and Nj at the same level in (N,G) are isomorphic if VSi=VSj and

CIi=CIj. We write Ni = Nj.

J. U. Herrmann, S. Soh, S. Rai and G. West

310

Relaxing the definition by excluding CI increases the number of nodes found to be

isomorphic but also greatly increases the computational complexity of processing each

node. Similarly, strengthening the definition by requiring that the reaching path lengths be

identical reduces the computational complexity per node at the cost of fewer nodes found

to be isomorphic.

Two isomorphic nodes Ni and Nj can be merged into one node that keeps the VS and

CI of merged nodes; without loss of generality, let the resulting node be Ni, if i<j. When

two isomorphic nodes Ni and Nj are merged, the VI are combined as follows. Every

component M
x
 that is in only one node is present in the merged node with probability

unchanged. If M
x
VIi and M

y
VIj are identical, then the merged node has a component

that is identical to M
x
 but has probability P

x
+P

y
. Note that since VSi=VSj we are

guaranteed that for every pair (va, L
x
a)M

x
 there exists a pair (va, L

y
a)M

y
; for component

equality it remains only to compare L
x
a and L

y
a for every vaVSi.

As an example, consider two isomorphic nodes N58=[{({(v5,3),(v6,3),(v7,5)},

0.06561)}, {}], and N62= [{({(v5,3),(v6,3),(v7,3)}, 0.59049)}, {}]. To merge N62 into N58

we compare the single components in both nodes. Since the components are not equal (due

to different reaching path lengths) we add the component from N62 into N58 giving N58=[{

({(v5,3),(v6,3),(v7,5)},0.06561), ({(v5,3),(v6,3),(v7,3)},0.59049) }, {}]. Further, consider

isomorphic nodes N25=[{({(v4,2)},0.0081)}, {}] and N29=[{({(v4,2)},0.0729)}, {}]. Each

has only one component, and they are equal. Hence the merged node has one component

with the sum of the two probabilities; N25=[{({(v4,2)},0.081)}, {}].

4.4 Processing an Augmented OBDD Node

When processing a node Ni, the function Process in Figure 3 first creates the positive

child, N2i+2 and then modifies it to represent the case of the decision vertex being UP. This

involves modifying the probability of all components (Steps 2 and 3), following each edge

entering the decision vertex, visiting its other endpoint (Steps 4 and 5) and then adding the

edge to CI2i+2 (Step 6). Any condition with an endpoint on the decision variable is also

followed and the other endpoint is visited (Steps 7 and 8). Lastly any pair of conditions

with an end point on the decision variable are merged to form a new condition (Steps 9

and 10).

When a vertex va is added to VSi we say that va has been visited. The visit(vj, va, Lx)

function represents a new path being added, extending a reaching path from vj to a

reaching path from va along a path segment of length Lx. This means if the existing

shortest reaching path from vj has length Lj we have a new reaching path from va of length

Lj + Lx. The function checks to see whether a reaching path from va already exists. If no

such reaching path exists or the existing reaching path has length greater than Lj + Lx then

the new length is recorded as the minimum length from vertex va. This is done for every

component. Note that only the lengths of the paths are recorded.

If pi<1.0, the function Process also creates a negative child N2i+1 which is initialized

as a copy of Ni (Steps 11 and 12). The probabilities of all components are modified by

multiplying them with the probability of failure of the decision variable (Steps 13 and 14)

but the other updates applied to the positive child are not needed. Lastly all references to

the decision variable are removed from the VI and CI of both nodes (Steps 15 to 20).

On Augmented OBDD and Performability for Sensor Networks

311

4.5 OBDD-A Algorithm

Figure 4 shows our OBDD-A algorithm. Step 1 sets the root node N0= [VI0=({(v0,

L
0

0=0)}, P=1.0), CI0={}]. We note that VS0=v0 for all networks. Hence the first level of

(N,G) contains a single node deciding v0. In Step 2, we initialize the current queue QC,

the next queue QN={}, and set the decision variable, DV, to 0. We also initialize the

probabilities of each possible reaching path length to zero. QC stores the unprocessed

nodes on level DV, while QN contains the nodes to be processed on level DV+1. When

QC=QN={}, the node generation is complete and the algorithm halts; if only QC={}, we set

QC=QN and QN={}, and increment DV. We then remove the first node Ni from QC and call

Process to create N2i+2 (and possibly N2i+1).

In Step 8, each component is tested for success. Such components are removed and

Pr(L) is updated accordingly. Finally, in Steps 9-14 we test each child node; if it is non-

terminal we check for isomorphism with nodes on the next level of the OBDD-A and

either merge the new node with an existing isomorphic node, or add it to QN if no

isomorphic node exists. The algorithm then repeats from Step 3.

