447 research outputs found

    A Model of Cerebellar Adaptation of Grip Forces During Lifting

    Full text link
    We investigated adaptive neural control of precision grip forces during object lifting. A model is presented that adjusts reactive and anticipatory grip forces to a level just above that needed to stabilize lifted objects in the hand. The model obeys priciples of cerebellar structure and function by using slip sensations as error signals to adapt phasic motor commands to tonic force generators associated with output synergies controlling grip aperture. The learned phasic commands are weight and texture-dependent. Simulations of the new curcuit model reproduce key aspects of experimental observations of force application. Over learning trials, the onset of grip force buildup comes to lead the load force buildup, and the rate-of-rise of grip force, but not load force, scales inversely with the friction of the gripped object.CONACYT of Mexico (No. 65907); Defense Advanced Research Projects Agency/Office of Naval Research (N00014-95-1-0409, NIMH R01 DC02852

    Cortical Activations in Humans Grasp-Related Areas Depend on Hand Used and Handedness

    Get PDF
    Background: In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified whether activity within this circuit varies depending on handedness has yet to be investigated. Methodology/Principal Findings: We used functional magnetic resonance imaging (fMRI) to explicitly test how handedness modulates activity within human grasping-related brain areas. Right- and left-handers subjects were requested to reach towards and grasp an object with either the right or the left hand using a precision grip while scanned. A kinematic study was conducted with similar procedures as a behavioral counterpart for the fMRI experiment. Results from a factorial design revealed significant activity within the right dPMC, the right cerebellum and AIP bilaterally. The pattern of activity within these areas mirrored the results found for the behavioral study. Conclusion/Significance: Data are discussed in terms of an handedness-independent role for the right dPMC in monitoring hand shaping, the need for bilateral AIP activity for the performance of precision grip movements which varies depending on handedness and the involvement of the cerebellum in terms of its connections with AIP. These results provide the first compelling evidence of specific grasping related neural activity depending on handedness

    The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders

    Get PDF
    The cerebellum has been repeatedly implicated in gene expression, rodent model and post-mortem studies of autism spectrum disorder (ASD). How cellular and molecular anomalies of the cerebellum relate to clinical manifestations of ASD remains unclear. Separate circuits of the cerebellum control different sensorimotor behaviors, such as maintaining balance, walking, making eye movements, reaching, and grasping. Each of these behaviors has been found to be impaired in ASD, suggesting that multiple distinct circuits of the cerebellum may be involved in the pathogenesis of patients' sensorimotor impairments. We will review evidence that the development of these circuits is disrupted in individuals with ASD and that their study may help elucidate the pathophysiology of sensorimotor deficits and core symptoms of the disorder. Preclinical studies of monogenetic conditions associated with ASD also have identified selective defects of the cerebellum and documented behavioral rescues when the cerebellum is targeted. Based on these findings, we propose that cerebellar circuits may prove to be promising targets for therapeutic development aimed at rescuing sensorimotor and other clinical symptoms of different forms of ASD

    Neurodegeneration and reorganization in spinal cord disorders

    Full text link

    The neuroscience of vision-based grasping: a functional review for computational modeling and bio-inspired robotics

    Get PDF
    The topic of vision-based grasping is being widely studied using various techniques and with different goals in humans and in other primates. The fundamental related findings are reviewed in this paper, with the aim of providing researchers from different fields, including intelligent robotics and neural computation, a comprehensive but accessible view on the subject. A detailed description of the principal sensorimotor processes and the brain areas involved in them is provided following a functional perspective, in order to make this survey especially useful for computational modeling and bio-inspired robotic application

    A Vector-Integration-to-Endpoint Model for Performance of Viapoint Movements

    Full text link
    Viapoint (VP) movements are movements to a desired point that are constrained to pass through an intermediate point. Studies have shown that VP movements possess properties, such as smooth curvature around the VP, that are not explicable by treating VP movements as strict concatenations of simpler point-to-point (PTP) movements. Such properties have led some theorists to propose whole-trajectory optimization models, which imply that the entire trajectory is pre-computed before movement initiation. This paper reports new experiments conducted to systematically compare VP with PTP trajectories. Analyses revealed a statistically significant early directional deviation in VP movements but no associated curvature change. An explanation of this effect is offered by extending the Vector-Integration-To-Endpoint (VITE) model (Bullock and Grossberg, 1988), which postulates that voluntary movement trajectories emerge as internal gating signals control the integration of continuously computed vector commands based on the evolving, perceptible difference between desired and actual position variables. The model explains the observed trajectories of VP and PTP movements as emergent properties of a dynamical system that does not precompute entire trajectories before movement initiation. The new model includes a working memory and a stage sensitive to time-to-contact information. These cooperate to control serial performance. The structural and functional relationships proposed in the model are consistent with available data on forebrain physiology and anatomy.Office of Naval Research (N00014-92-J-1309, N00014-93-1-1364, N0014-95-1-0409

