11 research outputs found

    The Fuzzy Economic Order Quantity Problem with a Finite Production Rate and Backorders

    Get PDF
    The track of developing Economic Order Quantity (EOQ) models with uncertainties described as fuzzy numbers has been very lucrative. In this paper, a fuzzy Economic Production Quantity (EPQ) model is developed to address a specific problem in a theoretical setting. Not only is the production time finite, but also backorders are allowed. The uncertainties, in the industrial context, come from the fact that the production availability is uncertain as well as the demand. These uncertainties will be handled with fuzzy numbers and the analytical solution to the optimization problem will be obtained. A theoretical example from the process industry is also given to illustrate the new model

    Inventory model with preservation technology and exponential holding cost in fuzzy scenario

    Get PDF
    Inventories are ubiquitous in the business sector. Since inventory is most frequently incurring expense, stock control is critical for an organization and it must be scrimping and saving in contemplation of function the merchandising fruitfully.  In this paper, an inventory model for a deteriorating item under exponential holding cost with collaborative preservation technology investment under carbon policy is considered.  Also, this study is developed in a fuzzy scenario by employing triangular fuzzy numbers.  Signed distance method is utilized to enhance decision making and optimization. Further the convexity of the total cost function for both the crisp and the fuzzy case is established.  The objective is to determine the optimal investment in preservation technology and the optimal cycle length so as to minimize the total cost. Moreover, some managerial results are obtained by using sensitivity analysis and graphical representation is also carried out.  The applications of the proposed model is used in the fields of constructing machinery or heavy duty construction equipment, specific chemicals and processed food

    QAmplifyNet: Pushing the Boundaries of Supply Chain Backorder Prediction Using Interpretable Hybrid Quantum - Classical Neural Network

    Full text link
    Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. However, traditional machine-learning models struggle with large-scale datasets and complex relationships, hindering real-world data collection. This research introduces a novel methodological framework for supply chain backorder prediction, addressing the challenge of handling large datasets. Our proposed model, QAmplifyNet, employs quantum-inspired techniques within a quantum-classical neural network to predict backorders effectively on short and imbalanced datasets. Experimental evaluations on a benchmark dataset demonstrate QAmplifyNet's superiority over classical models, quantum ensembles, quantum neural networks, and deep reinforcement learning. Its proficiency in handling short, imbalanced datasets makes it an ideal solution for supply chain management. To enhance model interpretability, we use Explainable Artificial Intelligence techniques. Practical implications include improved inventory control, reduced backorders, and enhanced operational efficiency. QAmplifyNet seamlessly integrates into real-world supply chain management systems, enabling proactive decision-making and efficient resource allocation. Future work involves exploring additional quantum-inspired techniques, expanding the dataset, and investigating other supply chain applications. This research unlocks the potential of quantum computing in supply chain optimization and paves the way for further exploration of quantum-inspired machine learning models in supply chain management. Our framework and QAmplifyNet model offer a breakthrough approach to supply chain backorder prediction, providing superior performance and opening new avenues for leveraging quantum-inspired techniques in supply chain management

    Fuzzy Risk Analysis for a Production System Based on the Nagel Point of a Triangle

    Get PDF
    Ordering and ranking fuzzy numbers and their comparisons play a significant role in decision-making problems such as social and economic systems, forecasting, optimization, and risk analysis problems. In this paper, a new method for ordering triangular fuzzy numbers using the Nagel point of a triangle is presented. With the aid of the proposed method, reasonable properties of ordering fuzzy numbers are verified. Certain comparative examples are given to illustrate the advantages of the new method. Many papers have been devoted to studies on fuzzy ranking methods, but some of these studies have certain shortcomings. The proposed method overcomes the drawbacks of the existing methods in the literature. The suggested method can order triangular fuzzy numbers as well as crisp numbers and fuzzy numbers with the same centroid point. An application to the fuzzy risk analysis problem is given, based on the suggested ordering approach

    Supply chain 4.0: a machine learning-based Bayesian-optimized lightGBM model for predicting supply chain risk