When both queues are empty (Step 3), we process the stored probabilities to generate

REL and EHC as discussed in Section 3. One of the advantages of this approach is that we

not only obtain REL and EHC, but the individual Pr(L) as well. For example we could use

the results to calculate the probability that a message would arrive in five or less hops

(calculated using 



5

1

)Pr()5Pr(
i

i).

Process(Ni, vj):

// Let Ni = (VIi, CIi) and vj be the decision variable.

 1. N2i+2  Ni.

 2. for each Mx = ({…(vj,L
x
j), …}, Px)VI2i+2 do

 3. Px  Px pj.

 4. for each edge e=(va, vj), {va, vj} or {vj, va} in E do //va ≠ vj

 5. visit (vj, va, 1).

 6. add (va, vj, 1) to CI2i+2; also add (va, vj, 1) if e is undirected

 7. for each Cy=(va, vj, L
y)CI2i+2 do

 8. visit (vj, va, L
y).

 9. for each (va,vj,L
y)CI2i+2 and each (vj,vb,L

z)CI2i+2 do

10. add (va, vb, L
y+Lz) to CI2i+2.

11. if pj<1.0 then

12. N2i+1  Ni.

13. for each Mx VI2i+2 do

14. Px  Px qj.

15. for each (vj, L
x
j)Mx with Mx(VI2i+1  VI2i+2) do

16. delete (vj, L
x
j).

17. for each (va,vj,L
y)(CI2i+1 CI2i+2) do

18. delete (va,vj, L
y).

19. for each (vj,vb, L
y)(CI2i+1CI2i+2) do

20. delete (vj,vb, L
y).

Figure 3: The Process function

J. U. Herrmann, S. Soh, S. Rai and G. West

312

Figure 4: The OBDD-A Algorithm

4.6 Example

To illustrate our OBDD-A algorithm, we compute the EHC for the network in Figure 1.

with S={v9,v8}, t=v0 and k =2. Let pi=0.9 for all vertices.

 Step 1 of the algorithm in Figure 4 sets N0 = [VI0=({(v0, L
0
0=0)}, P=1.0), CI0={}].

Step 2 sets DV=0, QC={N0} and QN={}. For a WSN, N0 represents the state of G(V,E)

when the target has received a message which we will track back towards the source(s).

The target vertex has at this stage not been decided as UP, so the message has not

propagated any further. Step 3 does not apply since QC is non-empty.

First, we call Process(N0,v0). This creates N1 and N2, which are initially copies of N0.

The nodes are multiplied by q0=0.1 and p0=0.9 respectively. Since DV=0, the state of N2

is updated by following all edges entering v0. The edges are e0= (v0, v1), and e1=(v0, v2),

causing vertices v1 and v2 to be visited. In each case the instance of ({(v0, 0)}, P) is copied

to a new pair such as ({(vx, 1)}, P), representing the message travelling one more hop to

the next vertex. As a result, VI2 = { ({(v0,0), (v1,1), (v2,1)},0.9) }.

We next add conditions representing all of the adjacent edges (Step 6 of Process).

The conditions added are (v0, v1, 1) and (v0, v2, 1) representing e0 and e1, respectively. We

then combine any pairs of conditions (va, v0, L
x
) and (v0, vb, L

y
), however N2 does not

contain any conditions (va, v0, L) to match those just added and no action is taken. Lastly,

we delete all elements of VI1, VI2, CI1 and CI2 that contain the decided vertex v0. This

gives N1=[VI1={({},0.1)}, CI2 = { }], VS1={ } N2=[VI2={({(v1,1), (v2,1)},0.9)}, CI2 = {}]

and VS2 = {v1, v2}. Note that since VS1 is empty, N1 is a failure node and is not stored on

QN. Since QN is empty, N2 is not isomorphic to any existing nodes and is appended. We

then return to Step 3, and continue repeating the loop until both queues are empty.

The successful components are ({(v6,3),(v8,4),(v9,4)}, 0.59049),

({(v7,3),(v8,4),(v9,4)}, 0.11219) and ({(v7,3),(v8,4),(v9,4)}, 0.04783) of length 4,

({(v8,4),(v9,5)}, 0.017656) and ({(v8,4),(v9,5)}, 0.0095659) of length 5, and

({(v8,4),(v9,6)}, 0.00010629) and ({(v8,4),(v9,6)}, 0.00095659) of length 6. Each has

information on source vertices v8 and v9, and some also have information on one of v6 or

v7.

