
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Does Big Data Lead to Smarter Cities? 
Problems, Pitfalls and Opportunities 

MICHAEL BATTY 

Abstract: In this paper, we describe the emergence of “big 
data” in cities and argue that an appropriate definition of 
such data, to make it distinct from the many other data that 
are relevant to urban research, is that such data is streamed. 
What makes it big is that it streams from sensors that 
operate in real time and that such data is only finite when the 
sensor is switched off. We illustrate some of these data 
through dashboards and portals that are fast appearing to 
synthesize the various different streams and feeds that define 
this data. The coincidence of the managing and controlling 
urban functions in cities in real time if often associated with 
big data and we explore these parallels, introducing a 
number of technical issues pertaining to making bit data 
useful, particularly its integration with other big data sets. 
We then sketch the difficulties of such integration using the 
data we have been working with relating to smart cards and 
geo-temporal positioning in the pubic transport systems that 
define various travel networks in greater London, and we 
then conclude with some suggestions pertaining to how such 
data might be best exploited for realizing the potential of 
managing the city in real time. 

I. THE RISE OF BIG DATA: HISTORICAL ANTECEDENTS,  
CONTEMPORARY DEVELOPMENTS 

There is a wonderful story that shows big data to be entirely 
dependent on our ability to process it, which in turn depends on the 
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capacity of the computers that we have available. Back in 1953, Joe 
Lyons and Company operated a popular chain of some 250 tea shops 
(and many other outlets such as hotels) in British towns and cities 
and, as part of their operation, they were at the forefront of digital 
computing in business. They teamed up in the late 1940s with Maurice 
Wilkes1 at Cambridge, who was working on one of the world’s first 
digital computers, EDSAC. In return for funding some of Wilkes’ 
research, the company began the production of its own computer 
closely fashioned around the Cambridge model (Ferry, 2012). LEO1 
was first produced in 1951 and LEO2 a couple of years later. By then, 
the embryonic computer group at Lyons had begun to take in 
computing jobs to pay for their idle cycles from organizations as 
diverse as the UK Meteorological Office and the Ford Motor 
Company.2 

In 1955, they were approached by British Railways, who wanted to 
compute all the distances between some 5000 stations in Great 
Britain, so that they could price their freight (and passenger services) 
efficiently and consistently. Now 5000 stations – a number that 
implies that there are some 5000*4999/2 symmetric link distances to 
be calculated – is a tiny data problem today, but in 1953 it was 
enormous. This was “big data” by any standards and, although the 
LEO machine could certainly compute this matrix of distances, the 
process was painful. Remember that this was an era when computers 
were still based on valve technology and when everything had to be 
inputted to the machine through an intermediate media – through 
punched tape and then punched cards in this case. Greening-Jackson 
(2012) says of the machine:  

“It had 2K _ 35-bit words of memory, implemented 
using mercury delay lines. Input was from punched 
card, and output could be either to card or to a printer. 
Programs were hand assembled (i.e. there was no 
separate assembler program) and the (decimal) op-
codes were written on coding sheets. These coding 
sheets were then keyed as Binary Coded Decimal (BCD) 

 
 
 
 

1 Wilkes’ group pioneered digital computers with strong links to the US efforts and 
Bletchley Park where Turing amongst others developed the first digital computer Colossus 
in 1943. In fact the Lyons group were amongst the first non-scientific group anywhere to 
make contact with the founders of digital computation (Ferry, 2012). 

2 Wikipedia, s.v. “LEO,” last modified March 28, 2015, 
http://en.wikipedia.org/wiki/LEO_(computer)/.  
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on to punched-tape, which was subsequently converted 
to pure binary on punched cards by LEO itself. Each 
punched card could hold 16 instructions.” 

And so on. It is amazing that anything worked, but it did, and it 
provided the kind of discipline in problem-solving that still drives us 
to search for better solutions to computable problems. 

What the team did was to break the problem down regionally into 
parts, solve the shortest routes problem for each geographical bit and 
then stitch the system back together. For example, Scotland had only 
three rail lines connecting the rest of Britain, and it was easy to see 
that this kind of partition could minimize the calculations. It is a 
completely manageable problem today without any partition, and 
there are applications out there on your phone and GPS device that 
use similar procedures to compute shortest routes in microseconds. 
But there was a problem. No one had solved shortest routes problems 
before. In fact, it was not until 1959 that Dijkstra3 invented his famous 
algorithm but this was 1953. So the Lyons team simply invented it on 
the job, so-to-speak. When this story was discussed with a key 
member of the team, Roger Coleman, in 2012, he admitted he had 
never heard of Dijkstra!4   

There is another punch line to this story. When the job was 
completed, the team delivered a stack of printout to British Railways, 
so they could use this as a lookup table to price their freight. And in 
typical British fashion they never heard from them again. Whether the 
results were ever used we will never know but we suspect not. Yet this 
is still a very sobering story about big data. Big data is relative in 
terms of its volume, and this relativity depends on how quickly and 
easily it can be processed. In this sense, big data always stretches the 
limits of our computing power. What is small data today is what was 
big data yesterday, and definitions based on volume – and there are 
many – are thus rather limited. Currently we are able to process data 
volumes that are measured in terabytes – a thousand gigabytes – 
which can now be stored on an external hard drive which costs about 
 
 
 
 
3 Edgar Dijkstra was the first person to publish an algorithm that enabled one to compute 
all the shortest routes between the nodes in a network given knowledge of the direct 
segments that linked the nodes. 