    Get PDF
    In today’s intricate and dynamic world, Supply Chain Management (SCM) is encountering escalating difficulties in relation to aspects such as disruptions, globalisation and complexity, and demand volatility. Consequently, companies are turning to data-driven technologies such as machine learning to overcome these challenges. Traditional approaches to SCM lack the ability to predict risks accurately due to their computational complexity. In the present research, a hybrid Bayesian-optimized Light Gradient-Boosting Machine (LightGBM) model, which accurately forecasts backorder risk within SCM, has been developed. The methodology employed encompasses the creation of a mathematical classification model and utilises diverse machine learning algorithms to predict the risks associated with backorders in a supply chain. The proposed LightGBM model outperforms other methods and offers computational efficiency, making it a valuable tool for risk prediction in supply chain management

    Responsible Inventory Models for Operation and Logistics Management

    Get PDF
    The industrialization and the subsequent economic development occurred in the last century have led industrialized societies to pursue increasingly higher economic and financial goals, laying temporarily aside the safeguard of the environment and the defense of human health. However, over the last decade, modern societies have begun to reconsider the importance of social and environmental issues nearby the economic and financial goals. In the real industrial environment as well as in today research activities, new concepts have been introduced, such as sustainable development (SD), green supply chain and ergonomics of the workplace. The notion of “triple bottom line” (3BL) accounting has become increasingly important in industrial management over the last few years (Norman and MacDonald, 2004). The main idea behind the 3BL paradigm is that companies’ ultimate success should not be measured only by the traditional financial results, but also by their ethical and environmental performances. Social and environmental responsibility is essential because a healthy society cannot be achieved and maintained if the population is in poor health. The increasing interest in sustainable development spurs companies and researchers to treat operations management and logistics decisions as a whole by integrating economic, environmental, and social goals (Bouchery et al., 2012). Because of the wideness of the field under consideration, this Ph.D. thesis focuses on a restricted selection of topics, that is Inventory Management and in particular the Lot Sizing problem. The lot sizing problem is undoubtedly one of the most traditional operations management interests, so much so that the first research about lot sizing has been faced more than one century ago (Harris, 1913). The main objectives of this thesis are listed below: 1) The study and the detailed analysis of the existing literature concerning Inventory Management and Lot Sizing, supporting the management of production and logistics activities. In particular, this thesis aims to highlight the different factors and decision-making approaches behind the existing models in the literature. Moreover, it develops a conceptual framework identifying the associated sub-problems, the decision variables and the sources of sustainable achievement in the logistics decisions. The last part of the literature analysis outlines the requirements for future researches. 2) The development of new computational models supporting the Inventory Management and Sustainable Lot Sizing. As a result, an integrated methodological procedure has been developed by making a complete mathematical modeling of the Sustainable Lot Sizing problem. Such a method has been properly validated with data derived from real cases. 3) Understanding and applying the multi-objective optimization techniques, in order to analyze the economic, environmental and social impacts derived from choices concerning the supply, transport and management of incoming materials to a production system. 4) The analysis of the feasibility and convenience of governmental systems of incentives to promote the reduction of emissions owing to the procurement and storage of purchasing materials. A new method based on the multi-objective theory is presented by applying the models developed and by conducting a sensitivity analysis. This method is able to quantify the effectiveness of carbon reduction incentives on varying the input parameters of the problem. 5) Extending the method developed in the first part of the research for the “Single-buyer” case in a "multi-buyer" optics, by introducing the possibility of Horizontal Cooperation. A kind of cooperation among companies in different stages of the purchasing and transportation of raw materials and components on a global scale is the Haulage Sharing approach which is here taken into consideration in depth. This research was supported by a fruitful collaboration with Prof. Robert W. Grubbström (University of Linkoping, Sweden) and its aim has been from the beginning to make a breakthrough both in the theoretical basis concerning sustainable Lot Sizing, and in the subsequent practical application in today industrial contexts
    corecore