OBDD-A Algorithm

1. Create root node N0 [VI0={(v0, L
0
0=0)}, P=1.0), CI0={}].

2. QC{N0}, QN{ }, DV0, and Pr(L) 0. // for L=1 to n-1

3. if QC={ } and QN={ } then compute REL and EHC. //from Pr(L), use Eq(1)

4. else if QC={ } and QN{ } then QC  QN, QN  { } and DV  DV + 1.

5. Remove the first node Ni from QC.

6. Call Process(Ni, DV) to create N2i+2 (and possibly N2i+1).

7. for each child N created in step 6 do

8. for each success component Mx of length L do P(L) P(L)+Px.

9. if N is non terminal then

10. for each NqQN do

11. if N = Nq then

12. merge N into Nq.

13. break.

14. if no Nq was isomorphic to N then add N to QN.

15. goto 3.

On Augmented OBDD and Performability for Sensor Networks

313

When a success component is detected, the reaching path length to the target and its

reaching path probability are noted and the component is removed from the node. When a

node contains only success components, it is a success terminal node. So for the given

example, Pr(4)=0.75051279, Pr(5)= 0.027221589, and Pr(6)= 0.001062882. This gives

REL = 0.75051279 + 0.027221589 + 0.001062882 = 0.778797261 and EHC =

(40.75051279 + 50.027221589 + 60.001062882) / 0.778797261 = 4.037682918.

5. Simulation Results and Discussions

5.1 Simulation Environments

We have implemented our OBDD-A algorithm in C++ and run it on a Pentium computer

(2 Xeon 3.2GHz processors, 1MB cache, 2GB RAM). Topologies WSN-1 through WSN-

4 are generated by placing 50 devices randomly in a unit square, assuming a transmission

radius of 0.5, and connecting any devices able to communicate directly as per the fixed

radius model [14]. We assume pi=0.9 for each vertex; source and target vertices have pi =

1.0. For each simulation, the run time in CPU seconds is averaged over five runs
1
.

Simulations using our OBDD-A and sum-of-disjoint products (SDP) techniques [6] for

generating REL(s,t) and EHC(s,t) produced exactly the same results, verifying the

correctness of our approach.

 To see the effects of vertex and edge ordering (discussed in Section 2.1) on our

OBDD-A performances, we considered two sets of input files: one with random ordering,

and the other with the described ordering. Our simulation shows that the ordering

significantly affects the performance of OBDD-A. As an example, computing REL(s,t)

and EHC(s,t) for a 66 grid with (without) sorting generates 6592 (9548) OBDD-A nodes

and takes 9(18) CPU seconds. Note that this ordering reduces its width, W, from 25 to 6,

and hence reduces the number of conditions, CI, and vertices in VS of the OBDD-A. This

reduces both the number of diagram nodes generated and their processing time. All input

files used for the remaining simulations were ordered as described in Section 2.1.

5.2 Results for EHC(s,t)

The SDP approach has been shown to be more efficient than the factoring method [6], and

therefore we compare the performance of our OBDD-A only with that of the solution [6]

provided by the authors. As shown in Table 1, our OBDD-A is generally more efficient on

the larger networks, especially the grid networks. Also, OBDD-A is able to compute the

REL and EHC of large grid networks that contain up to 4.6x10
20

 (s,t)-minpaths. The SDP

approach is not efficient for this network type because: (i) it is not feasible to generate the

huge number of minpaths, and (ii) it requires large amounts of memory and CPU time to

convert the paths into their disjoint terms. A simulation marked DNC in the Table 1 did

not complete within 5 minutes of CPU time.

The OBDD-A approach is particularly efficient with networks with low width W. The

performance of the OBDD-A approach is not directly related to the number of paths, as

can be seen in Table 1. This is because reaching paths of the same length are merged,

which is especially apparent in the grid networks with low W. Note that the performance

of OBDD-A is better on the grids of width 2 than the grids of width 3. In particular, the

333 grid with 99 vertices takes considerably more processing time and generates more

1 We used multiple runs to eliminate slight inconsistencies in CPU time generated. The standard deviation was

extremely low in general (2% or lower) so it was decided that five runs were sufficient.

J. U. Herrmann, S. Soh, S. Rai and G. West

314

nodes than the 2100 grid with 200 vertices. The SDP performs better for networks of

larger width that have a small number of paths, such as the 66 grid.