4 A much fuller presentation of this story was given by John Graham-Cumming in a 
keynote entitled “The Great Railway Caper” at the Strata Conference London 2012 and his 
talk is available at “John Graham-Cumming keynote Strata Conference London 2012 “The 
Great Railway Caper,” YouTube video, posted by “O’Reilly,” October 2, 2012, 
http://www.youtube.com/watch?v=pcBJfkE5UwU.  
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$50. Of course, it is limits on random access memory that really 
determine what we can process as the LEO team back fifty or more 
years ago was really well aware of. Once we pass beyond a terabyte, we 
are up against quite hard limits for most routine computing, and 
thence we move into the very specialized territory of big data and its 
processing where data volumes are at petabyte or even exabyte level. 
This requires very specialized skills as well as new forms of analytical 
modeling as the data volumes get greater. Volumes are thus still 
important as they imply qualitative change in how we go about 
working with such data. In fact, Kitchin (2013) has a much fuller 
definition of big data that incorporates several key issues identified in 
the big data community. In his conception big data is: huge in volume, 
high in velocity, diverse in variety, exhaustive in scope, fine-grained in 
resolution, relational in nature, flexible in terms of its extensionality 
and scalability.  

The definition of what constitutes big data is thus relative to our 
abilities to process it, as our example clearly shows. In fact, it is 
processing rather than storage that is key to its definition. A simple 
rule of thumb currently suggested as being a definition of big data is 
any volume that will not fit in an Excel spread sheet or rather any 
volume of data that cannot be manipulated with such a spread sheet. 
If you filled the currently available spread sheet from Microsoft Office 
which has 1,048,576 (220) rows and 16,384 (214) columns, it would 
freeze and no processing could be done, illustrating that it is not 
simply storage that is at issue, it is processing relative to storage. In 
fact, my own predilection for a definition of big data pertains to data 
that is streamed in real time. There are many data sets that are not 
temporally streamed that seem “big” in the volume sense, but it is only 
data that is truly incomplete at any point in time that can be big data 
in the streaming sense because that data can continue to be collected. 
That is, at any instant, what is already available can be difficult to 
understand without future streams of the same data. Big data in this 
definition has no potential bounds; it is data that, once the sensor is 
turned on so that it can be streamed, is bounded in volume only by the 
point in time at which the sensor is switched off. Usually this is not 
known in most of the applications that we will have recourse to 
explore here.  

In fact, data that originates from sensors is not new but its 
translation into digital form is relatively new or rather, its availability 
to interpretation, access, and exploration is relatively new in that the 
sensors themselves are now likely to be linked to devices that enable 
the storage of their data as well their analysis. Much of this data is 
used for control purposes, as we will note in the next section, but it is 
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very different in structure from that which is collected through 
conventional non-digital means. In fact, big data tends to lack 
significant structure as it is streamed from devices that may add a 
little structure to it, but that structure is likely to be rudimentary. It is 
likely to focus simply on obvious properties of location, time, and any 
other feature that is associated with the object in the system that is 
being monitored.  

There are several different types of sensors, which are rapidly 
being deployed into urban environments, that have recently raised the 
profile of these kinds of streamed data and indeed have given rise to 
the very term big data. We can make at least three distinctions 
between different types of sensor although our treatment is not all- 
inclusive but simply notes those most relevant to environmental 
applications. The most basic sensors are devices that simply record 
the position, time and basic attributes of a mechanical or electrical 
device that is performing some routine function in time and space. 
Good examples from the past are loop counters in roads that record 
volumes of vehicles passing over them at a different time periods. 
Digital versions of the same are now available from arrays of sensors 
that provide a much more complete picture for several kinds of 
moving vehicle; in a later section, we will explore how such data can 
be used to explore the position of tube trains and buses in Greater 
London taken from data that is available in the public domain. 

The second kind of sensor is more flexible and this relates to 
devices such as smart cars associated with individuals and can be used 
to activate devices which themselves are fixed. For example, smart 
cards which record information about trip-making and monies spent 
and are activated to travel on fixed route systems such as subways 
produce data that is much more varied than data associated with fixed 
position sensors. The user of the smart card has mobility and this 
makes the system able to respond to changes in demand and usage. 
Loyalty cards which accumulate points and can also be used as credit 
cards are even more flexible because they generate data that pertains 
to different kinds of purchase, and this provides enormous potential 
for profiling users and adapting the targeting and display of goods 
linked to these profiles.  

