4 research outputs found

    High-Voltage Integrated Circuits design and validation for automotive applications

    Get PDF
    Electronic Integrated Circuits (ICs) are an important pillar of the automotive market, especially since legal and safety requirements have been introduced to manage vehicles emissions and behaviors. Furthermore, the harsh environment and the tight safety requirements, summed with the market that is pushing to reduce the development lead time and to increase the system complexity, require to develop dedicated ICs for the automotive applications. This thesis presents some peculiar high-power and high-voltage ICs for automotive applications that have been studied, designed and developed taking into account all the requirements that automotive grade ICs have to respect, with emphasis on performance, quality and safety aspects. Particularly the thesis reports the design and validation of power management blocks and output drivers for inductive loads, showing how to fulfill in an effective way the performance, quality and safety targets according to the guidelines and the constraints of the latest automotive standards, like ISO26262 and AEC-Q100. All the designed ICs has been simulated and manufactured, including layout drawings, in a 0.35um HV-CMOS technology from AMS. The effectiveness and robustness of the proposed circuits has been validated on silicon and corresponded measurement results has been reported

    Modellbasierte Entwicklung funktional sicherer Hardware nach ISO 26262

    Get PDF
    The compliance with functional safety according to the standard ISO 26262 in context of the increasing electrification of road vehicles is a significant challenge. This work provides a concept and methodology for the model-based development of functional safe hardware. This is characterized by the description of hardware designs, annotation of failure data and performing the demanded safety evaluations

    Modellbasierte Entwicklung funktional sicherer Hardware nach ISO 26262

    Get PDF
    Die Absicherung von funktionaler Sicherheit nach dem Standard ISO 26262 ist im Kontext der zunehmenden Elektrifizierung von Fahrzeugen ein herausforderndes Unterfangen. Diese Arbeit liefert ein Konzept und eine Vorgehensweise zur modellbasierten Entwicklung funktional sicherer Hardware. Diese zeichnet sich durch die Beschreibung von Hardwaredesigns, Anreicherung um Fehlerinformationen sowie Ausführung der geforderten Sicherheitsevaluationen aus
    corecore