Table 1: OBDD-A vs. Boolean Techniques

Network W #Paths REL(s,t) EHC(s,t)
OBDD-A SDP

|N| Time Time

Grid 218 2 3382 0.6629 18.6695 97 0.003 4.079

Grid 250 2 1.610
10

 0.2928 52.9231 289 0.030 DNC

Grid 2100 2 4.610
20

 0.0817 106.4860 589 0.227 DNC

Grid 312 3 3652 0.9167 13.1953 355 0.015 6.028

Grid 333 3 2.310
10

0.7910 35.6753 2164 0.915 DNC

Grid 49 4 1949 0.9629 11.0336 1462 0.176 2.743

Grid 66 6 832 0.9828 9.01288 6778 9.411 2.449

WSN-1 24 28280 0.6905 10.3843 588 0.089 30.226

WSN-2 36 8548 0.8579 6.3497 1460 0.440 2.304

WSN-3 10 118440 0.3819 15.2223 1358 0.133 DNC

WSN-4 45 471 0.9897 2.1909 6592 30.412 0.265

The four WSNs shown were chosen as representative of the networks generated.

WSN-1 and WSN-3 have a large number of paths while WSN-2 and WSN-4 have far

fewer paths. The number of hops between the source and target vertices also varies

between the networks, as evidenced by the EHC results shown in Table 1. The width of

these networks is not as clear an indicator of OBDD-A performance as with grid networks

because they are less evenly distributed, but it is noteworthy that the network with the

highest width, WSN-4, is the network for which OBDD-A displayed the worst

performance Note also that OBDD-A was able to solve WSN-3 (with the low W and large

number of paths) while SDP could not.

5.3 Results for EHC(1-of-S,t) and EHC(k-of-S,t)

Table 2 shows the performance of OBDD-A for computing the REL and EHC of the 6x6

grid network shown in Figure 5. The vertex marked t is the target v0 for all models shown,

and the source(s) vary as shown in the table, chosen from the vertices marked 32 to 35.

The number of OBDD-A nodes generated and the time in CPU seconds are shown in

Table 2.

Table 2: OBDD-A Performance on Different Models

Model S Nodes Time REL EHC

(1-of-S,t) {35} 7712 9.4 0.9720 10.0012

(1-of-S,t) {34,35} 7703 9.3 0.9828 9.0129

(2-of-S,t) {34,35} 7714 9.4 0.9828 10.0129

(1-of-S,t) {32,33,35} 8014 9.4 0.9856 7.0742

(2-of-S,t) {32,33,35} 8136 9.5 0.9833 9.0198

(3-of-S,t) {32,33,35} 8139 9.5 0.9818 10.0183

As can be seen, the EHC increases and the REL decreases as k increases. For equal k, the

EHC decreases and REL increases for increasing |S|. Note that when |S|=1, (1-of-S,t) is an

On Augmented OBDD and Performability for Sensor Networks

315

(s,t), and as shown in Table 2, computing the model for |S|>1 is more efficient since there

is more opportunity for a branch of the diagram to terminate earlier. Our OBDD-A

approach computes the solution to all models in comparable time and number of nodes

generated. The performance of OBDD-A for solving models EHC(k-of-S,t) is comparable

with that of EHC(s, t).

Figure 5: 66 Grid Network

6. Conclusions

This paper describes a model for the REL and EHC of a WSN, and presents an algorithm

for solving it. Our OBDD-A approach is competitive on general networks, while being

more efficient for networks with low width W, especially grid networks. Further, since the

performance of the OBDD-A method is not directly related to the number of paths or cuts

in the solution, our approach can solve problems with extremely large pathsets that the

existing factoring [4] and SDP [6] approaches cannot. Our approach solves the (k-of-S,t)

model for k>1 which was not addressed in [4] and [6].

The OBDD-A is equally applicable for network models with multiple targets, such as

(s,k-of-T) by starting at the source and following the flow towards the target vertices. The

approach can be generalized for (ki-of-Si,T) where each Si is a group of source vertices

and at least ki messages from distinct vertices in group Si are required to reach at least one

of the target vertices in T. Similarly we can solve (S, ki-of-Ti) by starting at the sources.

It is noted that for the case of vertex and edge failure, an OMDD-A is more efficient

than the OBDD-A [11]. For the case of vertex failure and perfect edges, the grouping of

variables in [11] is not applicable. Research will be undertaken to investigate whether a

suitable ordering exists to allow the OMDD-A to be applied to the case of perfect edges.

In addition the boundary set notation introduced by Carlier and Lucet [15] will be

compared to the current VI/CI model, which requires extending it to EHC first. In addition

other network models will also be investigated.

Acknowledgement: We thank the anonymous referees for their positive comments and

constructive criticism.