A third type of sensed data pertains to individual devices such as 
mobile phones which contain a mass of functionality that can link 
users in terms of the position and timing to many different 
applications. Mobile phone call usage (from call data records – CDRs) 
can be used to generate patterns of movement in space. Associated 
with the profiles that mobile phone operators compile on their users, 
they can provide patterns of usage and behavior in terms of 
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movement, purchasing and related tasks in different places. Related 
information can also be extracted from social media, which is 
activated from phones and related devices, although this kind of data 
is in its infancy with respect to being directly useful for purposes of 
both understanding the city better and for control. 

In the past, most socio-economic data has been collected using 
personal surveys from questionnaires that seek to elicit directly the 
responses of individuals to a series of pre-planned questions. The 
“gold standard” in this respect is the Population Census, which in 
most western countries is taken every tenth year, sometimes every 
fifth. It usually entails a complete enumeration of the population, 
which picks up considerable detail concerning the activities of every 
individual in each household, measured at the location where the 
individual resides. This kind of data is highly structured. It may lack 
structure for particular purposes because it is designed chiefly as a 
detailed head count; because the data is regarded as a general 
resource, the precise usage of each category of data is not finely tuned 
to serve other objectives. Certain movement and migration patterns 
can be extracted, and there is some effort devoted to making the data 
comparable between each decade, constructing a time series of the 
data, despite the fact that the time interval is rather aggregate and 
thus much change is missed. Generally with such data, it is aggregated 
to categories that make identification of any individual impossible, 
and privacy and confidentiality issues dominate the construction and 
release of such data sets. There are many data sets of this kind and, in 
the case the Population Census, the number of attributes concatenated 
against the multiple attribute categories that might be formed can 
elevate this kind of data to the status of “big” in volumetric terms. In 
fact, although only 56 questions are asked, there are many categories 
of answer, and the UK Population Census thus generates something in 
the order of 1010 different cell counts, which is between gigabytes and 
terabytes in terms of storage. Usually data is never available from such 
sources at this level of detail although, in principle, it is easy to see 
how this kind of data might become “big” under certain conditions.  

There are data sets now appearing which categorize populations at 
the same level of detail as the Population Census but are being created 
on a much finer temporal cycle – usually weeks and months rather 
than seconds and minutes. In this sense, some of these data sets might 
be construed as being “big” as they scale temporally. Geo-
demographic data sets that reflect point-of-sale data are typical 
examples especially where sales are made up of very many individual 
items as in supermarket shopping; many online web resources such as 
Amazon are now generating enormous data sets that can be linked to 



2015] BATTY 133 
 
particular consumer attributes in terms demand profiling. Google, of 
course, represents that most obvious of big data for its search data is 
enormous, and increasingly associated with profiling. There are now 
some 2 million searches per minute, only slightly more than the 1.8 
million posts to Facebook. In fact, there are around 200 million 
emails sent each minute and some 20 million photo views on Flickr. 
These are very dramatic data volumes. To an extent this represents 
the cutting edge of big data, and these social media and internet 
related data might even be classed as yet another variant of big data.  

II. UNDERSTANDING AND CONTROLLING THE SMART CITY 

To an extent, the emergence of big data is directly associated with 
new ways of monitoring and thence controlling routine functions that 
occur in time and space where their control is on a second-by-second 
basis. Indeed, the emergence of the idea of the “smart city” is based on 
the notion that computers have reached the point where they can be 
deployed for many kinds of public function associated with making 
the routine management of the city more effective – more efficient, of 
course – but possibly more equitable and certainly more sustainable. 
In short, big data is a consequence of this deployment of computers 
through networks of sensors that are computer-controlled and whose 
data captures the operation of these systems, if not their management. 
Such data is used in real time to control and steer in various ways the 
routine functions that such systems use. 

In fact, the smart city movement is largely driven by the extension 
of computation into the public domain, namely, public spaces, the 
urban commons and the public sector which have been dominated 
hitherto by non-automated forms of activity. Many aspects of this 
domain are now being sensed in various ways. There is considerable 
overlap between the public and private realms, particularly where 
sensing technologies are deployed in private spaces but monitor what 
essentially is the interface with public spaces or public spaces per se. 
Closed circuit TV is the classic example. For a long time, information 
technologies have been penetrating private spaces at work or in retail 
outlets, for example, as well as some public spaces, but it is only very 
recently that city-wide systems of sensors have been deployed. This is 
particularly evident as we will illustrate here in transport where their 
control in terms of passenger ticketing is now largely automatic in one 
form or another, despite the link between big data associated with 
such systems and their control still being rudimentary. 

At a very basic level, much individual behavior in cities, which 
manifests itself in patterns of movement and location, is being 
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informed by new information technologies, particularly data that is 
being communicated via mobile devices, such as smart phones. For 
example, transport information can be picked up across the mobile 
internet, although so far it is extremely difficult to get any sense of 
how users are reacting to such information in terms of their behavior 
patterns. That behavior is being influenced by the availability of 
information in a mobile context is easy enough to demonstrate, but 
the scale and impact of this is almost impossible to track and measure. 
Currently there are very few systems that exercise overall control over 
city-wide systems. London’s Surface Transport and Traffic Operations 
Centre (STTOC) (Theophilus 2014), for example, is a mixture of 
traditional data and media communicated using analogue and digital 
devices but largely coordinated by operators who use their judgment 
on the basis of these media to make decisions about traffic signal 
timing controls, the deployment of accident and emergency services, 
and coordination between different transport modes. The notion of a 
city control center is a long way from reality despite some high profile 
exemplars such as that pioneered by IBM in Rio de Janeiro (Singer 
2012). 

