2,246 research outputs found

    Big data for intrametropolitan human movement studies : A case study of bus commuters based on smart card data

    Get PDF
    Unlike the data from traditional sources, there have not been standard ways to validate the quality and reliability of information derived from big data. This article argues that the theory of urban formation can be used to do the validation. In addition, the information derived from big data can be used to verify and even extend existing theories or hypotheses of urban formation. It proposes a general framework regarding how the theory of urban formation can be employed to validate information derived from smart card data and how the validated information can supplement other data to reveal spatial patterns of economic agglomeration or human settlements. Through a case study of Beijing, it demonstrates the usefulness of the framework. Additionally, it utilizes smart card data to delineate characteristics of subcenters defined by bus commuters of Beijing

    Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data

    Get PDF
    Modern public transit systems are often run with automated fare collection (AFC) systems in combination with smart cards. These systems passively collect massive amounts of detailed spatio-temporal trip data, thus opening up new possibilities for public transit planning and management as well as providing new insights for urban planners. We use smart card trip data from Taipei, Taiwan, to perform an in-depth analysis of spatio-temporal station-to-station metro trip patterns for a whole week divided into several time slices. Based on simple linear regression and line graphs, days of the week and times of the day with similar temporal passenger flow patterns are identified. We visualize magnitudes of passenger flow based on actual geography. By comparing flows for January to March 2019 and for January to March 2020, we look at changes in metro trips under the impact of the coronavirus pandemic (COVID-19) that caused a state of emergency around the globe in 2020. Our results show that metro usage under the impact of COVID-19 has not declined uniformly, but instead is both spatially and temporally highly heterogeneous

    Understanding Human Mobility Within Metro Networks – Flow Distribution and Community Detection

    Get PDF
    In this paper, smart card data collected from the Nanjing Metro over 2-hour time periods are used to characterize within- and between-day human mobility patterns within the metro network. Results show that the OD (origin to destination) flows can be characterized well by shifted power law distributions with similar exponents around 2, which reflects the fact that a few OD pairs in the system play a dominant role and undertake disproportionately large OD flow distribution. The different exponents signify heterogeneous human movement in within- and between-day ranges. In addition, we analyze the metro community structures over different time periods based on the community detection method using random walks to visualize and understand passenger movement from a spatial perspective. Normalized mutual information is used to compare community partitions over different time-intervals. The results show that the properties of human mobility during different time periods have a similar rhythm, although some nuances exist, and the community structure is usually divided according to the line distribution. This empirical study provides spatiotemporal insights into understanding urban human mobility and some potential applications for transportation management

    Disruption analytics in urban metro systems with large-scale automated data

    Get PDF
    Urban metro systems are frequently affected by disruptions such as infrastructure malfunctions, rolling stock breakdowns and accidents. Such disruptions give rise to delays, congestion and inconvenience for public transport users, which in turn, lead to a wider range of negative impacts on the social economy and wellbeing. This PhD thesis aims to improve our understanding of disruption impacts and improve the ability of metro operators to detect and manage disruptions by using large-scale automated data. The crucial precondition of any disruption analytics is to have accurate information about the location, occurrence time, duration and propagation of disruptions. In pursuit of this goal, the thesis develops statistical models to detect disruptions via deviations in trains’ headways relative to their regular services. Our method is a unique contribution in the sense that it is based on automated vehicle location data (data-driven) and the probabilistic framework is effective to detect any type of service interruptions, including minor delays that last just a few minutes. As an important research outcome, the thesis delivers novel analyses of the propagation progress of disruptions along metro lines, thus enabling us to distinguish primary and secondary disruptions as well as recovery interventions performed by operators. The other part of the thesis provides new insights for quantifying disruption impacts and measuring metro vulnerability. One of our key messages is that in metro systems there are factors influencing both the occurrence of disruptions and their outcomes. With such confounding factors, we show that causal inference is a powerful tool to estimate unbiased impacts on passenger demand and journey time, which is also capable of quantifying the spatial-temporal propagation of disruption impacts within metro networks. The causal inference approaches are applied to empirical studies based on the Hong Kong Mass Transit Railway (MTR). Our conclusions can assist researchers and practitioners in two applications: (i) the evaluation of metro performance such as service reliability, system vulnerability and resilience, and (ii) the management of future disruptions.Open Acces

    Does Big Data Lead to Smarter Cities? Problems, Pitfalls and Opportunities

    Get PDF

    Multimodal urban mobility and multilayer transport networks

    Get PDF
    Transportation networks, from bicycle paths to buses and railways, are the backbone of urban mobility. In large metropolitan areas, the integration of different transport modes has become crucial to guarantee the fast and sustainable flow of people. Using a network science approach, multimodal transport systems can be described as multilayer networks, where the networks associated to different transport modes are not considered in isolation, but as a set of interconnected layers. Despite the importance of multimodality in modern cities, a unified view of the topic is currently missing. Here, we provide a comprehensive overview of the emerging research areas of multilayer transport networks and multimodal urban mobility, focusing on contributions from the interdisciplinary fields of complex systems, urban data science, and science of cities. First, we present an introduction to the mathematical framework of multilayer networks. We apply it to survey models of multimodal infrastructures, as well as measures used for quantifying multimodality, and related empirical findings. We review modelling approaches and observational evidence in multimodal mobility and public transport system dynamics, focusing on integrated real-world mobility patterns, where individuals navigate urban systems using different transport modes. We then provide a survey of freely available datasets on multimodal infrastructure and mobility, and a list of open source tools for their analyses. Finally, we conclude with an outlook on open research questions and promising directions for future research.Comment: 31 pages, 4 figure

    Full Issue 19(4)

    Get PDF
    corecore