References

[1] Soh, S., S. Rai, and R. R. Brooks. Performability Issues in Wireless Communication Network,

in The Handbook on Performability Engineering, Editor: K. B. Misra, Springer Verlag,

2008, 1047-1067.

[2] Akyildiz, W. S., W. Su, Y. Sankarasubramaniam, and R. Cayirci. Wireless sensor networks: a

J. U. Herrmann, S. Soh, S. Rai and G. West

316

survey. Computer Networks, March 2002; 38, 393-422.

[3] Intanagonwiwat, C., R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed Diffusion

for Wireless Sensor Networking. IEEE/ACM Transactions on Networking, February 2003;

11(1), 2-16.

[4] AboElFotoh, H. M. F., S. S. Iyengar, and K. Chakrabarty. Computing Reliability and

Message Delay for Cooperative Wireless Distributed Sensor Networks Subject to Random

Failures. IEEE Trans. Reliability, 2005; 54(1), 145-155.

[5] Shrestha, A., and L. Xing. Quantifying Application Communication Reliability of Wireless

Sensor Networks. Int'l J. Performability Engineering January 2008; 4(1), 43-56.

[6] Soh, S., W. Lau, S. Rai, and R. R. Brooks. On Computing Reliability and Expected Hop

Count of Wireless Communication Networks. Int'l J. Performability Engineering, April 2007;

3(2), 267-279.

[7] Brooks, R. R., B. Pillai, S. Racunas, and S. Rai. Mobile Network Analysis Using Probabilistic

Connectivity Matrices. IEEE Trans. Systems, Man, and Cybernetics —PART C: Applications

and Reviews, 2007; 37(4), 1-9.

[8] Bryant, R. E. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.

ACM Computing Surveys, 1992; 24(3), 293-318.

[9] Kuo, S.-Y., S.-K. Lu, and F.-M. Yeh. Determining Terminal-Pair Reliability Based on Edge

Expansion Diagrams using OBDD. IEEE Trans. Reliability, 1999; 48(3), 234-246.

[10] Yeh, F.-M., S.-K. Lu, and S.-Y. Kuo. OBDD-Based Evaluation of k-Terminal Network

Reliability. IEEE Trans. Reliability, 2002; 51(4), 443-451.

[11] Herrmann, J. U., S. Soh, G. West, and S. Rai. Using Multi-valued Decision Diagrams to

Solve the Expected Hop Count Problem. IEEE 23rd Int. Conf. Advanced Information

Networking and Applications Workshops, 2009; Bradford, UK.419-424.

[12] Friedman, S. J., and K. J. Supowit. Finding the Optimal Variable Ordering for Binary

Decision Diagrams. IEEE Trans. Computers, 1990; 39(5), 710-713.

[13] Bollig, B., and I. Wegener. Improving the Variable Ordering of OBDDs is NP-Complete.

IEEE Trans. Computers, 1996; 45(9), 993-1002.

[14] Krishnamachariy, B., S. B. Wickery, and R. Bejar. Phase Transition Phenomena in

Wireless Ad Hoc Networks. Global Telecommunications Conference, 2001; San Antonio, TX,

USA 2001.

[15] Carlier, J., and C. Lucet. A Decomposition Algorithm for Network Reliability Evaluation.

Discrete Applied Mathematics, 1996; 65, 141-156.

Johannes U. Herrmann is a Ph.D. student at Curtin University of Technology, Western

Australia. He is a member of the Institute for Multi-Sensor Processing and Content

Analysis. He received his B.Sc. (Hons, Mathematics and Computer Science) and M.Sc.

(Computer Science) from the University of Western Australia. His research interests

include network reliability, artificial intelligence in online games, program synthesis and

computers in education. He is a student member of the IEEE.

The biographies of Sieteng Soh and Suresh Rai can be found in [6].

Geoff West received the B.Sc. (Honors) in 1978 and the Ph.D. in 1982 from the City

University, London. He was employed at the City University in the School of Engineering

(1982-1990) and at the Department of Computing at Curtin University (1990-2008). His

research interests include 3D object recognition, feature extraction, surveillance, real-time

systems, automatic visual inspection, data mining, telemedicine and smart homes. He is

currently Professor of Spatial Information in the Department of Spatial Sciences at Curtin

University where he is focussing on object recognition in remotely sensed data, GIS and

visualisation. Prof. West is a senior member of the IEEE, a member of the IET(UK),

fellow of Engineers Australia, a member of the ACS (AUS), and is a Chartered Engineer.

	Johannes U. Herrmann*, Sieteng Soh, Suresh Rai†, and Geoff West
	Acknowledgement: We thank the anonymous referees for their positive comments and constructive criticism.
	References