For a long time there has been real time data streamed from 
different urban locations but, until the last couple of decades, most of 
this has not been coordinated in any fashion. Weather information is 
some of the oldest, but local data is still at a relatively coarse spatial 
scale as sensors are rarely deployed in any systematic coverage, 
although this is changing. In many cities, there are an increasing 
number of portals for accessing such streamed data, although much of 
the data remains unstructured. The openness of these kinds of data 
depends very much on how valuable the operators consider it to be. In 
public systems, for example, where the profit motive is low-key or in 
systems, which are highly controlled with a monopoly value, streamed 
data would appear of less value than data that pertains to any 
marketing function. What are emerging very rapidly, however, are 
portals in the form of dashboards that take streamed data and display 
it in an-easy-to-absorb format, putting such data into a context that 
more general users can reflect upon. Currently, these are really of only 
general interest in cities but as their data improves in terms of 
information that might pertain to active decision-making and 
management, then such dashboards will become important. 
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Figure 1: Live Data Feeds into A Dashboard 
(from http://citydashboard.org/london/) 

 
In our own context, we have developed simple dashboards for 

several UK cities. An example of one is shown in Figure 1 for London 
where we have taken a combination of the 27 real-time live traffic and 
transport data feeds from the London Data Store built by the Greater 
London Authority (GLA) to make such data open. Through these 
feeds, our center (CASA at UCL) has created a City Dashboard as a 
means of viewing a key number of these live data feeds. This 
essentially is a dumb interface to a visualization of these data streams 
that is updated in real time, and delivered in a web-based manner 
through http://www.citydashboard.org. In fact, we simplify the data 
feeds in the dashboard which collates about 20 such feeds from air 
pollution through to energy demand, river flow, the FTSE 100, the 
number of buses in service, the status of the subway networks, and so 
on, which we illustrate in Figure 1. The dashboard is an early example 
of collating and visualizing data feeds to provide a view of how a city is 
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currently performing.  

Not limited to London, the dashboard has also been built for 
Birmingham, Brighton, Cardiff, Edinburgh, Glasgow Leeds, and 
Manchester with a version for Venice under development. But in these 
different cities, the types of streaming data can be a little different for 
the dashboard highlights the variability in the availability of feeds 
from city to city. In the UK, London, at the present time, is the 
location for a majority of data feeds with their number updated on a 
second-by-second basis. The majority of this data is either collected 
via a web Application Programming Interface (API) which is usually a 
web site where a user can query the status of the system with the live 
data being delivered to the user (or client) or the data can be delivered 
off-line and mined in accordance with a data provider’s terms and 
conditions. The ability to tap into these API feeds allows the city 
dashboard to provide a view of the particular city at a glance with the 
use of simple color coding to indicate the positive or negative 
connotations of the current state of the data. 

London and Amsterdam both have dashboards that go beyond our 
own physically orientated data streaming technology. Amsterdam’s 
dashboard is organized in terms of socio-economic data and is an 
archive rather than a live stream of outputs. Divided into eight 
sections -- transport, environment, population, culture, social-
political, sport, security and the economy -- it displays trends for these 
counts shown over the working day as in Figure 2(a). The speed of 
refresh is hours not seconds, and thus this dashboard is more like a 
periodic “state of the nation” report. In fact, users can plot the data in 
mappable form. The dashboard has simple GIS functionality, and 
users can thus get a picture of how these categories are changing 
spatially across the city, which is divided into 50 or more small zones. 
In a sense, this implies what might be possible in the not too distant 
future as new sources of open data come on-stream such as house 
prices, rents, or migration statistics, These potentially might be 
delivered and updated on a day-by-day basis or at least on a cycle 
which is much shorter than the typical year, approaching the second-
by-second focus of dashboards based on streamed physical data. 
London’s official dashboard is a cross between our own and the 
Amsterdam board for it contains more abstracted information about 
rates of change and is focused more on socio-economic issues, as 
Figure 2(b) implies. 

The distinction between physical and socio-economic data in 
urban applications is important. Although many urban functions deal 
with physical data and much physical data has significant social and 
economic implications, the kind of data that is captured and displayed 
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in dashboard and portals such as the ones just described deals with 
routine change at the level of managing rather than planning the city. 
Big data, because of the strong streaming element to its form, is 
largely associated with shorter-term management of urban functions 
and in this sense, it is changing the emphasis in city planning from the 
longer to the shorter term (Batty 2013). Many of these functions have 
been managed long before the rise of big data and the automation 
which generates it, but such management has been routine. The 
existence of automated data captured in digital terms now provides 
the opportunities for intelligent control of these systems, and a great 
array of new data mining and related pattern recognition technologies 
is being brought to bear on the city in these terms. It is this that has 
the potential to make the city “smart,” although to date, little has been 
accomplished and much of the smart city movement is involved with 
realizing this potential. There are many obstacles to transgress if the 
promise of big data is to be borne out in smarter cities, which will 
depend as much on smart citizenry as anything else. However there 
are some important technical issues that dominate the debate and it is 
to these that we now turn. 