    Higher-level hand motor function in aging and (preclinical) dementia: its relationship with (instrumental) activities of daily life- A mini review

    Get PDF
    A causal relationship between physical activity such as walking and cognitive functions - particularly executive functions and memory - has been observed in elderly people with and without dementia. Executive functions play an important role in the (instrumental) activities of daily life [(I)ADL]. However, a close relationship has also been found between motor activity of the upper limb, particularly the hand, and (I)ADL. Indeed, in aging, a decline in hand motor function is related to a decrease in (I)ADL, an increase in functional dependency, admission to a nursing home, and even mortality. This review begins by addressing clinical studies on the effect of age on higher-level hand motor activity. It then discusses higher-level hand motor function in age-related neurodegenerative diseases such as mild cognitive impairment, Alzheimer's disease and vascular dementia. It concludes by discussing the contribution of higher-level hand motor function assessment to the diagnosis of the various subtypes of (preclinical) dementia and by addressing the clinical relevance of studying higher-level hand motor function, procedural learning, and (I)ADL in aging and (preclinical) dementia. Copyright © 2008 S. Karger AG

    Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich\u27s ataxia

    Get PDF
    Spinocerebellar ataxia type 3, spinocerebellar ataxia type 6 and Friedreich\u27s ataxia are common hereditary ataxias. Different patterns of atrophy of the cerebellar cortex are well known. Data on cerebellar nuclei are sparse. Whereas cerebellar nuclei have long been thought to be preserved in spinocerebellar ataxia type 6, histology shows marked atrophy of the nuclei in Friedreich\u27s ataxia and spinocerebellar ataxia type 3. In the present study susceptibility weighted imaging was used to assess atrophy of the cerebellar nuclei in patients with spinocerebellar ataxia type 6 (n = 12, age range 41-76 years, five female), Friedreich\u27s ataxia (n = 12, age range 21-55 years, seven female), spinocerebellar ataxia type 3 (n = 10, age range 34-67 years, three female), and age-and gender-matched controls (total n = 23, age range 22-75 years, 10 female). T1-weighted magnetic resonance images were used to calculate the volume of the cerebellum. In addition, ultra-high field functional magnetic resonance imaging was performed with optimized normalization methods to assess function of the cerebellar cortex and nuclei during simple hand movements. As expected, the volume of the cerebellum was markedly reduced in spinocerebellar ataxia type 6, preserved in Friedreich\u27s ataxia, and mildy reduced in spinocerebellar ataxia type 3. The volume of the cerebellar nuclei was reduced in the three patient groups compared to matched controls (P-values \u3c 0.05; two-sample t-tests). Atrophy of the cerebellar nuclei was most pronounced in spinocerebellar ataxia type 6. On a functional level, hand-movement-related cerebellar activation was altered in all three disorders. Within the cerebellar cortex, functional magnetic resonance imaging signal was significantly reduced in spinocerebellar ataxia type 6 and Friedreich\u27s ataxia compared to matched controls (P-values \u3c 0.001, bootstrap-corrected cluster-size threshold; two-sample t-tests). The difference missed significance in spinocerebellar ataxia type 3. Within the cerebellar nuclei, reductions were significant when comparing spinocerebellar ataxia type 6 and Friedreich\u27s ataxia to matched controls (P \u3c 0.01, bootstrap-corrected cluster-size threshold; two-sample t-tests). Susceptibility weighted imaging allowed depiction of atrophy of the cerebellar nuclei in patients with Friedreich\u27s ataxia and spinocerebellar ataxia type 3. In spinocerebellar ataxia type 6, pathology was not restricted to the cerebellar cortex but also involved the cerebellar nuclei. Functional magnetic resonance imaging data, on the other hand, revealed that pathology in Friedreich\u27s ataxia and spinocerebellar ataxia type 3 is not restricted to the cerebellar nuclei. There was functional involvement of the cerebellar cortex despite no or little structural changes

    Neural synchrony within the motor system: what have we learned so far?

    Get PDF
    Synchronization of neural activity is considered essential for information processing in the nervous system. Both local and inter-regional synchronization are omnipresent in different frequency regimes and relate to a variety of behavioral and cognitive functions. Over the years, many studies have sought to elucidate the question how alpha/mu, beta, and gamma synchronization contribute to motor control. Here, we review these studies with the purpose to delineate what they have added to our understanding of the neural control of movement. We highlight important findings regarding oscillations in primary motor cortex, synchronization between cortex and spinal cord, synchronization between cortical regions, as well as abnormal synchronization patterns in a selection of motor dysfunctions. The interpretation of synchronization patterns benefits from combining results of invasive and non-invasive recordings, different data analysis tools, and modeling work. Importantly, although synchronization is deemed to play a vital role, it is not the only mechanism for neural communication. Spike timing and rate coding act together during motor control and should therefore both be accounted for when interpreting movement-related activity
    corecore