III. INTEGRATING DATA SETS: BIG AND SMALL, OLD AND NEW 

One of the key prospects for big data involves the supposed 
opportunities for linking or integrating such data with other related 
data sets, thus realizing economies of scale, and adding value to the 
data (Batty, et al. 2012). In fact this is a notion that is not particular to 
big data but it appears to have become more significant.  This is 
probably because, if one joins two or more big data sets, the increased 
volume can be more than the sum of the parts; joining data often 
involves concatenations that explode the number of categories and 
thus the potential dimensionality of the data. The whole idea of 
integrating two or more data sets involves finding some common key 
and in the geospatial world this is invariably some spatial referent – a 
zip or post code – or some spatial metric such as latitude-longitude. 
This is the most neutral of keys but any field which two or more data 
sets have in common can be used to make the join.  
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Figure 2a: Previous page 

The Amsterdam Dashboard as a Living Archive 
(from http://citydashboard.waag.org/) 
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Figure 2b: Above 

The London Dashboard from the London Data Store 
(from http://data.london.gov.uk/london-dashboard/) 

 
To illustrate how problematic is the integration of two or more big 

data sets, we will draw an example from our work with data from 
travel on the London underground (Tube) system. Most passengers 
using the London Tube and overground rail network use a stored 
value card called Oyster on which they can load money for travel on 
the network and which is activated using a smart card reader when 
they enter and leave the system. This deducts the cost of their journey 
as well as recording a variety of other information, most of which 
pertains to where they have traveled.  Data about the monies left on 
the card and the status of the traveller, relating to the type of card, are 
also available. No other attribute data is available but any user can 
display a record of their recent journeys on the ticket machines in any 
rail station. An illustration of the system is given in Figure 3.  

Transport for London (TfL), which operates the system, make 
much of its data available as open data.  One of the sets that we are 
working with comprises twelve weeks of data for all travelers on the 
rail network from 16 June to 9 September 2012. This covers the period 
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of the London Olympics, and we are assuming that the data at the 
start of the period and the end is the most representative of weekday 
and weekend travel on the system. A traveller on the system taps in 
and then taps out; in total during this period, there are some 544 
million tap events on the network which implies that there are on 
average some 7.5 million taps each weekday and 3.63 million each 
weekend day. As a very crude rule of thumb, we might assume that, if 
a person makes a journey in one direction, they will make it in the 
other, and thus we need to divide the number of taps by 4 to provide 
some sense of how many commuters are in the data. We estimate 
between about 1.5 and 2 million commuters per day use the network.  
But part of the analytic problem with this kind of data is guessing or 
estimating what these individual trips are for. In fact there are quite a 
lot of travelers who do not tap in or out; for example, those with 
special cards – free cards for those over 60 years of age, and those 
who have a season ticket card – need not tap in or out at open barriers 
because the cost of individual journeys is not relevant. In fact, there 
can be quite a leakage of travelers from the data set because of the fact 
that barriers are left open, particularly in mainline stations late at 
night. There are thus many issues with the data such as these, even 
though the data provides an excellent record of personal travel. 

 

Figure 3: The Oyster Card Tap-In-Tap-Out System 
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The data set that we are working with is delivered to us offline by 
TfL, and in general, this data has never been used to date for any real 
time control of the system. All analysis has been accomplished from 
the archive and so far it has been used to examine strategic rather 
than routine issues. The data set is structured as an XML file of 32 
fields starting with date_key, time_key, oyster_id and so on from 
which we can extract data pertaining to where a user taps in and out, 
the length and cost of the journey, and the number of segments 
traveled where a segment is a journey from the point of tap-in to tap-
out. Data can of course be aggregated for any set of segments or 
numbers of travelers using rail stations, and it is straightforward to 
generate an origin and destination matrix of travelers where origins 
are stations where the individuals tap in and destinations stations 
where they tap out. What we cannot derive from the data is the actual 
subway or rail line used which make up the segment. In short, when a 
passenger enters the system, there are many ways in which they can 
travel to their destination without leaving the system, that is, without 
tapping out, and there is no record of what this is. There is no 
information technology to date that enables anyone or anything to 
track the passenger from tap-in to tap-out, although in time this might 
be possible.  

However, what we have done to assign travelers to rail lines is use 
the standard Dijkstra algorithm referred to in the first section of the 
paper. This enables us to compute the most likely route.  The picture 
we have of the system’s behavior in terms of flow volumes through 
time between stations is computed in this way. The rail network 
however is extremely complicated and travelers who do not know it 
will take longer to travel and find the right lines than those who are 
veteran travelers. Those who know what is above ground or outside 
the network can also use this knowledge to know where to travel. 
There are multiple shortcuts within stations themselves -- that is, 
more than one way to get to a line from the point of tap-in or to the 
point of tap-out from the platform. All of this adds a high degree of 
uncertainty as to how travelers actually use the network. 

In one sense, this is not as relevant as inferring trip purposes from 
this data and mapping the volumes in stations to related land use and 
activities in the immediate vicinity. Research is beginning in 
attempting to link location to trip movements, but the work is in its 
infancy and involves linking data sets that are related at different 
aggregations, thus introducing considerable uncertainty into such 
analyses (Zhong et al. 2014; Munizaga and Palma 2012). In fact, our 
focus on this data is to examine disruption.  During the twelve- week 
period which this data covers, we are able to examine the impact of a 
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part closure on the Circle and District lines which lasted for over four 
hours on July 19, 2012 from 07:49 to 12:04. This closure affected 
some 1.23 million Oyster card holders who were on the system during 
this period and whose trip pattern was impacted by this closure in 
various ways, such as adding to their travel time, causing them to 
switch from tube to bus, divert to other lines, or leave the system to 
complete their journey by walking. We show the configuration of the 
system and disruption in terms of stations and rail lines in Figures 
4(a) to 4(f) where we show some of the computations made with 
respect to travelers impacted by this disruption. In and of itself, this 
kind of analysis is useful and innovative in that in a wider context, it 
can lead to new strategies to deal with disruption.  But in fact the 
problems that it exposes are much more deep-seated than these 
pictures imply. 

The key issue in measuring disruption is that the disruption occurs 
on trains and thus passengers must be linked to trains. As we have 
argued, this is difficult but not impossible as various assumptions 
might be made about how passengers once tapped in then move to 
platforms and enter trains. In fact, TfL has several other sources of 
open data which measure the supply of their trains. The Trackernet 
application (web API) produces data (with a three-minute latency) 
that gives the position and time of every train on the network. By 
querying the URL (http://cloud.tfl.gov.uk/TrackerNet/), the user can 
extract various positional, temporal and other basic attributes of each 
train on the network, thus being able to position it quite accurately as 
the data in Figure 5 reveals. Thus, in principle, if we know how a 
passenger is moving from the point where they enter the system to the 
point where they board a train on the platform, we can associate 
passengers with trains: in short, we can integrate demand data from 
Oyster with supply data from Trackernet. 

 

 

a) The London Underground Network 

 

b) Schematic of the Disruption 
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c) Increased Travel Times 

 

d) Changes in Origins 

 

e) Changes in the Destinations 

 

f) Complete Mode Switch to Bus 

Figure 4: Measuring Disruptions in Passenger Journeys 

This integration of two big data sets is essential to making sense of 
disruption, largely because on any train which is or has been subject 
to disruption (which we assume is delay), there will be passengers 
with different degrees of disadvantage. Those who boarded the train 
before the disruption will have been disadvantaged while those after 
the disruption has cleared will not, unless they have come from 
another related area of the system. In short, we need to integrate these 
two data sets, but there is no common key.  Again, although we have 
position and time for passengers and trains, we cannot 
unambiguously link these – we are missing the common key, which is 
the actual position and time when the train doors open and the 
passengers step onto or out of the train and on the platform. Whether 
we will ever get this is an open question. In the far future, it may be 
that we will all be so wired and monitored that our every move will be 
recorded, but this is unlikely for many reasons relating not only to 
feasibility, but probably more to personal freedoms. (These concerns, 
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although relevant to this application, do not pose any threats as yet.) 
The point here of course is to demonstrate just how difficult it is to 
integrate big data sets, which is clearly necessary when problems of 
the kind we have just sketched are to be considered. Indeed these are 
exactly the problems, which many consider to be key to making cities 
smart. 

 

Figure 5: A Typical Query Showing the Position And Time 
Stamp of Trains Approaching the Subway Station Angel at 11:03, 

2014/06/03 
 

Before we move onto considering how this big data might be 
employed for real time control, it is worth noting many other features 
that limit its usefulness. In the example of disruption we have just 
illustrated, we have omitted the overground railways from the Tube 
largely because the Trackernet does not cover the overground, as the 
Network Rail API covers this. Moreover Trackernet also misses the 
Docklands Light Railway (and some minor lines like the Wimbledon 
tram). There are also glitches in both data sets with respect to 
accuracy and it is difficult to guess the causes of these errors but the 
Oyster card data has revealed impossible situations where the same 
oyster-id is used at the same time in different places while Trackernet 
sometimes produces data for trains heading in the wrong direction. 

IV. THE REAL TIME CITY 

A generation ago before the era of big data and the smart city, 
most formal activities in thinking about the future city related to 
longer term change, changes that were the subject of physical 
planning and management involving plans and policies that took 
years rather than hours or weeks to implement and achieve. The 
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longest plans were predicated over time horizons of decades. In fact, 
such plans still exist today although very long-term plans are now just 
one of many examples of plans and management across a wide 
spectrum of time horizons. During the last half-century, these time 
horizons have begun to shorten, probably as a result of ever rapid 
change and aging populations which have accumulated enough 
experience to see how different time horizons can complicate our 
picture of the future. Moreover, during this period, the role of 
prediction in social decision-making has been markedly revised.  With 
the rise in complexity theory, the notion that the future can be 
predicted in any sense at all has come under enormous scrutiny. 

There have always been routine services in cities that have been 
subject to automation, and emergency services have been at the 
forefront of these activities for 50 years or more. In the late 1960s, the 
New York City RAND Institute was set up to develop various urban 
operations research tools for scheduling emergency services, 
particularly police and fire, but it is widely agreed that the problem 
they faced was mapping the actual nature of these urban services, the 
working practices of those empowered to implement them, and the 
politics of resource allocation through to successful delivery (Flood, 
2011). Automated tools for solving such problems had to be embedded 
into this wider context, as ever a painful, painstaking process of 
organizational change. In short, the basic problem of implementing 
new information technologies in urban contexts is that it is essential 
to learn about the actual and optimal organizational structures of how 
such technologies need to be developed.  

Indeed, the development of computer services in any kind of 
complex organization is fraught with difficulties, and the experience 
with large IT projects in the public domain is poor, almost 
everywhere. Fifty years ago, the RAND Institute failed in its mission in 
New York City largely because it was impossible for the bureaucrats, 
politicians, consultants, civil servants and operators to work with one 
another and the imposition of a layer of expertise on top of existing 
practices was simply too much for the system. Townsend (2013) 
documents this rather nicely in his recent book on Smart Cities, and it 
is clear from any considered analysis that these organizational issues 
are uppermost in the development of computer tools and 
infrastructures for making cities smarter (Batty 2014). 

The most high profile example of the real time city at present is the 
“Operations Center” which IBM has set up to monitor short-term 
responses to crises in the city of Rio de Janeiro (Singer 2012). In 
response to recent crises – particularly landslides due to flooding and 
to the international events either staged or proposed for the next 2 
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years (the World Cup and Olympic Games) -- the city and its mayor 
proposed that the Center might monitor and control emergencies 
based on weather (of course), traffic, police and crime, and public 
health. The Center is designed as a large visual interface to each of 
these subsystems of the city with a trained staff of analysts and 
observers watching how these systems perform in real time and taking 
action if and when these systems begin to fail. In one sense, these 
functions already exist and have simply been collected together under 
one roof, but as they are being informed by networks of sensors across 
the city, there are clear advantages to some integration. However, the 
real value of such a center must be in how it is linked to actual 
physical responses and the control center is simply the interface to 
many other intricate networked systems where physical and human 
resources are delivered to enable appropriate change to be 
engendered.  

In fact, there are remarkably few infrastructure systems in cities 
that are subject to real time computer control. Traffic is one example 
where progress is rapid but, as we noted earlier with respect to the 
London control center, this is still largely dominated by human image 
processing and manual styles of management because there are few 
algorithms other than those that are used to control wide area traffic 
signaling for dealing with the system on a comprehensive basis. The 
fact that well-organized agencies such as Transport for London are as 
of yet unable to link their demand data to their supply for purposes of 
control is not only because of the difficulty of finding common keys. 
The state of the art in real time traffic control is still quite primitive. 
Despite the fact that there is considerable hyperbole now about 
autonomous vehicles, the feasibility of such control and management 
is problematic any time soon. What is in fact happening is that an 
ecology of related but not integrated tools and methods is being 
fashioned, often around open data, that allows developers to build 
applications that individual users can employ to find out information 
about such systems and act on this information in personal ways. 
There are promising developments in terms of real-time control such 
as in individualized navigation systems. An example is Waze 
(https://www.waze.com/), which combines crowdsourcing with real 
time updates from in-car devices and Sat-Nav, but the movement to 
automation in real time is slow. There are simply too many human 
issues that make such automation difficult. In Figure 6, we show the 
example of TfL’s open data interface and a small sample of some of 
the applications that have been developed for users making use of this 
data to inform intelligent travel decisions. 
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Figure 6: The Open Data Interface Provided by Transport for  
London with a Sample of Independent Apps – Tube, Bikes, Bus – from 

this Data 
 

In other domains, progress is even slower. Although utility 
systems are fast being automated initially for maintenance purposes 
and smart metering is in prospect, the notion of acting intelligently in 
controlling energy distribution in real time in buildings, for example, 
is limited by the fact that most of the routine functions in cities are 
operated by individuals who are not coordinated. The coordination 
comes from emergent behaviors that are structured according to 
principles of individual competition under differential resource 
constraints. Indeed, even where providers such as municipalities are 
automating routine services that they are mandated to deliver, the 
responses they seek are not coordinated for they are individual actions 
that drive the use of such systems. This is what makes participation 
partial.  These limits extend to any form of crowdsourcing, i.e., any 
form of social media that is doubtless generating massive volumes of 
data about usage and preferences but which is and never can be 
representative.  

These then are the limits to the real time city.  There is some 
prospect that new forms of data of a more abstracted nature and 
useful for more strategic planning is becoming available in real time 
but often on cycles that are much slower than the sort of data that is 
streamed incessantly (Batty 2013). A lot of new data is being 
streamed, but the frequency of change is much slower than faster 
systems involving continual movement of people or energy. For 
example, house prices and related transactions, migration into and 
out of cities, updates to the geometry of cities in terms of maps and 
other physical content – all these are on the horizon and rudimentary 
forms of application and their data are now available. In the next 
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decade, we will see substantial progress in this area as big data 
streamed in real time begins to reveal insights into much broader and 
perhaps more important questions as to how cities and their quality of 
life are evolving. 

 
V. THE PROSPECTS FOR BIG DATA IN THE SMART CITY 

We have talked about the all pervasiveness of computers and 
computation in modern life for the last 50 years, but changes in digital 
technology never cease to surprise. Yet the problems of actually 
implementing these technologies appear extremely problematic in 
comparison with simpler technologies developed in the mechanical 
and to an extent electrical eras. Most technologies that we have 
invented during the last 200 years are robust in that they admit levels 
of tolerance in terms of their workability that do not lead to 
widespread breakdown. But it is the social consequences of these 
technologies that are the most significant for the subject matter of this 
paper, cities. There are many important challenges that are posed by 
the spreading out of computers into the public domain, and these 
need urgent resolution if big data is to yield the kind of promise that 
has gripped the field. By way of conclusion, it is worth summarizing 
the key challenges that we have raised. 

The first challenge is the question involving the lack of structure in 
many sets of big data. Because such data is usually collected for 
purposes other than the kinds of analysis implied here, big data often 
lacks the kind of structure that analysis requires so that the pattern 
and structure in such data can be exploited in terms of our 
understanding. Data which is streamed in real time often has no filters 
placed on its form and thus it is highly descriptive of the operation of 
some system. For example, the Oyster data that we have described 
here gives time and position and fare status of a traveler but cannot be 
linked in any way to other personal attributes.  Such linkage would be 
necessary if the data were to be used to target passengers in different 
ways, for example, making their experience of the trip more pleasant 
and advising them on how they might improve their travel. It is often 
remarked -- most significantly by Anderson (2007) in a highly 
controversial article where he argued that the rise of big data heralded 
the end of theory -- that all one needs to do is search for patterns in 
big data and that once these are found through exhaustive data 
mining techniques, then all will be revealed. In fact, this is quite false; 
if one approaches data with no prior conceptions about what it is and 
what it means, then it is unlikely that one will derive any appropriate 
meaning from it (West 2013). Lazer et al. (2014) in their comment on 
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the failures of Google Flu Trends, once hailed as the great example of 
how one can mine “big data” -- in this case, using Google search terms 
correlated with “flu” -- point to the inability of the algorithm to 
distinguish between things like “winter” and “flu.” They conclude that 
in terms of big data, “we are far from a place where they can supplant 
more traditional methods or theories.” 

This leads to our second challenge and this involves integration, 
the search for a common key that will link more than one data set 
together. In the geospatial world, the common key has been the 
address point or the coordinate reference. For many years, geographic 
information system technologies have continued to refine such 
systems so that diverse data sets can be linked together. In fact, such 
address coding has advanced to the point where names rather than 
numbers and seemingly out-of-sequence number sets used in different 
countries and cultures can now be dealt with effectively. But if there is 
no common spatial key between two data sets, then, other than 
manufacturing a synthetic key from independent data, which is 
occasionally possible, there is simply no way such data can be 
integrated. In unstructured data, there are far fewer possibilities for 
integration anyway, and this is likely to remain one of the major 
obstacles to the use of big data in the context of the smart city.  

Our third challenge relates to the organizational structures that 
are needed in cities to exploit big data and the analytics that is able to 
unpack them. In the development of science in human affairs, 
particularly in urban and social policy analysis, the organizational 
structures that determine how decisions are made and how human 
systems function definitely fall under the banner of complex systems. 
Complex systems are inherently unpredictable in that they are built 
and function from the bottom up with coordination and often their 
sustainability a complex web of political, social, competitive, and 
conflicting actions. There is the tendency to assume that every new 
technological development will not follow the same path as before, but 
it appears that many of the efforts in developing big data for smart 
cities are likely to face the same problems as those faced 50 years ago 
when the technologies produced for the space program and the Cold 
War were imported into municipal government (Light 2003; Szanton 
1981). Although problems of integration and structure in big data are 
legion, problems of using it and related analytic technologies are even 
more significant.  What is urgently required is a mapping of these 
technologies onto the practices and structures in which decisions are 
made in municipalities and city government and how these interface 
with the many other agencies that have a stake in the smart city.  
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These are the challenges and it is no accident that the most 
successful developments to date are those that are bottom up – for 
example, Transport for London’s opening of their data to provide 
developers with free data for Apps – rather than the top-down control 
centers and the new smart towns where it is not easy to map these 
new technologies to the organizational and political nexus that cities 
depend upon. The challenge with big data for the smart city is not 
simply technological, but more organizational and political. It requires 
developments on both fronts for progress to be made and for the 
potential of big data to be realized. 
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